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Abstract

This paper presents an experimental study on impedance control in

both Cartesian and object level with adaptive friction compensation

for dexterous robot hand based on joint torque feedback. To

adaptively decrease the effects of high friction caused by complex

transmission systems and joint coupling, a friction observer is

proposed based on the extended Kalman filter (EKF) in this paper.

A Cartesian impedance controller is implemented on a multi-fingered

dexterous robot hand with identical fingers, based on the modelling

of each modular finger. In addition, a flexible n-fingered object frame

is proposed in this paper, applicable to any finger configuration

with three or more fingers (n≥ 3). This enables the design of

a 6-DoF spatial impedance controller. Stability of the closed-

loop system with friction observer is analysed. A position error

of less than 0.16◦ is achieved using joint impedance control with

adaptive friction compensation, which shows significant improvement

in performance, as compared to 1.5◦ without compensation, and

0.5◦ with fixed-parameters friction compensation. Experimental

results confirm the improvement in performance for the robot

hand with Cartesian impedance control and adaptive joint friction

compensation, demonstrating the effectiveness of spatial impedance

controller with the proposed object frame and estimation strategy.
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1. Introduction

Dexterous manipulation is one of the most important
features for humanoid robots. To achieve this goal,
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several anthropomorphic robot hands have been developed
in recent decades. The embedded actuator approach, as
taken by the Gifu Hand [1], the DLR Hand II [2] and the
DLR-HIT Hand I [3], integrate all the actuators inside the
hand, fingers or joints, in order to achieve shorter power
transmission distances. With a different approach, the
Stanford-JPL Hand [4], the Utah/MIT Hand [5], the NASA
Robonaut Hand [6] and the DLR Hand Arm System [7] are
designed with all the actuators mounted outside the robot
fingers driven through tendon cables. Both approaches
introduce complex dynamics including high friction, flex-
ibility and joint couplings, which hinder the control
performance of the robot hands. In this paper, we intro-
duce the modelling and control strategies of the dexterous
robot hand DLR-HIT II, a multisensory five-finger hand
jointly designed by German Aerospace Center (DLR) and
Harbin Institute of Technology (HIT), with a total of 15
DOFs and more than 100 sensors [8].

Tasks such as grasping and manipulation are essen-
tial features for dexterous robotic hands to fully func-
tion as end-effectors for humanoid robots. Impedance
control frame was introduced by Hogan [9] as a reliable
approach for compliant dexterous manipulation and grasp-
ing. Impedance control can be realized in Cartesian space
as a desired dynamic behaviour on the end-effector motion
with respect to the external forces/torques. The robot ma-
nipulator impedance control strategy can be separated into
two categories: with end-force/torque sensor feedback [10],
[11], and with joint torque sensors feedback [12], [13]. The
latter approach is mostly utilized on robot arms. Theoret-
ical analyses have been presented, with numerous exper-
imental realization carried out on the DLR Light-Weight
Robot Arm series [12], [13].

The former approach has also been implemented on
robot hands to achieve Cartesian compliance, known as
admittance control [14], [15]. However, the feedback with
high level of signal noise from six-dimensional force/torque
sensors can significantly hinder performance of the above
control strategies. To address this, sufficient experimental
analysis on joint torque sensor-based robotic hand with
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lower signal noise is necessary, which is currently unavail-
able in literature.

Object level impedance control strategies have been in-
tensively investigated on cooperative robotic manipulators
[10], [11], [16]–[18]. A passivity-based approach, namely
the intrinsically passive controller, is introduced with differ-
entiable manifolds [19]. This approach is implemented on
the four-fingered robotic hand DLR II [20]. This work ex-
tends the object-level impedance controller concept to ac-
commodate any n-fingered (n≥ 3) robotic hand configura-
tion. Implementation and experimental analysis are made
on the five-fingered dexterous robotic hand DLR-HIT II.

