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Abstract—In this paper, the trajectory tracking

control problem of uncertain nonholonomic mechan-

ical systems is investigated. By separately consider-

ing kinematic and dynamic models of a nonholonomic

mechanical system, a new adaptive tracking control

is proposed based on neural network approximation.

The proposed design consists of two steps. First, the

nonholonomic kinematic subsystem is transformed

into a chained form, and the corresponding optimal

control is derived. Second, an adaptive neural con-

trol is designed for the dynamic subsystem to make

the outputs of the dynamic subsystem asymptotically

track the optimal control signals chosen for the kine-

matic subsystem. The proposed control is simulated

on a unicycle wheeled mobile robot.
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1 Introduction

Control of nonholonomic systems has received consider-
able attention during the past decade [1]. The reason is
that the class of nonholonomic systems with restricted
mobility cannot be stabilized to a desired configuration
(or posture) via smooth, or even continuous, pure-state
feedback due to the celebrated Brockett’s necessary con-
dition [2]. The problem of trajectory tracking is gen-
erally different from the stabilization problem and thus
the available control approaches for posture stabilization
control are often not directly applicable. Based on the
kinematic model or dynamic model of nonholonomic sys-
tems, the tracking problem can be classified as either
kinematic tracking or dynamic tracking problem. For the
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kinematic tracking problem, where the systems are rep-
resented by their kinematic models and velocity acts as
the control input, several methods have been proposed
in [3][4]. In practice, however, it is more realistic to
formulate the nonholonomic system control problem at
the dynamic level, where the torque and force are taken
as the control inputs. Recently, several researchers have
investigated the dynamic tracking problem for nonholo-
nomic systems. Using neural networks and backstepping,
a method integrating a kinematic controller and a torque
controller for the dynamic model of mobile robot has been
presented in [5]. In [6], dynamic tracking problem of the
nonholonomic systems with unknown inertia parameters
was studied, where the controller ensuring partial states
of the system to track the desired trajectories was pro-
posed.

In this paper, as a natural extension to our recent results
on globally stabilizing near-optimal kinematic tracking
control for nonholonomic chained systems [7], we propose
an adaptive tracking control for uncertain dynamic non-
holonomic systems with the aid of neural network approx-
imation. The proposed design consists of two steps. First,
the nonholonomic kinematic subsystem is transformed
into a chained form, by exploiting its special structure,
the corresponding optimal control can be explicitly de-
rived. Second, a new adaptive neural control is designed
for the dynamic subsystem, which can guarantee the out-
puts of the dynamic subsystem (the inputs to the kine-
matic subsystem) to asymptotically track the designed
optimal control signals for kinematic subsystem. Neural
networks are used to parameterize the unknown system
functions and their weights are adaptively tuned. A ro-
bust term is introduced to suppress the neural network
approximation error and the bounded disturbances. It is
rigorously proved that all the signals of the closed-loop
system are bounded and the tracking errors converge to
zero asymptotically. Simulation results verify the effec-
tiveness of the proposed control.

2 Problem Formulation

2.1 Model of Nonholonomic System

In this paper, we consider a class of nonholonomic me-
chanical systems expressed in local coordinates (general-
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ized coordinates), and by the following form [8]:

M(q)q̈ + C(q, q̇)q̇ +G(q) + d(t) = B(q)τ + JT (q)λ (1)

J(q)q̇ = 0 (2)

where q =
[

q1 · · · qn
]T ∈ <n is the generalized co-

ordinates, M(q) ∈ <n×n is a bounded positive-definite
symmetric inertia matrix, C(q, q̇) ∈ <n×n is the cen-
tripetal and coriolis matrix, G(q) ∈ <n is the gravitation
force vector, B(q) ∈ <n×r is the input transformation
matrix, τ ∈ <r is the input vector of forces and torques,
J(q) ∈ <(n−m)×n is the matrix associated with the con-
straints, λ ∈ <n−m is the vector of constraint forces on
the contact point between the rigid body and the sur-
face, and d(t) ∈ <n denotes bounded unknown distur-
bances including unstructured unmodeled dynamics. As-
sume that constraints in (2) belong to the so-called non-
holonomic constraints [9]. Dynamic system (1) has the
following properties [10]:

Property 1 M(q), C(q) and G(q) are bounded in the
sense that there exist constant scalars c1, c2, and positive
functions kc(q) and kg(q) such that c1I ≤ M(q) ≤ c2I,
||C(q, q̇)|| ≤ kc(q)||q̇|| and ||G(q)|| ≤ kg(q).

