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Abstract

Model-based image reconstruction (MBIR) techniques have the potential to generate high quality 

images from noisy measurements and a small number of projections which can reduce the x-ray 

dose in patients. These MBIR techniques rely on projection and backprojection to refine an image 

estimate. One of the widely used projectors for these modern MBIR based technique is called 

branchless distance driven (DD) projection and backprojection. While this method produces 

superior quality images, the computational cost of iterative updates keeps it from being ubiquitous 

in clinical applications. In this paper, we provide several new parallelization ideas for concurrent 

execution of the DD projectors in multi-GPU systems using CUDA programming tools. We have 

introduced some novel schemes for dividing the projection data and image voxels over multiple 

GPUs to avoid runtime overhead and inter-device synchronization issues. We have also reduced 

the complexity of overlap calculation of the algorithm by eliminating the common projection plane 

and directly projecting the detector boundaries onto image voxel boundaries. To reduce the time 

required for calculating the overlap between the detector edges and image voxel boundaries, we 

have proposed a pre-accumulation technique to accumulate image intensities in perpendicular 2D 

image slabs (from a 3D image) before projection and after backprojection to ensure our DD 

kernels run faster in parallel GPU threads. For the implementation of our iterative MBIR technique 

we use a parallel multi-GPU version of the alternating minimization (AM) algorithm with 

penalized likelihood update. The time performance using our proposed reconstruction method with 

Siemens Sensation 16 patient scan data shows an average of 24 times speedup using a single 
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TITAN X GPU and 74 times speedup using 3 TITAN X GPUs in parallel for combined projection 

and backprojection.

INTRODUCTION

Model-Based Image Reconstruction (MBIR) algorithms provide the potential of producing 

quantitatively better images using data from conventional x-ray scanners than the linear 

reconstruction algorithms that are the industry standard. Conventional linear algorithms like 

the ones introduced by Feldkamp, David, and Kress (FDK) are mainly used in clinical 

settings for simplicity and low computation time.1–3 Model-based image reconstruction 

algorithms may achieve the same image quality with lower dose4,5 or better image quality at 

the same dose. Currently, patients go through multiple x-ray CT scans during image-guided 

radiation therapy, which elevates the potential risk for tissue damage and radiation-induced 

cancer.6,7 Therefore, there is demand for fast iterative reconstruction algorithms that can 

produce higher quality images in clinically relevant time.

Model-based image reconstruction algorithms are typically iterative: the next image is 

computed based on the current image, a measure of error between the measured data and the 

data predicted from the current image, and a regularization function. Two important 

components of such algorithms are the forward data model and an algorithm for updating 

the image estimate based on errors in measurement space. For x-ray imaging, the forward 

data model is based on line integrals through attenuation images; we call the mapping from 

an image to a set of line integrals forward projection. We refer to the operator that is adjoint 

(or transpose) to forward projection as backprojection. Many MBIR algorithms use 

backprojection as a core component. In this paper, we describe implementations of forward 

projection and backprojection on a multi-GPU architecture that achieve significant speedup. 

We demonstrate the speedup for one choice of an MBIR algorithm, namely the alternating 

minimization (AM) algorithm.

For MBIR algorithms to be feasibly implemented in practice, the computation time must be 

sufficiently low. The actual time demand depends on the application. In security 

applications, three-dimensional image volumes must be computed at the rate for bags to 

travel through the scanner. For many medical applications, the time depends on the 

availability of radiologists, which can vary widely. There are various pathways to decrease 

the time in iterative image reconstruction. One important pathway is through advanced 

algorithms from convex optimization theory.23 A second pathway is through varying step 

sizes in existing algorithms, perhaps decreasing computation time for most images at the 

expense of not having guaranteed convergence properties. A third pathway is through 

parallel processing.

