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ABSTRACT 

In the modern society, mobile is gradually going to become all about video streaming. 

The main reasons of video growth are mobile devices such as smartphones and tablets which 

enable people to have access to videos they would like to watch at anywhere and anytime. 

However, due to the large video data size and intensive computation, video processing leads to a 

huge power consumption. Mobile system designers typically focus on hardware-level power 

optimization techniques without considering how hardware performance interfaces with viewer 

experience. 

In my research, I investigated how viewing context factors affect mobile viewing 

experience. Furthermore, a viewer-aware intelligent mobile video system was designed to 

optimize power efficiency automatically in real-time according to the viewing context and 

maintain the same viewing experience. Our research opened a door for developments of future 

viewer-aware mobile system design, accelerating low-cost mobile devices with longer battery 

life. 
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1. INTRODUCTION 

1.1. Trends in Designing Power Efficient Mobile System 

In the past decade, mobile devices such as smartphones and tablets are becoming day-to-

day device of choice for users of all ages. According to research from Cisco, two-thirds of global 

mobile data traffic will be driven by video by 2017 [1]. One of the most annoying issue with 

mobile devices is their short battery life. Video storage consumes a huge amount of power. In 

video processing applications, the high frequency of video data read and write makes video 

memory become one of the most power consuming part in a mobile device. Research shows that 

embedded SRAM contributes to over 30% of the system power consumption of a mobile device 

[2, 3]. Researchers are working towards designing new low power devices due to the increasing 

amount of portable device usage [4], but viewer experience is rarely considered when developers 

are trying to improve hardware design to save power.  

The unique contribution of this thesis is the proposed viewer-aware intelligent mobile 

video system. This system can be used to reduce the power consumption of video processing. By 

combining viewer experience, viewing context factors and mobile device hardware system, this 

system can significantly reduce power consumption while maintaining the same subjective video 

quality. A machine learning algorithm was also applied to analyze viewer’s video quality 

tolerance threshold, which makes the proposed system be able to accurately determine the most 

power efficient video output quality.  

The second chapter will introduce the viewer-aware intelligent mobile video system. The 

use of three different types of sensors including luminance sensor, proximity sensor and 

accelerometer can determine the different types of viewing contexts. By analyzing the viewing 

contexts, the system will enable power saving techniques accordingly using bit truncation and 
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voltage scaling to reduce the power consumption of video processing while maintaining the same 

subjective video quality. 

The third chapter describes my contribution to Viewer-Aware Intelligent Efficient Mobile 

Video Embedded Memory. In this research project, I conducted video quality tests for the 

proposed Viewing Context Aware Storage (VCAS). By following the recommendations from 

ITU [19], I tested the video output acceptability from VCAS. In this testing, 6 CIF videos and 8 

Full HD (1080p) videos were used to verify the proposed power saving method. The results 

clearly indicates that VCAS provides reliable video output quality while saving 37.5% and 50% 

power in overcast and sunlight viewing contexts. Compared to other existing power saving 

techniques, the VCAS has obvious advantages in area overhead and reduced power consumption. 

1.2. Related Work 

There is a rich body of literature in circuit and architectural techniques for power 

reduction for video processing systems. Psychophysical researchers have conducted researches 

on the impact of visual context on human visual system (HVS), hardware designers are mainly 

focusing on improving memory design from a hardware perspective to support high video power 

consumption. 

1.2.1. Related Work on Quality of Experience 

Psychophysical researchers have conducted researches on the impact of visual context. 

Many results showed that the viewing contexts that influence the mobile video watching 

experience fall into three major aspects: viewer movement, viewing distance and ambient 

luminance. Among these three aspects, ambient luminance appears to be the most effective 

factor [5-8]. The International Telecommunication Union has developed multiple mature and 

scientific methods for subjective video quality testing. These methods can be used for many 
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different purposes including, but not limited to, selection of algorithms, ranking of audiovisual 

system performance and evaluation of the quality level during an audiovisual connection [9].  