Property 2 Ṁ − 2C is skew-symmetric, i.e., XT (Ṁ −
2C)X = 0, ∀X 6= 0.

The control objective is to construct a real-time feedback
control law τ such that asymptotical stability of (q − qd)
can be achieved for systems (1) and (2), where qd(t) is
a given n-dimensional desired trajectory. The following
assumption is standard.

Assumption 1 Desired trajectory qd(t) is differentiable
and uniformly bounded, and satisfies the nonholonomic
constraints in (2), that is, J(qd)q̇d = 0.

To start, we do the following model reduction by us-
ing the methods in [11, 6]. Specifically, let vector fields
s1(q), · · · , sm(q) form a basis in the null space of J(q),
that is,

ST (q)JT (q) = 0, (3)

where S(q) = [s1(q), · · · , sm(q)]T . It then follows from
(2) that there exists a vector v = [v1, · · · , vm]T ∈ Rm

such that

q̇ = S(q)v(t) = s1(q)v1 + · · · + sm(q)vm, (4)

Equation (4) is the so-called kinematic model of non-
holonomic systems [11]. Differentiating both sides of (4)
yields q̈ = Ṡ(q)v+S(q)v̇, and substituting it into equation
(1) leads to

M1(q)v̇ + C1(q, q̇)v +G1(q) + d1(t, q) = B1(q)τ, (5)

where M1(q) = ST (q)M(q)S(q) ∈ <m×m, C1(q, q̇) =

ST (q)
[

M(q)Ṡ(q) + C(q, q̇)S(q)
]

∈ <m×m, G1(q) =

ST (q)G(q) ∈ <m, B1(q) = ST (q)B(q) ∈ <m×r, and
d1(t, q) = ST (q)d1(t).

To further facilitate the trajectory tracking control de-
sign, we proceed with transforming the kinematic sub-
system (4) into its nonholonomic chained form. It is well
known that many mechanical systems with nonholonomic
constraints can be either locally or globally converted to
the chained form under a coordinate change and a con-
trol mapping [9]. Interesting examples of such mechan-
ical systems include tricycle-type mobile robots, car-like
robots, cars towing several trailers, the knife edge, a ver-
tical rolling wheel, and a rigid spacecraft with two torque
actuators, and so on [1]. This canonical form allows us to
design controls for a general class of nonholonomic sys-
tems. In this paper, we adopt the chained form for our
design and thus make the following assumption.

Assumption 2 There exist a diffeomorphic coordinate
transformation X = T1(q) and a control mapping v =
T2(q)u, such that kinematic model (4) can be converted
into a m-input, (m − 1)-chain, single-generator chained
form [12] given by:

ẋ1 = u1,
ẋj,i = xj,i+1u1, 2 ≤ i ≤ nj − 1, 1 ≤ j ≤ m− 1
ẋj,nj

= uj+1,
(6)

where X = [x1, X2, . . . , Xm]T ∈ Rn with Xj =
[xj−1,2, . . . , xj−1,nj−1

] (2 ≤ j ≤ m) are the sub-states,
and u = [u1, u2, . . . , um]T are the inputs of the kinematic
subsystem.

Upon having transformations T1 and T2, dynamic sub-
system (5) can also be converted into the space of the
new variables as:

M2(X)u̇+ C2(X, Ẋ)u+G2(X) + d2(t,X) = B2(X)τ, (7)

where M2(X) = T T
2 (q)M1(q)T2(q)|q=T

−1

1
(X) ∈ R2×2,

C2(X, Ẋ) = TT
2 (q)

[

C1(q, q̇)T2 +M1Ṫ2(q)
]

|q=T
−1

1
(X) ∈

R2×2, G2(X) = T T
2 (q)G1(q)|q=T

−1

1
(X) ∈ R2, B2(X) =

TT
2 (q)B1(q)|q=T

−1

1
(X) ∈ R2×r, and d2(t,X) =

TT
2 (q)d1(t, q)|q=T

−1

1
(X).