Many convex algorithms are designed to yield parallel updates that map well onto many 

computational architectures, after computing a forward projection and a backprojection. All 

such algorithms will have decreased computation time when coupled with efficient 

implementations of forward projection and backprojection.
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One of the state-of-the-art projection algorithms, called distance driven (DD) projection and 

backprojection, was proposed by De Man and Basu.8,9 In 2006, they proposed an extension 

to their algorithm called branch DD projection and backprojection in which they basically 

parallelized the inner loop of their overlap calculation.10 They divided the overlap kernel in 

three distinct and independent steps: digital integration, interpolation, and digital 

differentiation. Schlifske et al.11 proposed a 2D extension to the branchless DD algorithm in 

which they “pre-integrate” the 2D image slice of the image volume before projection and 

after back-projection. In our work, we use a similar method in which we pre-accumulate the 

image intensities in four perpendicular image slabs in a recursive manner before projection 

in order to accommodate the 3D helical nature of the data. We have also employed a 

recursive adjoint accumulation scheme after backprojection to retrieve our final 3D image 

volume. Our proposed method of pre-accumulation enables us to employ interpolation 

directly into the image accumulation array which reduces the computational burdens 

associated with the sequential integration of the original branchless DD method.

Along with the efforts to improve the structural aspects of reconstruction algorithms, there is 

also an overwhelming trend shifting toward multithreaded CPU and GPU implementations 

for improved time performance. The GPU technology has come a long way from its 

invention in the late 80s to its latest release of GeForce GTX TITAN X GPUs consisting of 

eight billion transistors on a single chip. Modern GPU technologies with their high memory 

bandwidth and peak arithmetic performance are rapidly outpacing their CPU counterparts.12 

Due to their inherent parallel architecture, GPUs can provide quite significant performance 

improvement for algorithms with highly pipelined structure. Current GPUs also provide very 

high global memory storage, which is ideal to fit the whole data volume and image array in 

the GPU itself during kernel execution, in turn eliminating the high latency penalty for 

accessing external memory. Due to all these advantages, it is quite logical to use GPUs to 

improve the speed of image reconstruction.

Over the years, several groups have accelerated their iterative reconstruction methods using 

GPUs. Andreyev et al.13 have accelerated their blob-based iterative reconstruction using a 

Tesla GPU. Jia et al.14 implemented a low dose cone beam CT reconstruction with total 

variation regularization on an NVIDIA Tesla C1060 GPU. McGaffin et al.15 proposed a 

multi-GPU based fast converging stochastic group ascent algorithm to perform dual 

maximization and implemented their algorithm on NVIDIA Tesla C2050 GPUs. Wu et al.16 

accelerated separable footprint based projection and backprojection algorithms using 

NVIDIA Tesla C2050 GPUs. Quivira et al.17 developed an iterative 3D reconstruction 

algorithm for sparse x-ray CT data on Titan X GPUs.

In our work we describe a Poisson model for the measured x-ray CT data. The maximum 

likelihood estimation problem is then reformulated as the double minimization of an I-

divergence problem. An AM algorithm is then formulated with the addition of a Huber type 

penalty function. After that we focus on the parallelization of the branchless DD projection 

and backprojection over multiple GPUs. We first simplify the overlap computation of 

branchless DD algorithm by projecting detector boundaries directly onto the image voxel 

boundaries. After that, we added a pre-accumulation scheme, which reduces the sequential 

integration burden on individual GPU threads. Next, we present a pseudocode for the 
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implementation of our proposed algorithm on single and multiple GPUs. Lastly we have 

validated our overall parallelization scheme by reconstructing images from Siemens 

Sensation 16 helical CT data using the AM algorithm and its ordered subsets version.

METHODS

Mathematical Model

Multislice helical x-ray CT is a useful imaging modality in many clinical applications and is 

now in widespread use. This type of CT is inherently 3D because the x-ray tube 

continuously projects a cone beam through the patient as the patient is translated through the 

scanner. Each detector row captures data in a partial rotation of the gantry that corresponds 

to each image slice.