Nonlinear factors, such as friction, are addressed by
using stiffness parameters design, rather than explicitly
analysed for joint torque-based robotic arms [12], [13]. Lit-
erature on friction models are available [21]–[24], and nu-
merous model-based friction observers have been derived
in previous work [25]–[28]. Due to uncertainties of friction
model in robot manipulator, disturbance observers are in-
vestigated in [29]–[31]. With the embedded-actuator design
of DLR-HIT II, limited construction space, transmission
system complexity (including harmonic drivers and timing
belts), and joint coupling (e.g., bevel gears), can hinder
the performance of robot hands due to friction and gravity,
more so than robot arms, which have larger distances be-
tween adjacent joints. In addition, the joint friction model
is difficult to identify explicitly due to the mechanical cou-
plings in the finger joint, as well as the compact design.
The parameters of the joint friction may also vary from
joint to joint resulting from component tolerances. To
address these concerns, we present an extended Kalman
filter (EKF) based friction observer derived from a simple
friction model with static and viscous terms, to adaptively
estimate the joint friction.

In this paper, we propose an adaptive joint friction
observer based on the EKF and establishing an object level
frame based on n-finger positions, so that the Cartesian and
6-DoFs spatial impedance controllers can be implemented
and evaluated on a multi-fingered robot hand. Our work
distinguishes itself from previous studies in that we not
only present an impedance controller with adaptive friction
compensation for joint torque-based robotic hand with
compact design, but we also present a multi-fingered spatial
impedance controller based on n-fingered object frame with
nonlinear compensation.

2. The Robot Hand with Flexible Joints

The fingers of DLR-HIT II, shown in Fig. 1 are of iden-
tical, modular designed. Flexibility of the finger joints is
modelled as a linear torsional spring with stiffness k, the
detailed description could be found in [31]. The dynamics
equations of the robot finger with flexible joint can be
written as [39]:

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ + τext (1)

Iθ̈m + τ + τf,m = τm (2)

τ = K(q − θm) (3)

Figure 1. The DLR-HIT II dexterous robot hand.

where M(q), C(q) and g(q) represent the inertia matrices,
centrifugal term and gravity term of the entire finger,
respectively. The joint torque vector is given byK(q− θm),
where θm indicates the vector of the motor angle divided
by the gear ratio n, and q represents the link side joint
angle. K and I are diagonal matrices which contain the
joint stiffness k, and the motor inertia multiplied by the
gear ratio squared, respectively. τext and τf,m are external
torque vector and friction torque vector in joint space,
respectively. The generalized actuator torque vector, τm,
is considered as the control input [33], [34].

3. Cartesian Impedance Control Design for the
Robot Hand

To obtain the desired impedance relationship, the Carte-
sian position error x̃=x−xd is introduced as the difference
between the centre point of the fingertip position x and a
desired position xd. The Cartesian impedance controller
is designed to realize a dynamical behaviour between the
position error x̃ and the external force Fext:

Fext = Md
¨̃x+Dd

˙̃x+Kdx̃ (4)

with ẋ= J(q)q̇, where J(q) represents the Jacobian matrix
of the finger. Together with (1) and (4), the Cartesian
impedance controller is derived with Fτ considered as the
control input:

Fτ = Λ(x)ẍd + μ(x, ẋ)ẋ+ (Λ(x)M−1
d − I)Fext

+Fg(x)− Λ(x)M−1
d (Dd

˙̃x+Kdx̃) (5)

The matrices Λ(x) and μ(x, ẋ) here can be expressed as:

Λ(x) = J(q)−TM(q)J(q)−1 (6)

μ(x, ẋ) = J(q)−T (C(q, q̇)−M(q)J(q)−1J̇(q))J(q)−1 (7)

Fext and Fg are external torques/forces and gravity repre-
sented in Cartesian coordinates system. The Coriolis term
is considered in the theoretical analysis in this work, in
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order to remain consistent with the dynamics model of the
robotic hand. However, since the Coriolis term caused by
the limited maximum joint speed of our robot is within a
reasonable boundary, the centripetal and Coriolis forces are
neglected here in the actual implementation. In addition,
the desired inertia Md can be designed to be identical to
the finger inertia matrix Λ(x), so that Fext is eliminated in
the dynamics equations. As a result, the actual impedance
controller in implementation becomes:

Fτ = Λ(x)ẍd + μ(x, ẋ)ẋ−Dd
˙̃x−Kdx̃+ Fg(x) (8)

The model-based controller can be represented with τ as
control input in joint space:

ucm = g(q)+J(q)T (Λ(x)ẍd +μ(x, ẋ)ẋ−Dd
˙̃x−Kdx̃) (9)

For passivity consideration and simplification of the damp-
ing design, impedance controller is chosen as PD control
law more explicitly in [12]:

uc = −J(θ)T (Kxx̃(θ) +Dxẋ) (10)

x̃(θ) = f(θ)− xd (11)

ẋ = J(θ)θ̇ (12)

Without considering friction term, (2) is rewritten as:

Iθ̈m + τ = τmc (13)

With the control input uc, the joint dynamics is ex-
pressed as:

θ̈m = −I−1
v τ + I−1

v uc (14)

where Iv is a diagonal virtual inertia matrix, with all the
none zero entries iv <i. This means that the robot system
with the designed impedance controller appears to react
to external forces/torques with a reduced rotor inertia
[12]. From (10) and (11), the actual implementation of
Cartesian impedance controller can be expressed as:

τmc = Kτuc + (I −Kτ )τ (15)

This is a PD-form controller with the torque feedback
loop. Kτ = I · I−1

v is a diagonal matrix representing the
torque feedback gain, which contains kτi > 1. System
dynamics terms such as Λ(x), μ(x, ẋ) and friction τf are
not compensated for. Dynamics model errors should be
considered within the design of the stiffness parameter
Kd while implementing PD-based impedance control law.
Without considering friction, the closed loop system can
be rewritten as:

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ + τext (16)

Iv θ̈m + J(θ)T (Kxx̃(θ) +Dxẋ) + τ = 0 (17)

System dynamics with friction and friction compensation
is further investigated in Section 4.

4. Spatial Impedance Control for the Multi-
fingered Dexterous Robot Hand

Modular and identical design of the DLR-HIT II robot fin-
gers permits constructing n-fingered dexterous robot hand
depending on tasks. A flexible n-fingered object frame is
proposed in this section following with spatial impedance
controller implementation. The assumption is made in
this paper that only the fingertips are in contact with the
object while grasping. The point contact with friction
(PCWF) contact model without sliding is considered in
the remainder of this paper.

The object frame is solely based on the fingertip posi-
tions. In contrast to [20], the object frame proposed in this
work can be applied to n-fingered robot hand configuration
with n≥ 3. The centre point xo of the object frame is
chosen as:

xo =
x1 + x2 + · · ·+ xn

n
(18)

where xi(θ) denotes the ith fingertip position represented
in the local coordinates. With the assumption presented
above, there is no relative velocity between xo and the
object centre, although xo may not necessarily coincide
with the object centre. As a result, xo can be adopted to
represent the object motion in the proposed frame.

The objective of the spatial impedance controller de-
sign is to map the object driving force/toque with respect
to the object frame into motor control input with respect
to the joint frame. Therefore, a connecting vector be-
tween the ith fingertip and the frame centre is defined
as Δxi =xi−xo, as shown in Fig. 2. Thus the object
frame

∑
o= [Ro, xo]∈SE(3) is linear spanned by all of the

connecting vectors, in which Ro = [ro1, ro2, ro3] represents
the orientation matrix. The first axis ro1(x) of

∑
o is

expressed as:

ro1 =
v1 + v2
‖v1 + v2 ‖

(19)

where:

v1 =
n∑

i=0

(−1)i x2i+1 − xo

‖x2i+1 − xo ‖
(20)

v2 =
n∑

i=1

(−1)(i+1) x2i − xo

‖x2i − xo ‖
(21)

The third axis ro3(z) of
∑

o is defined perpendicular to
the plane spanned by vectors v1 and v2:

ro3 =
v1 × v2
‖v1 × v2 ‖

(22)

The second axis ro2(y) of
∑

o can therefore be repre-
sented as:

ro2 = ro3 × ro1 (23)
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Figure 2. Construction of the object frame based on 3, 4 and 5 fingers configurations with the robot hand DLR-HIT II.