The same transformations yielding the chained form will
also be applied to the given desired trajectory qd. Since
qd(t) satisfies (2), it can be easily verified that

q̇d = S(qd)vd. (8)

Under the same transformations, that is, Xd = T1(qd)
and vd = T2(qd)ud, equation (8) can also be transformed
into the chained form as (6). Therefore, the dynamic
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tracking problem can be recast as the problem of con-
structing a control τ for system (6) and (7) such that
limt→∞(X −Xd) = 0.

Assumption 3 [7] The desired trajectory qd(t) to be fol-
lowed is persistent such that the u1d(t) in the chained
form is uniformly right continuous, uniformly bounded,
and uniformly nonvanishing.

Assumption 4 There exists a known finite positive con-
stant c3 > 0, such that supt≥0 ‖d2(t,X)‖ ≤ c3.

2.2 Linearly Parameterized Neural Approx-
imator

A linearly parameterized neural approximator will be
used to approximate the unknown bounding functions
φi(·). Several function approximators can be applied for
this purpose, such as, radial basis function (RBF) neu-
ral networks [13, 14], high-order neural networks [15] and
fuzzy systems [16], which can be described as W TS(z)
with input vector z ∈ Rn, weight vector W ∈ Rl, node
number l, and basis function vector S(z) ∈ Rl. Uni-
versal approximation results indicate that, if l is chosen
sufficiently large, thenW TS(z) can approximate any con-
tinuous function to any desired accuracy over a compact
set [15, 14]. In this paper, we use the RBF NN to ap-
proximate a smooth function. That is, for the unknown
nonlinear functions φ(x), we have the following approxi-
mation over the compact sets Ω

φ(x) = W ∗Tψ(x) + ω(x), ∀x ∈ Ω ⊂ Rl (9)

where W ∗ ∈ Rl is an unknown constant parameter vec-
tor, the NN node number l > 1, ω(x) is the approxi-
mation error, and ψ(x) = [ψ1(x), · · · , ψl(x)]

T is the basis
function vector, with ψi(x) being chosen as the commonly
used Gaussian functions, which have the form

ψi(x) = exp

[−(x− µi)
T (x− µi)

η2
i

]

, i = 1, 2, ..., l,

(10)
where µi = [µi1, µi2, · · · , µii]

T is the center of the recep-
tive field and ηi is the width of the Gaussian function.

Remark 1 The optimal weight vector W ∗ in (9) is
an “artificial” quantity required only for analytical pur-
poses. Typically, W ∗ is chosen as the value of W
that minimizes ω(x) for all x ∈ Ω, i.e., W ∗ :=
arg minW∈Rl

{

supx∈Ω |φ(x) −W Tψ(x)|
}

.

According to the universal approximation theorem [14],
approximation error ω(x) must be bounded upon having
the expression of (9).

Assumption 5 Over a compact region Ω ⊂ Rl |ω(x)| ≤
c4, ∀x ∈ Ω, where c4 ≥ 0 is a known constant.

3 Main Results

In this section, we will proceed with the tracking control
design for dynamic nonholonomic system (6) and (7).

3.1 Design of Tracking Control for Kine-
matic Subsystem

Without loss of generality, we consider the chained sys-
tem (6) with m = 2, that is, consider the class of non-
holonomic chained systems of the form:

ẋ1 = u1, ẋ2 = x3u1, · · · , ẋn−1 = xnu1, ẋn = u2, (11)

where x = [x1, · · · , xn]T ∈ <n is the state, and u =
[u1, u2]

T ∈ <2 is the control input. For trajectory track-
ing, the desired trajectory to be followed is given by:

ẋ1d = u1d, ẋ(i−1)d = xidu1d, ẋnd = u2d, (12)

where xd = [x1d, · · · , xnd]
T ∈ <n, ud(t) =

[u1d(t), u2d(t)]
T ∈ <2 is the time-varying reference in-

put (i.e., open-loop steering control), and x3d up to
xnd are assumed to be uniformly bounded. Let xe =