In this paper, we consider a mono-energetic scatter-free statistical model to account for the 

x-ray photon randomness as was done previously.18,19 At the basis of our statistical model, 

we assume the photons arrive at the detectors in accordance with a photon counting process. 

Let the 3D image volume of linear attenuation coefficients (in mm−1) be represented by the 

vector μ. Let i denote a ray path between the x-ray source and a pixel in the multi-row 

detector array and j denote a voxel in the image volume. The measured transmission data, d, 

is modeled as originating from independent Poisson counting processes. In discretized form, 

the mean value of di is

(1)

where li(μ) is the forward projection given by

(2)

Ii is the mean number of counts in the absence of an attenuating medium, and μj is the linear 

attenuation coefficient in voxel j. The system matrix elements aij comprise the appropriately 

discretized point spread function relating the projection space to the image space. If 

projection i does not pass through voxel j, then aij is zero.

Alternating Minimization Reconstruction Algorithm

For our AM algorithm we use the maximum likelihood solution derived by O’Sullivan and 

Benac.19 The problem was formulated as the double minimization of an I-divergence over a 

linear and exponential family, thereby resulting in a closed-form update for each iteration. 

The objective function to be minimized for the mono-energetic case is

(3)
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For our implementation of the AM algorithm, we compute two backprojections using a 

branchless DD algorithm on measured data and predicted data which are represented below 

as bj and 

(4)

(5)

From O’Sullivan and Benac,19 the update for linear attenuation coefficients is

(6)

where  is the estimate of μ at iteration k and Z is an auxiliary variable that satisfies Z = 

maxi Σj aij.

Since the measured data is noisy, it is necessary to regularize the optimization problem to 

prevent the algorithm from over-fitting the data through unrealistic images. We take an 

approach analogous to that of Erdögan et al.20 and decouple the image variables of our 

penalized objective function such that all the voxels can still be updated in parallel. To derive 

the algorithm for penalized maximum likelihood estimation, we add a penalty term, R(μ), to 

the objective function used in the AM reconstruction, and weight it by a regularization 

parameter λ, where λ is a scalar that reflects the amount of smoothing desired. A larger 

value will give emphasis to the penalty term (i.e., the prior expectation that the image will be 

smooth), whereas a smaller value will give more emphasis to the I-divergence term (i.e., the 

discrepancy between the measured data and the data estimated by the model). The added 

penalty term is defined as

(7)

For 3D regularization, we use the 26-voxel neighborhood Nj surrounding voxel j. The 

weights  control the relative contribution of each neighbor. The potential function ψ(t) is 

a symmetric convex function that penalizes the difference between the values of neighboring 

voxels. For computational simplicity, we use a modified potential function used by Lange,21

(8)
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where δ is a parameter that controls the transition between a quadratic region (for smaller t) 
and a linear region (for larger t). For our specific reconstruction, the first and last set of 

image slices are not included in the penalty calculation because those slices will have severe 

artifacts due to cone beam truncation. Calculating the penalty for those slices could 

negatively impact reconstruction of the inner slices since the artifacts do not have the type of 

structure that can meaningfully be penalized by R(μ). The overall problem is then to find the 

penalized likelihood estimate,

(9)

For our specific implementation, we use Newton’s method to find the optimum iteratively. It 

is worth noting that our solution in (6) is a special case of (9) when λ = 0. The complete AM 

algorithm scheme is shown in Figure 1.

Branchless Distance Driven Operators

The core calculation of the algorithm is the computation of the overlap between the 

projection of an individual slab of the image volume onto a 2D detector array. For our 

specific reconstruction, we used helical CT geometry. We have also exploited the quarter 

rotation symmetry22 because it significantly reduces our computational burden. In our 

algorithm, the overlap calculations are performed directly at the level of the slab of interest. 