1.2.2. Related Work on Low Power Memory Designs 

In the past few years, many memory designs have been developed for mobile video 

applications. The property of SRAM with more transistors provides high reliability while in low 

voltage makes it the most popular video data memory. A memory’s power-quality tradeoff is 

usually set during its design process, which leads to a limited power efficiency for different 

video applications. Many existing studies chose to adapt more than 6T bit cells to reduce power 

consumption. Recently, 6T/8T and 8T/10T hybrid structures are introduced to optimize the 

power efficiency of mobile video streaming [10, 11]. Also, asymmetric 7T [27], column-

decoupled 8T [28], read-disturb-free 9T [29], 10T cells [30], and bit-interleaving 12T cells [31]. 

On the other hand, there are also many existing studies focused on adjustment of bit cell voltage. 

In 2015, a voltage-scaled SRAM design that can dynamically tradeoff between power and video 

quality was introduced, but the encoder and decoder circuits of this technique leads to a large 

computational complexity and silicon area [12]. There are also techniques including boosted 

word-line voltage [32], dual-rail supply [33], and read-modify-write or write-back [34]. 

However, these improvements in memory power efficiency often comes with increase in design 

complexity, large silicon area and power penalty for voltage regulator or boosting circuits.  

1.3. Research Objective 

The existing studies introduced many power efficient hardware designs. But these 

designs are missing on how viewer’s QoE can affect the power efficiency of mobile devices. The 

goal in this research is to connect viewer experience, viewing context factors and the mobile 

device hardware system using machine learning algorithm to reduce the power consumption of 
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Proposed viewer aware 

intelligent mobile system 

is considering: 

luminance, viewing 

distance and movement 

video processing. In this thesis, two popular low-power techniques are applied: bit truncation and 

voltage scaling. These two low-power techniques will lead to objective video quality degradation 

while reducing the power consumption, but the proposed intelligent mobile video system can 

analyze the viewing context and then find the most power efficient solution according to the 

viewing context using a decision tree model while maintaining the same perceptual video 

quality, therefore, the video degradation will not be noticed by viewer. 

  

 

Figure 1. Thesis focus 
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surrounding viewing context. In this thesis, a viewer-aware intelligent mobile video system is 

proposed to maximize the power efficiency. Compared to other existing studies, this system took 

luminance, viewing distance and movement into consideration. Three different types of sensors 

are integrated to the system to collect viewing context data, including luminance sensor, 

accelerometer and proximity sensor. By using these three types of sensors we can collect 

viewers’ subjective video quality acceptability data and train a high accuracy decision tree 

model. With the decision tree model, this system can achieve a real-time high accuracy video 

quality adaptation according to the surrounding viewing context. This adaptation can bring low 

quality videos to situations where the video quality degradation cannot be noticed by viewer in 

order to improve battery life.  

Also, a traditional SRAM design with control units to disable and enable LSBs is 

introduced in this thesis. By using the control unit, the memory can disable 0, 3, or 4 LSBs’ 

Write Enable and Read Enable circuit to achieve bit truncation purpose. While under different 

luminance levels, this system will truncated different amounts of bit cells to reduce unnecessary 

power consumption. This system exhibits the lowest implementation cost (<0.01% area 

overhead) with dynamic power-quality tradeoff.  

Compared to other existing solutions, these two proposed techniques combined viewer 

experience with hardware modifications which makes it orthogonal to the existing solutions. 

Therefore, these two techniques can be applied with existing techniques simultaneously to 

further improve the power efficiency of mobile video applications. In the future when 

HEVC/H.265 and other memory designs become more popular, videos with higher resolutions 

such as 4k and 8k videos will receive more attention. That will make the proposed techniques 

have an even better performance.  
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2. PROPOSED VIEWER-AWARE INTELLIGENT MOBILE VIDEO SYSTEM 

This chapter introduces the viewer-aware intelligent mobile video system. This system is 

designed to maximize the memory power efficiency. By using the trained decision tree model 

from viewers’ QoE experiment data collection result, this system will be able to fully take 

advantage from the tree most effective viewing context factors.  

2.1. Context Influence on Mobile User Experience 

2.1.1. Video Decoding and Processing 

The proposed viewer-aware intelligent mobile video system is applied to the traditional 

H.264 video codec, which is one of the most popular video codec standards in mobile 

multimedia communications. But this technology is not only limited to H.264 video codec, any 

video codec that decodes a video to raw video data format can use this technology to improve the 

power efficiency of video processing. The new video codec H.265/High Efficiency Video Codec 

(HEVC) is becoming more and more popular as people’s demand and chip fabrication 

technology increase, our technology can provide a much higher power savings due to the large 

video frame buffer memory space required by high resolution videos [13]. 