By applying a spatial virtual mechanical spring between
the object frame

∑
o and the desired virtual equilibrium

object frame
∑

d [35], the spatial 6-DoFs impedance con-
trol can be achieved with n fingers for coordinated control.
To maintain stable grasping forces while manipulating the
object, an additional virtual connecting spring is imple-
mented as described in [20]. To achieve asymptotic stabil-
ity, a possible set of energies in the translational, rotational
and connecting springs is defined as:

Vt =
1

2
ΔxoT

od KtΔxo
od (24)

Vo = 2εoTod Koε
o
od (25)

Vc =
1

2
Kc

n∑
i=0

(‖Δxi ‖ − ldi)
2 (26)

with Δxo
od =RT

o (xo−xd) denoting object position error
represented in object frame. εood is the vector component
of the unit quaternion {ηod, εbod}, which can be generated
from Ro

d =RT
o Rd. ldi is determined depending on the re-

quirements of force closure during grasping. Kt, Ko and
Kc are diagonal matrices representing translational, ro-
tational and connecting stiffness parameters, respectively.
With the energy derivations from virtual springs, the co-
ordinated spatial impedance control law can be derived:

us = −
∂(Vt + Vo + Vc)

∂θ
−Dvo + g(q) (27)

where D is a positive definite damping matrix. vo repre-
sents object velocity with respect to

∑
o. The actual imple-

mentation of the spatial impedance controller is achieved
with the joint torque feedback:

τms = Kτus + (I −Kτ )τ (28)

5. Adaptive Friction Observer

5.1 Friction Estimation based on Least Squares

The performance of the controller is closely tied to the ac-
curacy of the robot dynamic model. Due to the mechanical

couplings in the finger joint and the compact design, the
joint friction model is difficult to identify explicitly. In ad-
dition, the parameters of the joint friction vary from joint
to joint as a result of component tolerances. Hence, a con-
ventional friction model is utilized for the joint of robotic
hand DLR-HIT II. The friction model is expressed as:

τf = bθ̇ + c · sign(θ̇) (29)

b and c are coefficients of viscous and static friction, re-
spectively, with which the joint dynamics can be described
as below:

Iθ̈ = τ − bθ̇ − c · sign(̇θ) (30)

where τ = τm− τ , I represents motor inertia.

The friction compensation is implemented at the joint level
in this paper. The friction coefficients in (30) must be iden-
tified in order to implement friction compensation. How-
ever, the signum function sign(θ̇) introduces nonlinearity
into (30). Linearization of the joint dynamics equation can
be achieved by multiplying both sides of (30) with θ̇:

Imθ̇θ̈ + bθ̇2 + c θ̇sign(θ̇)︸ ︷︷ ︸
| �θ|

= θ̇τ (31)

The friction coefficient estimations based on Least Squares
(LS) technique can be obtained by integrating (31):

⎡
⎢⎢⎢⎣
1
2 (θ̇

2
k+1 − θ̇2k)

ts
2 (θ̇

2
k+1 + θ̇2k)

ts
2 (|θ̇2k+1|+ |θ̇2k|)

↓ k = 0 . . . N
...

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
LS

·

⎡
⎢⎢⎢⎣
Im

b

c

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

ts
2 (τk+1θ̇k+1 − τkθ̇k)

↓ k = 0 . . . N
...

⎤
⎥⎥⎥⎦ (32)
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The above integrating is performed over one time step
ts = tk+1− tk, and trapezoidal approximation is utilized
during the integrating step. It should be noted that the
velocity θ̇ could not be measured directly. Instead it has to
be obtained through the derivation of the position θ, which
results in the high frequency noise on the velocity signal.
On the other hand, the LS estimation is also influenced
by the integral approximation. In order to achieve a more
satisfactory estimation result, an adaptive joint friction
and velocity observer based on EKF will be derived in the
following section.