This differs slightly from the method proposed by De Man and Basu,9 where the overlap 

calculations are performed in the xz or yz plane passing through the origin. In that case, both 

the flattened voxel edges and detector edges would need to be projected onto the plane 

passing through the origin. In our implementation, the only projection calculations are from 

the detector edges to the slab. The coordinates of the source-to-detector ray intersections 

with the flattened slab determine the 2D rectangular region of the slab that contributes to 

each detector element. These rays are constructed using the edges of each detector element. 

For the completion of an x-ray projection image for a particular view angle, all the slab 

contributions are aggregated for a particular detector array. The contribution is also scaled by 

the length of the intersection of the ray through that slab. For our particular reconstruction, 

we assumed the slabs are flat and of uniform thickness.

Parallel Implementation of Branchless Distance Driven Forward Projection

First, we consider the contribution from a 1D pixel array (i.e., one slab of a 2D image) to a 

detector element at a fixed view angle. The pixels are uniformly spaced and represent a 

continuous function, f (x), using a rectangle basis of unit width,10

(10)

where
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(11)

We wish to find the total contribution of the pixel array to detector element k with edges x = 

u1 and x = u2. This is mathematically expressed as

(12)

where

(13)

Let K ≜ ⌊u⌋, i.e., floor (u). Plugging it into (10), Eq. (13) can be rewritten as

(14)

(15)

(16)

Next, we can define an accumulated pixel array,

(17)

We can rewrite Eq. (16) using (17) as follows:

(18)
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(19)

Now F(u) can be calculated simply in terms of the pre-accumulated array A, and the original 

pixel values fi are no longer needed. In fact, (19) is a linear interpolation into array A. The 

final step to calculate gk is to perform the operation in (12)

(20)

We can define a continuous-coordinate slab using separable rectangular functions

(21)

We can represent in-plane calculations for each basis position j in the z direction

(22)

where

(23)

This leads to

(24)

(25)

where

(26)

Similarly, we can define an accumulated voxel array in the z direction
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(27)

Analogous to (19) we define J ≜ ⌊v⌋. We can write

(28)

We can also write Σj Fj(u2)−Fj(u1) as weighted sum of few elements of Aj[m],

(29)

where ωm is nonzero for up to four distinct values of m, as determined by (19) and (22). 

Therefore, the slab can be pre-accumulated in both the x and z directions, as shown below:

(30)

(31)

(32)

where

(33)

Finally, this accumulation can be written in recursive form for faster calculation as follows:

(34)
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(35)

(36)

For the projection model, as shown above, we pre-accumulate original pixel values in a 

recursive manner to a pre-accumulation array corresponding to four perpendicular slabs, 

each contributing to a different orientation of our view angle. After the pre-accumulation, 

the original voxel values are no longer required. In fact, we perform direct interpolation of 

detector edges onto this accumulation array which gives us a big boost on the time 

performance over the sequential computation of digital integration for every overlap 

computation. Before performing interpolation and differentiation, we determine which part 

of the algorithm could be divided into independent processes to run on a single GPU thread. 

The way branchless projection methods are structured, the interpolation and digital 

differentiation for each slab at each quarter rotation are independent of one another, so it can 

be implemented on a single GPU thread.

Parallel Implementation of Branchless Distance Driven Backprojection

Backprojection for the DD kernel is defined as the transpose of the forward projection 

operator. Using flow graph reversal, the transpose of the entire kernel can be done by 

transposing each sub-operation and performing them in the reverse order, i.e.:

a. Transposed digital differentiation,

b. Transposed linear interpolation or “anterpolation,”

c. Transposed integration.

By writing out the 2D slab accumulation operation (34) in matrix form, it can be shown that 

the transpose of slab accumulation is

(37)

where Nx and Nz are the number of voxels in the two directions, respectively. This operation 

can also be written recursively for faster calculation. If we let

(38)
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then

(39)

(40)

(41)

(42)

For transposed digital integration we perform the similar recursive post-accumulation 

technique over the accumulated backprojection array to retrieve the individual voxel values 

from four mutually perpendicular image slabs.