On mobile devices, most of the time people are using the video decoding function instead 

of the encoding function, because of the encoding process is usually done by video providers 

such as YouTube and Netflix. Fig. 2 shows the block diagram of H.264 decoder. In video 

decoding process, the reference frame memory is accessed frequently. After each frame is 

decoded, a new frame will be written into the memory and ready to be read out as the reference 

frame for next frame. Fig. 2 also shows the typical frame data stored in embedded memory. Now 

days, the most popular video formats are MP4, AVI, and WMV etc., these video formats are 

encoded video formats. But before a video frame is shown on the screen, the video data needs to 
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be decoded first. For a decoded YUV 4:2:0 format video data [14], each pixel contains 8-bit of 

Luma data and 4-bit of Chroma data. To store a whole frame of this video sample, it requires 176 

x144 (25344) x 8 bits of SRAM to store Luma (Y) data and 25344 x 4 bits of SRAM to store 

Chroma (U, V) data. Hence, there are astronomical amounts of read and write operations in 

memory during the decoding process, and this is the reason why video processing drains the 

battery life of a mobile device so fast.  

 From the mathematics perspective, every bit of these video data does not represent same 

amount of information. For an 8-bit number, the MSB can represent 128 in decimal, but the LSB 

can only represent 1 in decimal. Therefore, bit truncation and voltage scaling can be applied on 

LSBs to reduce power consumption without changing the video output quality too much. 

For bit truncation technique, the amount of saved power can be calculated using the 

power consumption model of mobile video memory: 

                                                       𝑃 = 𝑃𝑤 +  𝑃𝑟  (1) 

                                    𝑃𝑤 = ∑  7
𝑘=0 ∑   

𝑖=0,1
𝑗=0,1

[𝐹𝑘(𝑖, 𝑗) ∙ 𝑃𝑤𝑘  (𝑖, 𝑗)]                                      (2) 

                                        𝑃𝑟 = ∑  7
𝑘=0 ∑   

𝑖=0,1 
[𝐹𝑘(𝑖) ∙ 𝑃𝑟𝑘 (𝑖)]   (3)  

Where P is the power consumption; k is the bit number; i and j are old and new values stored in 

an SRAM. F indicates the bit change (switching) probability from i to j. According to this power 

consumption model, by completely shutting down LSBs, the power consumption of video 

processing can be significantly reduced while maintaining the more important information 

correct.  
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Figure 2. H.264 video decoder and embedded memory 

2.1.2. Impact of Viewing Context Influence on Mobile Videos 

Many existing studies have shown that perceptual video QoE is closely related to the 

viewing context. The three main factors that affects video quality the most are: body movements, 

viewing distance and ambient illumination. Among these three factors, ambient illumination has 

the biggest impact on video QoE.  When the surrounding environment changes, viewer’s 

tolerance of video quality will also increase. For example, when we look at our phone screen 

under direct sunlight, the screen becomes blurry because of the strong sunlight projected on the 

screen, and this effect makes viewer’s tolerance on video quality increase (Fig. 3). Similarly, 

when viewer is watching mobile device screen from a long distance or watching while walking, 

the degradation of video quality will become harder to notice.  
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(a)                                            (b) 

                                                     
(c)                                            (d) 

 
(e)                                              (f) 

Figure 3. Video output images from screenshot (a, c, e) and camera (b, d, f) 

 Normally researchers use PSNR as a metric to measure the quality of a video which is 

defined as: 

𝑃𝑆𝑁𝑅 = 10 log10 (
2552

𝑀𝑆𝐸
)                                                      (4) 

 

Where MSE is the mean square error between the original videos and the degraded videos, 

expressed as:  

𝑀𝑆𝐸 =
1

𝑚𝑛
∑ ∑ [𝑂𝑟𝑔(𝑖, 𝑗) − 𝐷𝑒𝑔(𝑖, 𝑗)]2𝑛−1

𝑗=0
𝑚−1
𝑖=0                                  (5) 
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But in subjective video QoE, PSNR does not provide any useful information anymore 

due to the fact that videos with different PSNR can provide a very different QoE under different 

viewing contexts [14]. Our approach is to use this fact to improve battery life. By analyzing the 

surrounding viewing context and reducing the voltage source on SRAM memory, the video 

quality degradation caused by reduced voltage will be unnoticeable to viewers. In our research, 

machine learning was also used to find the subjective QoE of different video qualities under 

different viewing contexts to obtain an accurate and reliable data set for model training.  