5.2 Adaptive Friction Observer based on EKF

The partially observed nonlinear dynamic system can be
expressed as:

ẋ = f(x, u)

y = h(x, u) (33)

The EKF for (28) is given by [36]:

˙̂x(t) = f(x̂(t), u(t)) +K(t)(y(t)− h(x̂(t), u(t))) (34)

Ṗ (t) = F (t)P (t) + P (t)FT (t) +Q

−P (t)HT (t)R−1(t)H(t)P (t) (35)

where F and H are:

F (t) =
∂f

∂x
(x̂(t), u(t)) (36)

H(t) =
∂h

∂x
(x̂(t), u(t)) (37)

As described in [37] and [38], the viscous and static friction
parameters b and c are assumed to be constant system
states during the derivation. The control input τm is
modelled as a state variable, and the external disturbance
torque τ is obtained directly from the torque sensors. With
a high sample rate (1 kHz), τm as well as τ are modelled as
constant system variables. As a result, the dynamic model
of the robot finger joint can be described as:

d

dt

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

θ

θ̇

τ

b

c

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
:=x

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

θ̇
1

I
(τ − bθ̇ − c · sign(θ̇))

0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
:=f(x)

(38)

Since the derivation of the sign function in (36) is not
defined, the following approximations are used to replace
the sign function and its derivation:

σ(θ̇) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−1 θ̇ < −δ
1

δ
−δ < θ̇ < δ

1 δ < θ̇

, α =
∂σ

∂t
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 θ̇ < −δ
1

δ
−δ < θ̇ < δ

0 δ < θ̇

(39)

After partially deriving the dynamics (38), the following
linearized error state system dynamics can be obtained:

d

dt

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Δθ

Δθ̇

Δτ

Δb

Δc

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0

0 −
(
b

I
+ α

c

I

)
1

I

−θ̇
I

−f(θ̇)
I

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Δθ

Δθ̇

Δτ

Δb

Δc

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(40)

with α represents the derivation of σ(θ̇). The partial
derivative sign ∂ is replaced with the forward difference
signΔ, and (39) is utilized.

With the adaptive friction observer, the finger joint
friction estimation can be expressed as:

τ̂f = b̂θ̇ + ĉ · sign(θ̇) (41)

The Cartesian and spatial impedance controllers with
adaptive friction observer can be written as:

τm = Kτu+ (I −Kτ )τ + (I −Kτ )τ̂f (42)

u represents uc in the Cartesian impedance controller,
whereas us is employed as u in the spatial impedance
controller.

5.3 Gravity Compensation

By using the iteration method introduced in [12], (10) and
(27) with gravity compensation can be rewritten as below:

uc = ĝ(θ)− J(q)T (Dd
˙̃x+Kdx̃) (43)

us = −
∂(Vt + Vo + Vc)

∂θ
−Dvo + ĝ(θ) (44)

The link side gravity can be compensated with the motor
position [12]. As the gravity force of the joints cannot
be explicitly obtained due to the compact design of the
finger joints on DLR-HIT II robot hand, the LS technique
is utilized during the system identification [39].
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6. Stability Discussion with a Passivity-based
Controller with Friction Compensation

The local convergence of the EKF in continuous time
is demonstrated in continuous time by Kerner [40], Reif
et al. [41], and in discrete time by Song and Grizzle
[42], Boutayeb et al. [43]. Following [40], the candidate
Lyapunov function including the filter energy is chosen as:

Vf = x̃f (t)
TQ(t)x̃f (t) (45)

where x̃f =x− x̂ refers to the state estimation error. Since
x̃f (t)

TQ(t)x̃f (t)→ 0 exponentially as t→∞, as a result:

V̇f =
d

dt
x̃f (t)

TQ(t)x̃f (t) ≤ 0 (46)

Detailed proof of (46) are available in [40] and [41]. The
closed-loop system with the passive PD controller (17) is
analysed here. Similar stability analysis could be con-
structed for passivity-based controller (27) and (28). With
considering friction and friction compensation, the closed-
loop system dynamics (17) can be expressed as:

Iv θ̈ + J(θ)T (Kxx̃(θ) +Dxẋ) + τ + (τf − τ̂f ) = 0 (47)