Implementation on Multiple GPUs

Each GPU is assigned a contiguous group of projections whose cardinality is a multiple of 

the number of views in a quarter rotation. With ordered subsets (OS), each subset consists of 

evenly distributed projections over all GPUs. For example, if two subsets are used, subset 0 

would consist of the even-indexed source angles on each processor, and subset 1 would 

consist of the odd-indexed source angles.

This design allows for theoretically perfect load balancing (in the absence of memory-

related latencies) during forward and backprojection since each GPU essentially makes use 

of the same number of nonzero aij elements. The full-sized accumulation images and the 

projection data corresponding to each subset are stored in GPU global memory.

Perform 2D accumulation of μ for each quarter rotation according to equation (36)

Number of GPU threads launched = Number of views within 1st quarter rotation * number of slabs in accumulated

image * number of quarter rotations assigned to each GPU

Launch GPU kernel

for all GPU blocks in parallel do

 for all threads in a block do

  begin GPU thread calculation

  for every detector column

   determine if the channel contribution to slab is nonzero
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   interpolate slab at detector column edge

   differentiate the value of the interpolation

   for every detector row

    interpolate column differentiation results at detector row edge

    differentiate row interpolation values at row edges

    accumulate the differentiation value to the corresponding element in projection array

   end for

  end for

 end of GPU thread calculation

 end for

end for

weight projection by lengths of intersection through the slab

end kernel

A basic pseudocode of the 3D implementation of our proposed forward projection algorithm

In our approach, we systematically add slices with minimal synchronization overhead 

between the devices. We have also determined the maximum block size that can be summed 

concurrently by all devices.

Forward projection is straightforward in terms of global memory access, since each device 

stores values in separate portions of the projection data array, and access to the accumulation 

image is read only. However, if we were to perform backprojection directly into the full-

sized accumulation images, we would have serious memory contention issues since multiple 

devices would be writing to the same array elements simultaneously. Instead, each device 

performs backprojection to its own private accumulation image arrays (of reduced size 

compared to the full-sized arrays). This eliminates any need for synchronization during the 

backprojection of a device’s set of views. Once each device is done backprojecting its set of 

views, the partial accumulation image arrays are summed into the full-sized accumulation 

image arrays. Fig. 3 illustrates the process by which non-overlapping groups of slices from 

each partial array can be added simultaneously without memory contention. After each 

block, a barrier synchronization construct is used to ensure each device has finished 

summing the current block of slices to the full-sized arrays.

However, these two approaches create the following constraints on several parameters as 

follows:

• Total number of views must be a multiple of the number of views in one quarter 

rotation.

• Total number of quarter rotations must be a multiple of the number of GPU 

devices.

• The number of subsets must divide into the number of views per quarter rotation 

evenly.

For measured data where these constraints were not satisfied, we pad the measured 

sinograms with zeros to increase the number of views.
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To minimize the overhead time that occurs in data copying, kernel launch, etc., we create the 

same number of CPU threads as the number of GPUs to be utilized. Each of the threads 

interacts with an individual GPU. Each of them copies input data from the CPU to the GPU, 

executes the kernel, and copies results back to the CPU. The host CPU waits for all GPU 

devices to complete and merges results into one.

Number of GPU threads launched = Number of views within 1st quarter rotation * number of slabs in accumulated

image * number of quarter rotations assigned to each GPU

launch GPU kernel

for all GPU blocks in parallel do

 for all threads in a block do

  begin GPU thread calculation

  weight projection by lengths of intersection through slab

  for each detector column

   determine if the channel contribution to slab is nonzero

   for every detector row

    adjoint differentiate the corresponding element in projection array in the row direction

    anterpolate results for corresponding row edge

   end for

   anterpolate results for last row edge

   adjoint differentiate for corresponding detector column edge for all relevant column edges

   anterpolate result for corresponding detector column edge to slab

  end for

  anterpolate result for last detector column edge to slab

 end of GPU thread calculation

 end for

end for

end kernel

perform 2D adjoint accumulation for every quarter according to Eq. (42)

sum the four adjoint accumulation images into μ

A basic pseudocode of the 3D implementation of our proposed backprojection algorithm