2.2. Embedded System Design and Implementation 

2.2.1. Embedded Hardware Setup 

An embedded system was implemented using two development boards. As shown in Fig. 

4, the board on the left is an Arduino Uno board [15] which is used to collect all the context 

information and send the processed data to the Odroid-XU3 board [16] using serial 

communication. The Odroix-XU3 board contains processed video samples for display. 

The light sensor, accelerometer and proximity sensor are connected to the Arduino Uno 

board. The light sensor can be used to detect luminance value, the accelerometer is used to 

measure the movement by collecting acceleration in X, Y and Z axis, and the proximity sensor 

can measure the distance between viewer and the screen.  

These three sensors were chosen because they are commonly used in the modern 

smartphones. The modern smartphones are designed to be “smart”. The light sensor on 

smartphone can be used to automatically adjust screen brightness, accelerometer can be used to 

record user’s fitness activities, and proximity sensor will prevent user from accidentally touching 

the buttons on the phone while making a phone call.  
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Figure 4. The embedded system device setup 

On the outside of the device, a 5-inch HDMI screen is mounted as display. Two buttons 

on the left side of the device is serving the purpose of collecting feedback data from viewers. The 

button on top will be pressed when the video sample quality is acceptable for viewer and the 

button at the bottom is for unacceptable video samples. The light sensor and proximity sensor are 

located very close to the screen to monitor the surrounding luminance and viewing distance. 

2.2.2. Embedded Software Utilization 

The Arduino Uno board collects all the sensor data from the ADC pins on the board 

over I2C. These ADC pins are updated frequently to collect the sensor information in real-time. 

In each cycle, the Arduino Uno board reads the analog voltage value from these three sensors 

and convert them into digital values, after each conversion, Arduino Uno board sends all the data 

to the Odroid-XU3 board.  

To emulate the effect of bit truncation and voltage scaling, “errors” were injected into 

videos to emulate the result of bit truncation and voltage scaling. These errors were injected by 

modifying the LSBs in all pixel data. For bit truncation technique, The LSBs were overwrote to 

zeros. For voltage scaling technique, the data was passed through a digital filter which has 1% 
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chance to flip the LSBs. These two technologies provides different amounts of power saving and 

also different visual effects on the video samples.  

These two types of techniques brings different types of video quality degradation. Bit 

truncation technique generates shades on the video frames which causes large PSNR degradation 

but also provides more power compared to voltage scaling. Voltage scaling generates noise dots 

on the video frames which causes low PSNR degradation and lower power saving compared to 

bit truncation technique (Fig. 5). Voltage scaling technique is always applied after bit truncation 

for additional power saving due to the fact that bit truncation is completely shutting down the 

memory columns and voltage scaling is only reducing the power supply voltage for memory 

columns.  

 
                      (a) original video              (b) 3 bits truncated              (c) 4 bits truncated 

 
          (d) original video              (e) 6 bits scaling                 (f) 7 bits scaling           

Figure 5. Different impacts of bit truncation and voltage scaling   
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2.3. Context Adaptation Decision Tree Model 

2.3.1. Background of Decision Tree Classifier  

Researcher have been using machine learning for data classification, regression and 

density estimation in a variety of application areas such as bioinformatics, speech recognition, 

spam detection and computer vision [25]. Among all the machine learning algorithms, decision 

tree is one of the most popular tool researchers choose to use now days. Decision tree is 

commonly used in operations research, specifically in decision analysis. The basic idea of 

decision tree is to break up a complex decision into a union of several simpler decisions, hoping 

the final solution obtained this way would resemble the intended desired solution [26].  