A candidate Lyapunov function for the closed-loop system
is chosen as:

V = Vf + V (q, q̇, θ, θ̇) (48)

V (q, q̇, θ, θ̇) =
1

2
q̇TM(q)q̇ +

1

2
θ̇T Iv θ̇

+
1

2
(θ − q)TK(θ − q) +

1

2
x̃(θ)TKxx̃(θ)

+Vg(q)− V�g(θ) (49)

where V (q, q̇, θ, θ̇) represents kinetic and potential energy
from the closed-loop system. Following [12], the derivative
of V (q, q̇, θ, θ̇) is expressed as:

V̇ (q, q̇, θ, θ̇) = −ẋTDxẋ+ θ̇(τ̂f − τf ) (50)

The derivative of the Lyapunov function V with the addi-
tion of the filter energy, given in (46), becomes:

V̇ = −ẋTDxẋ+ θ̇(τ̂f − τf ) + V̇f (51)

Based on the observations of (51), V̇ is negative definite
with a negative definite θ̇(τ̂f − τf ) along with an appro-

priately chosen Dx. θ̇(τ̂f − τf ) represents the power in-
troduced by friction compensation. Thus, the condition
of negative definite θ̇(τ̂f − τf ) requires that the power of
friction compensation to be dissipative, to reach in the
following conclusion:

V̇ = −ẋTDxẋ+ θ̇(τ̂f − τf ) + V̇f ≤ 0 (52)

Due to the local convergence of the observer, the friction
observer provides exact friction compensation at steady
state, e.g., τ̂f − τf =0. Therefore, the system converges to
an invariant set contained in subspace, which is given by
the following unique point:

P = (θ = θs, θ̇ = 0, q = qs, q̇ = 0, vm = 0, τ̂f = τf )
T (53)

where the steady state is derived from (16) and (47):

K(θs − qs) = g(qs) (54)

K(θs − qs) + J(θs)
TKxx̃(θs) + τ̂f − τf = ḡ(θ) (55)

As shown by LaSalle Invariance Principle, asymptotic sta-
bility is achieved. The analysis is restricted to the condition
that the power of friction compensation is dissipative. The
above analysis implies that a passivity-based controller for
a robot with flexible joints is asymptotically stable with a
passive friction observer.

However, the limitation of the EKF-based approach
lies in the fact that the power of EKF-based friction com-
pensation is not always dissipative. As a result, (52) does
not always hold true. Therefore, a friction compensa-
tion gain Kf is introduced, and the control law (42) with
adjustable friction compensation is given as:

τm = Kτu+ (I −Kτ )τ + (I −Kτ )Kf τ̂f (56)

Following [44], a possible energy storage function may be
chosen as:

S =
1

2
θ̇T Iv θ̇ +

1

2
(θ̇ − ˙̂

θ)TKf (θ̇ − ˙̂
θ) (57)

By monitoring the energy introduced by the observer and
friction compensation in a period of time t→ t0:

Ufric = S(t)− S(t0)−
∫ t

t0

θ̇(u− τ)dt (58)

The friction compensation gain Kf can be scaled down
when Ufric exceeds a certain threshold, in order to elimi-
nate the friction overcompensation.

7. Experiments

7.1 Friction and Velocity Estimation

Experiments of the friction and velocity estimation with
the EKF are carried out with the DLR-HIT II. The finger
distal joint of the first robot finger is adopted for exper-
imental investigation. Results are illustrated in Fig. 4,
with the finger distal joint moving without external torque
(τext =0). The estimation of friction coefficients converges
to the assumed values (b=0.3, c=0.2) within 80 control
cycles, as shown in Fig. 3(a)–(c), which demonstrates the
effectiveness of the designed observer based on the EKF.
The assumed friction parameters are calculated with the
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Figure 3. Friction parameters and velocity estimation with EKF: (a) estimation of static friction coefficient c; (b) velocity
estimation; (c) estimation of viscous friction coefficient b; and (d) control input.

Figure 4. Velocity estimation with EKF and LS method.