RESULTS

To compare both time performance and image quality, we start with an Intel Core i7 5960x 

with 8 cores, 16 threads, clocked at 3 GHz, with 20 MB cache and 64 GB of memory. For 

our GPU implementation, we used GeForce GTX TITAN X. TITAN X is based on Maxwell 

architecture with 3072 CUDA cores and 24 streaming multiprocessors (SMs) running at 1.2 

GHz. Each block contains 65536 registers and 48 KiB of shared memory. Some of the 

highlights of TITAN X hardware are shown in Table I.

We used raw sinogram data from a Siemens Sensation 16. The parameters of the measured 

data and reconstructed images are shown in Table II:

Figures 5 and 6 show resulting image reconstruction from running 10 iterations with 145 

ordered subsets using alternating minimization update with Huber type log likelihood 
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penalty on 3GPUs. Fig. 6 shows time performance results from the implementation of our 

algorithm without any ordered subsets. The leftmost bar in Figure 7 is the execution time of 

the baseline serial version and the remaining bars show runtimes for the specific 

optimizations using multiple CPU threads and multiple GPU devices. Table III shows the 

time of execution of each component of our algorithm with different hardware 

configurations. For the baseline serial version, we run our projector algorithms on a single 

CPU core with nested for loops representing the parallel GPU threads. For multithreaded 

CPU implementation, each CPU core launches two hyper threads for every logical processor 

in the core. Each hyper thread basically acts as a standalone GPU device. Instead of parallel 

GPU threads, we use a corresponding number of nested for loops. We also use a barrier 

synchronization to wait for every CPU thread to finish its projection and backprojection in 

their private projection and image accumulation arrays respectively. To calculate the 

parallelization efficiency of the multithreaded CPU version we define our speedup ratio 

according to Amdahl’s law as follows

(43)

where, T1 and TN are elapsed times of 1 and N workers. f is the fraction of the code that is 

not parallelizable. The parallel efficiency is then defined as,

(44)

From our experimentation with N = 16 CPU threads, we get S = T1/TN = 4.7 for the 

projection operation. As a result, f = 0.1603 and parallel efficiency is E = 0.2963. So we can 

conclude, our multithreaded CPU implementation can achieve a maximum speedup of 6.2 

times for the projection operation.

Since we can divide the projection array according to its number of ordered subsets and the 

number of GPU devices available, the effective size of the projection array passed to GPUs 

is much smaller than the size of the partial image accumulation array. As a result, the 

backprojection operator tries to accumulate and write the result on a much bigger image 

accumulation array than the projection array from which it tries to read. So the time required 

for backprojection is higher than for projection. The difference is much more significant 

when we use more ordered subsets since the number of subsets only reduces the volume of 

projection array keeping the size of partial accumulation array unchanged.

Figure 8 shows the time required for single iteration of different ordered subset 

configurations by using three GPUs in parallel. The time needed to combine partial image 

accumulation arrays from different GPU devices after every backprojection increases the 

iteration time for ordered subset configurations. For ordered subset implementation, we also 

need to perform measured data backprojection after every subset iteration since the 

measured data backprojection array for all the subsets cannot be saved in finite device 

memory. In Figure 9, we show the change in objective function values (defined in equation 
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(9)) with iteration number for various ordered subset configurations. Since minimizing the 

objective function values will maximize the penalized log likelihood between the measured 

data and our estimated data by the model, we can use this distance method to estimate the 

accuracy and noise reduction of our reconstruction. In Figure 10, we show the change in 

objective function values with corresponding time interval for different ordered subset 

configurations. The objective function values at 0th iteration of Fig. 9 and 0th second of Fig. 