2.3.2. Viewer-aware Mobile Video System Model Implementation 

By following the flowchart shown in Fig. 6, 15 viewers were invited to participate in this 

data collection process. During the data collection process, the Odroid-XU3 board will display a 

random video sample with error injected. Viewer was asked to watch these video samples and 

select whether the video sample is acceptable or not under the current viewing context. The 

viewing context data will be collected simultaneously using the three onboard sensors. Our initial 

testing result shows that the limit for bit truncation is 4 bits and 5 bits for voltage scaling. The 

processed videos include: 2 bits truncation, 3 bits truncation and 4 bits truncation. Three videos 

were selected from [17] as our sample videos (Fig. 7). All these three samples are CIF format, 

with the same resolution 352 x 288. After injecting errors into these video samples, there are 72 

different video qualities based on the bit truncation and voltage scaling methods. Each video 

sample is 6 seconds long and every video sample was played 5 times during each viewer’s test. 

In this experiment, 15 people were invited from North Dakota State University, all of them have 

normal visions and participated the testing under my instructions. 
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After the data collection process, the Statistic and Machine Learning Toolbox was used to 

train the model using the collected. A decision tree model was developed for determining how 

many bits should be truncated or scaled. Our goal of training the model is to make each 

processed videos able to be matched up with at least one viewing context. 

Yes

No

Yes

No

START

Arduino Reads Sensor 

Values 

Odroid Displays Video 

Sample

Odroid Generates 

Random Number

Transfer Data to Odroid

Arduino Reads Button 

Feedback 

Finished All Videos?

Is This Quality Full?

END

 

Figure 6. Flowchart of data collection process 
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         (a)                                          (b)                                            (c) 

Figure 7. Three video samples used for data collection 

2.4. Experimental Results 

2.4.1. Results 

Fig. 8 shows the overall video testing results. First I verified the existing studies’ 

conclusion which shows the three factors that affects perceptual video QoE the most. The results 

perfectly matched the existing studies, luminance has the most significant impact on video QoE. 

The graph of movement and viewing distance does not show a strong relationship between these 

two factors and video quality acceptability, but we can still see the acceptability of video quality 

becomes much high when the values of these two factors approached to their maximum. Note 

that, to accelerate the processing speed of our system, all the data values we collected in this 

experiment are raw data values. 
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Figure 8. Video data collection results. Each point on the graph represents one feedback 
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Table 1. Data sample used for model training 

Acceleration Distance Luminance Acceptability  

41 400 492 1 

54 545 355 1 

100 295 57 1 

111 345 28 0 

115 245 47 0 

138 293 33 0 

164 239 44 0 

166 289 683 1 

169 366 78 0 

192 217 102 0 

213 493 360 1 

224 251 90 0 

241 414 95 0 

244 271 544 1 

 Because of the impact of luminance is too strong, luminance is in a total dominance in 

the collected data set. The characteristics of movement and viewing distance are not obvious 

enough for model training. Viewers’ opinion was mainly influenced by luminance, where 

movement and viewing distance does not contribute enough weight in this model training. I 

decided to train a model for bit truncation and luminance only. Therefore, the relationship 

between these two most significant predict factors can be easily observed. In the future, this 

model may be further improved by adding voltage scaling according to movement and viewing 

distance due to the fact that these factors all have a lesser weight in model training. 

 Another data collection experiment was conducted with 15 participants. In this 

experiment, the three same video samples were used to apply bit truncation effects. All of these 

three samples were processed with the effect of two, three and four bits truncated. Each video 

lasts 6 seconds long and will be played five times each.  
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(a) two bits truncation

 

(b) three bits truncation 

Figure 9. Decision tree model for bit truncation and luminance 
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 Figure 9. Decision tree model for bit truncation and luminance (continued) 
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Yes 

Yes 

Yes 

No 

No 

No 

As shown in Fig. 9, these tree decision tree models are developed for different bit 

truncation levels. As shown, for good video quality (two bits truncated), by looking at the highest 

level of decision branch, our model shows that when lux is greater than 101, the output quality is 

acceptable. For medium video quality (three bits truncated), the model shows that when lux is 

greater than 119.5, the video quality is acceptable. And for bad quality video (four bits 

truncated), it requires lux value to be greater than 269 to make the video degradation invisible. 