[x1e, · · · , xne]
T 4

= x − xd denote the state tracking error.
Then, the error dynamics between (11) and (12) can be
expressed as

ẋe = F (u1d(t))xe + [H +G(xd, xe)](u− ud), (13)

where

F (u1d(t)) = diag{F1, F2(u1d(t))}, H = diag{H1, H2},

F1 = 0, H1 = 1, F2(u1d(t)) = u1d(t)F
∗
2 , G =

[

0 0
G2 0

]

,

F ∗
2

4
=















0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
0 0 · · · 0















, H2 =















0
0
...
0
1















,

G2 =
[

z2 + x3d z3 + x4d · · · zn−1 + xnd 0
]T
.

Therefore, error dynamics in (13) can be partitioned into
the following two subsystems:

ẋ1e = F1x1e +H1(u1 − u1d), (14)

ż = F2z +H2(u2 − u2d) +G2(u1 − u1d), (15)

where z = [z1, · · · , zn−1]
T 4

= [x2e, · · · , xne]
T ∈ <n−1. The

decomposition into subsystems (14) and (15) yields two
useful properties. First, subsystem (14) is of first or-
der, linear, time-invariant, and independent of subsystem
(15). Subsystem (15) is nonlinear but has a linear time
varying nominal system defined by

ż = F2(u1d(t))z +H2(u2 − u2d). (16)

Second, coupling from subsystems (14) to (15) is through
G2(xd, z)v1, the only nonlinear term in the system. To
this end, the kinematic tracking control design is stated
in the following theorem.
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Theorem 1 [7] Consider nonlinear tracking error sys-
tem (13) under assumption 3. Then under the control
u(xe, t) = u∗(xe, t), where

u∗(xe, t)
4
=

[

u∗1 u∗2
]T

= −R−1(t)HTP (t)xe + ud,
(17)

with u∗1(x1e, t) = −r−1
1 p1x1e + u1d(t), and u∗2(x2e, t) =

−r−1
2 (t)HT

2 P2(t)z + u2d(t), where P (t) = diag[p1, P2(t)],
p1 =

√
q1r1 for positive constants q1 and r1, and ma-

trix P2(t) is the solution to the following reduced-order
differential Riccati equation: for some P2(∞) > 0,

0 = Ṗ2(t) + P2(t)F2(t) + FT
2 (t)P2(t)

−P2(t)H2r
−1
2 (t)HT

2 P2(t) +Q2, (18)

where R = diag{r1, r2}, and Q = diag{q1, Q2} > 0, the
closed loop system is globally and exponentially stable.

The proposed kinematic tracking control design is di-
rectly applicable to general chained form (6). The only
difference is that, analogous to the decomposition to
two subsystems, the resulting error system of the (m,n)
chained model contains m subsystems.

3.2 Design of Adaptive Neural Control for
Dynamic Subsystem

In this subsection, we design the realistic control law τ for
the dynamic nonholonomic system (7), which will make
the outputs of the dynamic subsystem (the inputs of the
kinematic subsystem) u tend to the optimal control u∗ =
[u∗1, u

∗
2]

T . Define the auxiliary tracking error ue = u−u∗.
By differentiating ue and using (7), the system dynamic
model can be written in terms of the tracking error ue as

M2(X)u̇e+C2(X, Ẋ)ue = −h(X, Ẋ, u∗, u̇∗)+B2(X)τ−d2,
(19)

where h(X, Ẋ, u∗, u̇∗) = M2(X)u̇∗ + C2(X, Ẋ)u∗ +
G2(X). Due to the fact that system inertia parame-
ters are unknown, the exact expression of nonlinear term
h(X, Ẋ, u∗, u̇∗) may not be obtained. In what follows,
control is designed according to the neural approxima-
tion of unknown nonlinear term h(X, Ẋ, u∗, u̇∗). That is,
over a compact set Ω ⊂ <2(n+m), we have the following
approximation

h(X, Ẋ, u∗, u̇∗) = W ∗Tψ(X, Ẋ, u∗, u̇∗) + ω, (20)

where W ∗ ∈ <l×n is the unknown optimal weight matrix,
ψ(X, Ẋ, u∗, u̇∗) ∈ <l are the basis function for the neural
networks and approximation error ω is bounded on the
compact set Ω based on assumption 5, i.e, |ω| ≤ c4. Using
(20), dynamic system (19) can be rewritten as