LS technique. Control effort is shown in Fig. 3(d). The
steady-state errors shown in Fig. 3 may be caused by
the approximations during the derivation of the EKF fil-
ter. As described in [40], the initial state should be cho-
sen to be sufficiently close to the actual state, such that
|x(t)− x̂(t)|→ 0 exponentially as t→ 0. The state variables
θ, θ̇ and τ are initialized with sensor measured values. The
friction parameters are initiated with arbitrary values in an
appropriate range such that b(0), c(0)∈ [0.1 0.5], in order
to show the local convergence property of the EKF.

Higher values of measurement noise covariance R guar-
antee the local convergence of the EKF, at the expense of
slower convergence rate [40]. Therefore, a tradeoff should
be made between stability and rate of convergence for the
selection of R.

During the velocity estimation experiments, the fin-
gertip is pulled and pushed by the operator in order to
generate observable velocities. The experimental results on
DLR-HIT II robot finger demonstrate robust performance
against external disturbance force, as shown in Fig. 4. The
velocity estimation with adaptively estimated system pa-
rameters shows better results than the velocity estimation
with pre-identified system parameters based on LS, which
indirectly demonstrate the performance improvement fa-
cilitated by the friction observer. The computation time of
the EKF-based observer is 160–180μs with 1.2ms control
cycle, in comparison to 1–6μs of the LS-based observer,
with a QNX real-time OS on Pentium IV PC.

7.2 Friction Compensation in Joint Space

Friction compensation experiments are carried out with
the impedance controller in joint space, which can be ex-
pressed as u=−Kd(θ − θs) − Ddθ̇, where θs represents
the desired configuration. Kd and Dd denote the desired
stiffness and damping parameters, respectively. Table 1
lists the relevant parameters of the robot finger required
in the experiment. During experiment, the third joint of
the robot finger follows a periodic trajectory generated by
a third-order interpolation method. The experimental re-
sults are shown in Fig. 5. Together with adaptive friction
and optimal gravity compensation, the joint impedance
controller shows position tracking error of less than 0.16◦.
This result compares favourably to position errors of
0.5◦ and 1.5◦ achieved by joint impedance control with
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Table 1
Estimated and Measured Dynamics Parameters of the DLR-HIT II Modular Robot Finger

Parameters Length Estimated Mass Mass centre Estimated Inertia
(mm) (kg) (mm) (kgmm2)

Joint 1 0 0.00232 27.49 17.53

Joint 2 55 0.0232 27.49 17.53

Joint 3 25 0.0158 2.5 0.098

Joint 4 15 0.0137 3 0.1233

Figure 5. Position tracking experiments with and without friction and gravity compensation.

Figure 6. Cartesian position and force responses when making contact with contacting environment.

friction compensation based on pre-identified parameters,
and without friction compensation, respectively. We can
conclude that improved performance is obtained by the
joint impedance controller with the proposed adaptive fric-
tion observer.

7.3 Cartesian Impedance Control on the DLR-HIT
II Robot Hand

The Cartesian impedance control experiments with and
without friction compensation have been carried out with
the modular robotic finger. Dx = [100, 100, 100]N × s/m

and Kk = [900, 900, 900]N/m are calculated through the
Double-Diagonalization method [13]. Λ(x) and g(x) can
be generated by using the estimated inertias and masses
in Section 4.1. As shown in Fig. 6, the Cartesian position
tracks the desired position trajectory (solid black line),
with real tracking curve (solid gray line). Contacts are
made with the rigid environment where the position offset
is Δz=−0.004m in the z-direction. The Cartesian force
response in z-direction can also be found in Fig. 6. The
experimental results show that the Cartesian position can
follow the desired trajectory closely in the free space, and
the Cartesian force increases stably while staying in contact
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Figure 7. Cartesian position and force responses as an external force is applied.

Figure 8. Rotation and translation experiments on 3, 4 and 5-fingered spatial impedance control.

with the environment. The position tracking errors, with
and without friction and gravity compensation, are shown
in Fig. 6, which prove the effectiveness of the proposed
control and nonlinear compensation strategy.