After pruning the decision tree model, the first level of the tree was taken into 

consideration due to its dominance in separation (Fig. 10).  By analyzing the luminance value in 

real-time, the system can select how many bits to truncate using the programmed model.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Simplified decision tree model 

2.4.2.  Conclusion of Viewer-Aware Intelligent Mobile Video System 

The existing studies found that luminance, viewing distance and movement are the three 

main factors effecting perceptual video quality, but no existing study tried to quantify the 

Lux > 269 

Truncate 4 

bits 

Lux > 120 

Lux > 101 Truncate 3 

bits 

Do nothing Truncate 2 

bits 
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relationship between video quality and the value of these three factors. Also, in the existing 

studies, there are researchers introduced voltage scaling and bit truncation techniques for power 

saving purposes. In our research, I combined these two technologies and applied them on mobile 

devices. The machine learning algorithm can accurately find the best solution at different 

viewing conditions. Compared with existing studies, the system I designed increased the 

elements that are taken into consideration when calculating power saving, including light, 

movement and viewing distance. Our research provides an accurate decision tree model that can 

be directly applied on modern mobile devices since all the sensors that are used in our 

experiments are used by almost all smartphones and tablets. 
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3. PROPOSED VIDEO CONTEXT AWARE SYSTEM1 

In this chapter, a Video Context Aware System (VCAS) is introduced to reduce the 

power consumption. This system analyzes user’s viewing context and enables hardware power 

saving techniques to bring power saving to a new level. The VCAS also uses bit truncation 

technique, compared to viewer-aware intelligent mobile video system, the VCAS focus more on 

the effectiveness of luminance and hardware chip level improvements. These two research 

projects were conducted at the same time. 

3.1. VCAS Technique 

3.1.1. VCAS Hardware Implementation 

We designed a SRAM architecture of the proposed VACS. The SRAM size is 32 kbits 

structured with 256 word lines times 32 bits. The VCAS control unit consists of a Write Enable 

(WE) control circuit and Read Enable (RE) control circuit (Fig. 11).  

In this research project, we considered dark, overcast and sunlight viewing contexts. The 

two-bit control circuit will enable bit truncation in the following ways: 

 

      00: in dark, use original video data  

{Bit2, Bit1}        01: in overcast, disable 3 LSB WE (or RE) and PRE 

      10: in sunlight, disable 4 LSB WE (or RE) and PRE 

 

                                                 

 

1 The material in this chapter was co-authored by Peng Gao, Dongliang Chen, Jonathon Edstrom, and Yifu Gong. 

Peng Gao was responsible for video processing, subjective video quality testing, testing result analysis and also part 

of hardware design. 
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The hardware simulation results are shown in Fig. 12. This timing diagram of VCAS in 

three different viewing contexts shows that this memory design provides enough speed to 

support the typical mobile video data transmission. The data (0x97, 0xf3, 0xc6, 0x0e) is written 

to the address (0x0a, 0x1a, 0x25, 0x3b) and then read out from the same address. These data sets 

were chosen for testing because they can clearly show the bit truncation results. If the mobile 

luminance sensor detects dark environment (0-1000 lux), then BIT2 and BIT1 are both 0s, and 

VCAS stores original video data for display; if the mobile user is watching the videos in overcast 

environment (1000-10000 lux) and then BIT1 becomes 1, VCAS will truncate 3 LSBs and the 

data will become (0x90, 0xf0, 0xc0, 0x08); In sunlight environment (10000+ lux) and BIT2 also 

becomes 1, VCAS will truncate 4 LSBs and data becomes (0x90, 0xf0, 0xc0, 0x00). 