M2(X)u̇e + C2(X, Ẋ)ue = −W ∗Tψ(X, Ẋ, u∗, u̇∗) − ω

+B2(X)τ − d2(t,X). (21)

Now define the adaptive control as

τ(t) = B+
2 [WTψ − k1ue − k2sgn(ue)

−2(B +G)TPxe], (22)

Ẇi = −Γ−1ψ(X, Ẋ, γ, γ̇)ue,i, (23)

where W
4
= [W1,W2, · · · ,Wm] ∈ <l×m is the estimate of

W ∗, ue,i is the ith element of vector ue, B
+
2 is the left

inverse of B2 defined as B+
2 = BT

2 (B2B
T
2 )−1, Γ ∈ <l×l

is a symmetric positive definite constant matrix, k1 and
k2 ≥ c3 + c4 are positive constants to be designed. The
main result of this paper is stated as follows.

Theorem 2 Consider the mechanical system described
by (1) and (2). Then the control law (22) and adaptation
law (23), all the closed-loop system signals are uniformly
bounded, and tracking errors xe and ue converge to zero
asymptotically.

Proof: It follows from substituting (22) into (21), the
closed-loop system equation becomes

M2(X)u̇e + C2(X, Ẋ)ue = −k1ue + W̃Tψ

−k2sgn(ue) − ω − d2 − 2(B +G)TPxe, (24)

where W̃ = W − W ∗. Now consider the Lya-
punov function candidate V = V1 + V2, where V1 =
1
2

[

uT
e M2(X)ue +

∑n

i=1 W̃
T
i ΓW̃i

]

, and V2 = xT
e Pxe. The

time derivative of V1 along the trajectory of (24) is

V̇1 = uT
e M2u̇e +

1

2
uT

e Ṁ2ue +
n

∑

i=1

W̃T
i Γ ˙̃W i

= −k1u
T
e ue + uT

e W̃
Tψ − uT

e [k2sgn(ue) + ω + d2]

−2uT
e (B +G)TPxe − uT

e C2ue +
1

2
uT

e Ṁ2u2

+

n
∑

i=1

W̃T
i Γ ˙̃W i. (25)

It follows from Property 2 and the expressions of M2 and
C2 that Ṁ2 − 2C2 is also skew-symmetric. Then using
(23), (25) can be simplified as

V̇1 = −k1u
T
e ue − uT

e [k2sgn(ue) + ω + d2]

−2uT
e (B +G)TPxe. (26)

The time derivative of V2 along the trajectory (13) is
V̇2 = xT

e Ṗ xe+2xT
e P [Axe+B(ue+u∗−ud)]+2xT

e PG(ue+
u∗ − ud). Thus noting the expression of u∗ in (17) and
(18), we have

V̇2 ≤ −xT
e Qxe + 2xT

e P (B +G)ue. (27)

To this end, combining (26) and (27) yields

V̇ ≤ −k1u
T
e ue − uT

e [k2sgn(ue) + ω + d2] − xT
e Qxe. (28)

Noting the choice of k2, we know that −uT
e [k2sgn(ue) +

ω + d2] ≤ 0, and it follows from (28) that

V̇ ≤ −k1u
T
e ue − xT

e Qxe < 0,

from which the bounded of closed-loop system signals and
the convergence of ue and xe can be concluded by using
Barbalat’s lemma [17]. 2
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4 Simulation

Consider the unicycle wheeled mobile robot moving on
a horizontal plane, which has three wheels, two are dif-
ferential drive fixed wheels, one is a caster wheel, and
is characterized by the configuration q = [x, y, θ]T . We
assume that the robot does not contain flexible parts,
all steering axes are perpendicular to the ground, the
contact between wheels and the ground satisfies the
condition of pure rolling and non-slipping. Then con-
straint of the non-slipping condition can be written as
ẋ sin θ − ẏ cos θ = 0. From the constraint, we have
J(q) =