In a further experiment, the robot pauses at virtual
equilibrium position xd = [0.036, 0.036, 0.2] w.r.t Cartesian

coordinates. The end point of the finger is pulled in one
direction, then released. Figure 7 illustrates the corre-
sponding Cartesian position offset and forces along the
x-direction. The finger is able to overcome the gravity
and friction, and returns towards to the desired Cartesian
position as the robot finger is released. The static error
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Table 2
Control Parameters for Coordinated Spatial Impedance Control

Kt Ko Kc Δγ (rad) Δxox (m) Object Object
(I3×3 ·N/m) (I3×3 ·Nm/rad) (In×n ·N/m) Diameter (mm) Weight (g)

3 Fingers 2× 103 2 4× 102 0.7 0.02 35 100

4 fingers 2.3× 103 2.5 4× 102 0.6 0.02 65 86

5 Fingers 2.5× 103 3 4× 102 0.4 0.015 78 59

Figure 9. Experimental results of 3-fingered spatial impedance control.

Figure 10. Experimental results of 4-fingered spatial impedance control.

along the x-axis is less than 0.2mm. Thus, the Cartesian
impedance controller for the robot hand is successfully
achieved with the proposed adaptive friction observer.

7.4 Spatial Impedance Control

Spatial impedance controller with nonlinear compensation
is implemented on the robot hand in 3-, 4- and 5-finger
configurations, as shown in Fig. 8. Control parameters
are shown in Table 2, in which I represents the identity
matrix. Δγ denotes a rotation step command (rotational

difference with respect to the initial configuration) in Euler
angle around the z-axis of the object frame. Δxox is the
translation step command (translational difference with
respect to the initial configuration) along the x-axis of the
object frame. To evaluate the coordinated spatial control
law with the proposed object frame, object translation and
rotation experiments are conducted on the robot hand.
Specifications of the grasped objects are listed in Table 2.

The step response of the object rotation around the
z-axis and translation along x-axis are shown in Figs. 9–11.
There are high force peaks during the rotation and
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Figure 11. Experimental results of 5-fingered spatial impedance control.

translation, which can be observed in the experimental
results. The steady state is achieved within 5ms after the
step command. Steady-state errors are less than 0.01 rad
for rotation, and less than 0.001m for translation for 3-,
4- and 5-fingered spatial impedance control. Connecting
forces of the thumb are larger than the other fingers in all
the experiments, as the thumb opposes to the other fingers
during grasping. This fact indicates that the configuration
of the thumb should be considered more thoroughly both
in the mechanical and controller design aspects, depending
on different tasks.

By distributing the 6-DoFs object driving forces gen-
erated by the controller to every single finger of the
n-fingered robot hand with using the proposed object
frame, n fingers can work cooperatively to manipulate dif-
ferent objects. The overshooting decreases while increasing
n (fingers), as the driving load on each finger decreases. On
the other hand, joint friction’s influences increase on the
performance of the controller as n increases, due to rising
friction forces in comparison to the driving torque, which
are treated as external forces by the controller. Although
actual contact conditions do not completely correspond
to the PCWF contact model, and both the object and
fingertip are not ideally rigid, the modelling error can be
compensated by the compliance behaviour of the spatial
impedance controller [45].

8. Conclusion

In this work, experimental analysis for impedance control
strategies in both Cartesian and object level are presented
with the dexterous robot hand DLR-HIT II. An adaptive
friction compensation approach based on the EKF is also
proposed to address the highly nonlinear friction in the
finger joints. The modular robot finger of the DLR-HIT II
is modelled, for which an impedance controller with joint
torque feedback in Cartesian space is implemented. Fur-
thermore, a flexible n-fingered object frame is proposed in
this work, applicable to any finger configuration of n ≥ 3.
Based on the proposed object frame, a coordinated spatial

impedance controller is implemented on the DLR-HIT II
hand. Stability of the closed-loop system with friction ob-
server is analysed. Spatial and Cartesian impedance con-
trol experiments are conducted with the proposed friction
observer, which improves position tracking performance as
demonstrated in the experimental results.
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