Write process

BIT2

WE

RE

ADDR5

ADDR4

ADDR3

ADDR2

ADDR1

ADDR0

DATA7

DATA6

DATA5

DATA4

DATA3

DATA2

DATA1

DATA0

Addr
Data

0a   1a   25   3b
 97   f3   c6    0e

Read process

97   f3    c6   0e

Dark

Read access time: ~ 1.5ns

0a   1a   25   3b

BIT1

Original Video Data

0.0 25.0 50.0 75.0 100.0
Time(1e-9s)

Write process

0a   1a   25   3b
 97   f3   c6    0e

Read process

Overcast

3 Bits Truncation
90   f0    c0   08
0a   1a   25   3b

Write process

0a   1a   25   3b
 97   f3   c6    0e

Read process

Sunlight

4 Bits Truncation

0a   1a   25   3b
90   f0    c0   00

 

Figure 12. Timing diagram of VCAS in different viewing contexts 
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3.2. VCAS Experiment Methodology 

3.2.1.  Degradation Category Rating Method 

The testing procedure closely followed ITU’s subjective video quality testing 

recommendation. In the video quality evaluation test, Degradation Category Rating (DCR) 

method [18, 19] was used to collect viewer feedback, this method is also known as the Double 

Stimulus Impairment Scale (DSIS). During the experiment, the participants were asked to watch 

both original video and truncated video. After they have finished watching both video samples, I 

ask viewers to give their opinion score from 1 to 5 based on the quality difference between the 

original video and the truncated video. The five-grade impairment scale should be used: 5 

imperceptible, 4 perceptible, but not annoying, 3 slightly annoying, 2 annoying, 1 very annoying. 

According to [20], 4.0 or higher score is set to be the target for acceptable video quality. 

3.2.2. Subjective Video Quality Test 

The perceptual video quality test was conducted using CIF (352x288 px) first. Six video 

samples were selected for this test, including Akiyo, Coastguard, Container, Foreman, Hall and 

Waterfall. These video samples are recommended by the Joint Collaborative Team on Video 

Coding (JCT-VC) [21, 22]. I clipped the videos to 6 seconds long and invited 15 participants to 

watch these videos on a Samsung Galaxy Note 4 smartphone.  

Fig. 13 and Fig.14 show all the test results. According to the data I collected during the 

test, in overcast context, CIF videos received 55.6% imperceptible rating and 38.9% perceptible 

but not annoying rating. In direct sunlight context, CIF videos received 72.2% imperceptible 

rating and 22.2% perceptible but not annoying rating. The overall DCR score is higher than 4.3. 

The average score under overcast context is 4.5 and for direct sunlight context, the average score 

is 4.7, which indicates that VCAS provides acceptable video quality. 
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Figure 17. VCR scores of FHD videos (Rush and Sky)  

Since the modern video transmission technology has been developing so fast and it is 

capable of making FHD video streaming popular, 8 FHD videos were also tested in this 

experiment. These video samples are: Crowd, Dinner, Duck, Sunflower, Pedestrian, River, Rush 

and Sky [23]. Fig.15, Fig.16 and Fig.17 show that the feedback scores for FHD video tests. In 

overcast context, FHD videos received 65% imperceptible rating and 19.2% perceptible but not 

annoying rating. In direct sunlight context, FHD videos received 77.5% imperceptible rating, and 

19.2% perceptible but not annoying rating. The reason is that bit truncation technique brings 

shade into video frames, and the shades are much more obvious in frames that have a large area 
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with bright and unique color. Therefore, the bits need to be truncated will also need to take the 

video frame characteristics into consideration.  

3.2.3. Video Quality Test Results Accuracy 

The standard deviation for the video quality testing results was calculated to quantify the 

amount of variation of viewers’ opinion scores. As shown in Table 1 and Table 2, all the testing 

scores are within 1 score away from the mean score. Viewers have very close ratings for all the 

video samples provided, which proofs that VCAS can bring a good power and quality tradeoff. 

Table 2. Standard deviation of test results (CIF videos)  

 STDEV(Overcast) STDEV(Sunlight) 

Akiyo 0.96 0.74 

Coast 0.52 0.41 

Container 0.46 0.46 

Foreman 0.52 0.63 

Hall 0.59 0.74 

Waterfall 0.63 0.46 

Table 3. Standard deviation of test results (FHD videos) 

 STDEV(Overcast) STDEV(Sunlight) 

Crowd 0.46 0.26 

Dinner 0.74 0.51 

Duck 0.64 0.35 

Flower 0.63 0.62 

Pedestrian 0.59 0.26 

River 0.82 0.26 

Rush 0.63 0.46 

Sky 0.98 0.94 

3.2.4. Power Savings 

Disabling RE and WE signals of truncated bits can provide 18% and 23% power savings 

in overcast and sunlight contexts. To further improve the power efficiency, we found out that the 

pre-charge circuits can be disabled to bring additional power saving without reducing 
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performance and area overhead. By disabling the pre-charge circuits, we can bring the power 

savings for overcast and sunlight contexts up to 36% and 48% respectively.  