[

sin θ − cos θ 0
]

, which leads to S(q) =
[cos θ, sin θ, 0; 0, 0, 1]T . Lagrange formulation can be used
to derive the dynamic equations of the mobile robot. Fol-
lowing the description in section 2, dynamics of the uni-
cycle robot can be written as

ẋ = v1 cos θ, ẏ = v1 sin θ, θ̇ = v2
M1(q)v̇ + C1(q)v +G1 = B1τ,

(29)

where M1 =

[

m0 0
0 I0

]

, C1 = 0, G1 = 0, B1 =

1/R

[

1 1
L −L

]

, v = [v1, v2]
T with v1 and v2 linear and

angular velocities, m0 is the mass of the mobile robot, I0
is its inertia moment around the vertical axis at point Q,
R is the radius of the wheels and 2L is the length of the
axis of the fixed wheels, and τ = [τ 1, τ2]T is the torque
provided by the motors. Using the coordinate transfor-
mations X = T1(q) and state feedback u = T−1

2 (q)v given
by





x1

x2

x3



 =





0 0 1
sin θ − cos θ 0
cos θ sin θ 0









x
y
θ





and u1 = v2, u2 = v1 − v2x2, system (29) is converted
to

ẋ1 = u1, ẋ2 = x3u1, ẋ3 = u2,

M2(X)u̇+ C2(X, Ẋ)u+G2(X) = B2(X)τ,

where M2(X) =

[

x2
2m0 + I0 x2m0

x2m0 m0

]

, C2(X, Ẋ) =
[

x2ẋ2m0 0
m0ẋ2 0

]

, B2(X) = 1/R

[

x2 + L x2 − L
1 1

]

,

G2 = 0.

For the tracking control, the desired trajectory is chosen
to be

qd1 = 2 sin t, qd2 = −2 cos t, qd3 = t,

with v1d = 2 and v2d = 1. Using the above diffeo-
morphism transformation, the desired trajectory in the
chained form is x1d = t, x2d = 2, x3d = 0, with u1d = 1
and u2d = 0. In the simulation, the parameters of the sys-
tem are chosen to be m0 = I0 = 0.5, R = 0.1, L = 1.0,
c1 = c2 = 2, λ = 1, Q = 10I2×2, and R = 0.01I2×2.
The size of RBF neural network is chosen to l = 9, vari-
ances σ = 1, centers νi = [νi1 , · · · , νi12 ]

T , i = 1, · · · , l with

ν1j
= −0.8, ν2j

= −0.5, ν3j
= −0.2, ν4j

= −0.1, ν5j
=

0, ν6j
= 0.1, ν7j

= 0.2, ν8j
= 0.5, ν9j

= 0.8, where
j = 1, · · · , 12. The initial weighs of NNs are chosen as 0.
The control parameters are chosen as k1 = 10, k2 = 10
and Γ = diag{10}.

In the simulation, initial positions and velocities of the
robot are set to be q(0) = [3, 0, 0.5] and q̇(0) = [0, 0, 0].
Simulation results are shown in figures 1 up to 4. Track-
ing errors (q−qd) and (u−u∗) are shown in figure 1 and 2,
respectively. Figure 3 contains the physical control input
τ . The boundedness of neural network weights is shown
by figure 4.

5 Conclusion

In this paper, a new adaptive trajectory tracking control
is proposed for a class of uncertain dynamic nonholo-
nomic systems. The control is synthesized at the dynamic
level of system model. Neural networks are applied to ap-
proximate the unknown system functions. The stability
of the closed-loop system is proved by using Lyapunov
direct method. Simulation results illustrated the effec-
tiveness of the proposed control.
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Figure 1: Tracking errors (“solid line”: x − qd1, “dotted
line”: y − qd2, “dashdot line”: θ − qd3)
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Figure 2: Tracking errors (“solid line”: u1−u∗1 and “dot-
ted line”: u2 − u∗2)
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Figure 3: The real controls (“solid line”: τ1 and “dotted
line”: τ2)
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Figure 4: The boundedness of NNs weights (W1: solid
line; W2: dotted line)
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