10 denote the value of objective function between measured data and projection sinogram of 

FDK reconstruction of the data. The significant decrease in the objective function values 

clearly illustrates the improvement in image quality with our proposed reconstruction 

algorithm. In the end, we can clearly conclude that our optimizations are effective and that 

our multi-GPU approach is beneficial for both forward and backprojection cases.

CONCLUSIONS

We have observed that our approach of using multiple GPUs to reconstruct images gives us 

better performance in computational cost compared to our best available CPU configuration. 

Our primary contribution is a novel approach to pre-accumulate for projection (see equation 

(36)) and adjoint pre-accumulate for backprojection (see equation (42)) in three-dimensional 

branchless DD algorithm. Elimination of the common projection for 3D branchless DD 

projectors reduces complexity of the algorithm (see Fig. 2). We can also observe that 

computational time shows a linear decrease in time performance with the addition of more 

GPUs. Use of texture memory of the GPU devices for storing our accumulation array is 

expected to reduce our computation time of backprojection. We can expect to reduce run 

times with more GPUs (see Fig. 7), which opens the door to exciting new possibilities in 

clinical settings. For precision critical applications we can use the double precision floating 

point with TITAN Z GPUs, with some performance degradation compared to our single 

precision TITAN X GPUs.
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Figure 1. 
Schematic diagram for iterative AM reconstruction algorithm.
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Figure 2. 
(a) Schematic representation of De Man and Basu’s9 2D distance driven method. (b) 

Schematic representation of our 2D distance driven method. (c) Schematic representation of 

De Man and Basu’s9 3D distance driven method. (d) Schematic representation of our 3D 

distance driven method.
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Figure 3. 
Schematic diagram of the GPU implementation of the iterative reconstruction algorithm.
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Figure 4. 
(a) Schematic representation of Multi-GPU implementation of branchless DD projection. (b) 

Schematic representation of Multi-GPU implementation of branchless DD backprojection.

Mitra et al. Page 20

J Imaging Sci Technol. Author manuscript; available in PMC 2017 May 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Axial Slices of 3D AM Reconstruction of linear attenuation coefficients (in mm−1) of (a) 

abdomen and (b) lung after 10 iterations of 145 ordered subsets.
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Figure 6. 
Coronal Slices of 3D AM Reconstruction of linear attenuation coefficients (in mm−1) of 

abdomen after 10 iterations of 145 ordered subsets.
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Figure 7. 
Time performance improvement using different CPU and GPU configurations for single 

Branchless DD projection and backprojection.
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Figure 8. 
Time performance for a single iteration of various ordered subsets.
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Figure 9. 
Objective function values versus iteration number (a) without ordered subsets, (b) 5 ordered 

subsets, (c) 29 ordered subsets and (d) 145 ordered subsets.
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Figure 10. 
Objective function values in different time interval for various ordered subset configurations.
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Table I

Hardware specification of TITAN X.

Single precision 7.468 TeraFLOP/s

Double precision 233.376 GigaFLOP/s

Multiprocessors 24

Clock rate 1.216 GHz

Global Memory bandwidth 336.48 GB/s

L2 Cache size 3MiB

CUDA cores 3072

Shared memory per block 48KiB
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Table II

Parameters of measured data and image.

No. of views 13920

No. of detector channels 672

No. of detector rows 16

No. of image slices 164

No. of pixels/slice 512 × 512
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Table III

Execution times by using different CPU and GPU configurations for single branchless DD forward and 

backprojection.

Operations Execution Time (seconds)

Single threaded CPU 16 threaded CPU Single GPU Multi-GPU

Pre-accumulation 8.1 1.7 0.570 0.21

Projection 433 92 15 4.7

Exponentiation 1.1 0.25 0.07 0.029

Backprojection 435 95 22 7.6

Image Update 4.8 1.2 0.17 0.06

Total 882 190.15 37.81 12.6
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