3.2.5. Comparison with Prior Work 

The existing solutions for video memory power optimization are mainly focusing on 

hardware-level low-power techniques. The proposed VCAS, however investigated the power 

saving opportunities provided by QoE under environmental visual interference. Our research is 

orthogonal to the existing techniques. Furthermore, the proposed VCAS is not only limited to 

one specific type of memory design, any memory design that uses bit cell array is capable of 

using this technique to achieve high efficiency power saving.  
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Table 4. Comparison with prior low-power mobile video SRAM designs 

 

  

 
TVLSI’08 

[13] 

TCASVT’11 

[9] 

TCASII’12 

[3] 

ISVLSI'07 

[26] 

This work 

In dark In overcast In sunlight 

video specific 

characteristics 

correlation 

of MSB 

contribution 

of MSB and 

LSB 

different 

contribution of 

MSB and LSB 

reconstructed 

image 

memory 

viewer experience awareness 

no. data bits 

for each pixel 
8 bits/pixel 8 bits/pixel 

8 bits/pixel 

(SDA-I) 

/6 bits/pixel 

(SDA-II) 

8 bits/pixel 8 bits/pixel 5 bits/pixel 4 bits/pixel 

dynamic 

adaption 
No No No No Yes 

low-power 

technique 

data 

filpping 

6T+8T 

bitcells 
8T+10T bitcells 

10T non-

precharge 
bit truncation for run-time adaption 

bitcell array 

modification 
Yes Yes 

additional word 

line 
Yes No 

additional 

hardware 

needed 

majority 

logic and 

data 

flipping 

block 

single-ended 

6T, peripheral 

circuitries 

No 
read and write 

circuits 
VCAS control circuit 

power penalty 

for extra bits 
Yes No No No No No No 

power 

consumption 
-14% -32% 

-91.8% (SDA-

I)/ -95% (SDA-

II) 

-74% 0% -36% -48% 

video quality 

good 

(without 

any quality 

loss) 

acceptable 

(without 

significant 

quality loss) 

acceptable 

(without 

significant 

quality loss) 

good 

(without any 

quality loss) 

good 

(without 

any quality 

loss) 

acceptable 

(without 

significant 

quality loss) 

acceptable 

(without 

significant 

quality loss) 

area overhead +14% +11.64% 

+52% (SDA-I)/ 

+18.5% (SDA-

II) 

+14.4% <0.01% 

speed 

overhead 
4% - - 65% faster negligible 

technology 90nm 65nm 45nm 90nm 45nm 
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4. SUMMARY 

In this thesis, I introduced two power saving techniques. The main goal of these two 

techniques is to combine hardware power saving technique with viewers’ QoE to maximize the 

benefit we can receive from the tradeoff between quality and power. Compared to the existing 

power saving techniques, my proposed methods that can combine hardware and QoE together to 

achieve higher power saving and result in lower perceptual video quality degradation. For the 

viewer-aware intelligent mobile video system, I used machine learning to differentiate the 

different viewing contexts, which provides much more space for power saving using voltage 

scaling technique. Compared with existing studies, I increased the elements that are considered 

when introducing power saving techniques to improve power efficiency. Our research uses the 

most common sensors on smartphones, so it can be directly applied to modern mobiles without 

additional cost or space. 

4.1. Future Work 

4.1.1. Bit Truncation and Voltage Scaling for Different Video Types 

During our research, I found out that some videos have lower average opinion score 

compared to the others. The reason is that these types of videos have very slow color transaction 

and usually takes most of the space of a frame. It makes the visual effect of bit truncation much 

more obvious to see. A part of future work can focus on investigating this type of video quality 

degradation. 

4.1.2. Improve Video Testing Device 

The current embedded system device I built for machine learning training is based on two 

development boards, the space, weight and processing speed can be further improved by 

developing everything on a mobile device.  
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