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Abstract

White balancing is a fundamental step in the image processing pipeline. The
process involves estimating the chromaticity of the illuminant or light source and
using the estimate to correct the image to remove any color cast. Given the im-
portance of the problem, there has been much previous work on illuminant esti-
mation. Recently, an approach based on ensembles of univariate regression trees
that are fit using the squared-error loss function has been proposed and shown to
give excellent performance. In this paper, we show that a simpler and more ac-
curate ensemble model can be learned by (i) using multivariate regression trees to
take into account that the chromaticity components of the illuminant are correlated
and constrained, and (ii) fitting each tree by directly minimizing a loss function
of interest—such as recovery angular error or reproduction angular error—rather
than indirectly using the squared-error loss function as a surrogate. We show em-
pirically that overall our method leads to improved performance on diverse image
sets.

1 Introduction
White balancing is a fundamental step in the image processing pipeline both for digi-
tal photography and for many computer vision tasks. The process involves estimating
the chromaticity of the illuminant or light source and using the estimate to correct the
image to remove any color cast. The goal is to have the colors in the image, espe-
cially the neutral colors, accurately reflect how these colors appear to the human visual
system when viewing the original scene being imaged. White balancing is either per-
formed onboard the camera—if the image delivered by the camera is in JPEG format,

1

ar
X

iv
:1

70
3.

05
35

4v
1 

 [
cs

.C
V

] 
 1

5 
M

ar
 2

01
7



for example—or in a post-processing phase—if the image delivered by the camera is in
the camera’s native RAW format. When done onboard the camera, real-time and space
considerations place additional restrictions on white balancing algorithms.

Given the importance of the problem, there has been much previous work on illu-
minant estimation (see [24] for a recent survey). Previous work can be roughly clas-
sified as either static or learning-based. Static approaches can be applied directly to
an image to estimate the illuminant without the need for a training phase. Examples
of static methods include the gray-world, white-patch, and shades-of-gray [18] algo-
rithms. Static algorithms are used by the majority of cameras [14] as they have the
advantage of being fast, albeit at the expense of accuracy [12].

In learning-based approaches, a set of examples is used to fit—in an offline manner—
a predictive model and the model is used to estimate the illuminant. Examples of
learning-based approaches include (in chronological order): learning a probabilistic
model based on the distribution of colors in an image [17,34]; neural networks [9]; sup-
port vector regression [39]; learning a probabilistic model of the image formation pro-
cess [20]; algorithm selection using ensembles of classification trees [4] and maximum
likelihood classifiers [21]; learning a canonical gamut and performing gamut map-
ping [23]; learning a correction to a moment-based algorithm such as gray-world [16];
nearest-neighbor regression [38]; k-means clustering and voting [1]; and convolutional
neural networks [5, 37]. Learning-based algorithms have the advantage of being accu-
rate, albeit often at the expense of speed [12].

Recently, Cheng et al. [12] proposed a method based on learning an ensemble of
regression trees—a collection of trees whose individual predictions are combined to
produce a single prediction for a new example [6, 15]. Cheng et al.’s [12] method is
both fast and accurate, leading to the best overall performance to date on diverse image
sets. Their method uses (ordinary) univariate regression trees, where each tree predicts
a single response variable. Thus, to estimate an illuminant e = (r, g, b), Cheng et
al. [12] predict the r chromaticity and the g chromaticity independently and from these
two values the estimate of the b chromaticity can be determined using b = 1−r−g. As
well, they use the (ordinary) squared-error loss function when fitting each regression
tree.

1.1 Contributions
Building on the work of Cheng et al. [12], in this paper we make the following contri-
butions.

1. We show how multivariate regression trees [13, 29, 35], where each tree predicts
multiple responses, can be used to effectively estimate an illuminant. In the case
of multiple responses, multivariate trees are more compact than univariate trees
and can be more accurate when the response variables are correlated [31]. In
our method for illuminant estimation, each tree simultaneously predicts all three
chromaticity components of an illuminant e = (r, g, b), rather than predicting
them independently, thus taking into account that the chromaticity components
of the illuminant are correlated and constrained.
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Figure 1: Percentage improvement of our method over Cheng et al. [12] for the median
of the distance measures for an image set, where each image set is captured by a single
model of a camera, and there are 11 image sets and 5 distance measures for each image
set. For 50 (/55) times our method gave an improvement in the median. For 4 (/55)
times, our method gave an increase in the median; the increases were all on one camera,
the Canon 600D.

2. We show how to fit a multivariate regression tree by directly minimizing a dis-
tance measure (loss function) of interest. Previous work on multivariate regres-
sion trees has addressed only variants of the well-known squared-error loss func-
tion [13, 30, 35]. However, for the distance or performance measures that have
been proposed for white balancing, such as recovery angular error and reproduc-
tion angular error (see, e.g., [19, 22] and Section 2), the squared error is not the
best surrogate for the distance measure of interest. We show how to efficiently
fit multivariate trees for distance measures that have been proposed for white
balancing.

3. We show empirically that overall our method leads to improved performance
on diverse image sets. Our ensembles of multivariate regression trees are, with
some exceptions, more accurate (see Figure 1 for a preliminary presentation of
the improvement in accuracy) and are considerably simpler, while inheriting the
fast run-time of Cheng et al.’s [12] approach.

2 Distance Measures
In this section, we review distance or performance measures that have been proposed
for evaluating the effectiveness of white balancing algorithms. Although the distance
measures are of course correlated, Finlayson and Zakizadeh [19] have shown that the
ranking of white balancing algorithms will change depending on the chosen distance
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measure. The distance measures assume normalized RGB,

r =
R

R+G+B
, g =

G

R+G+B
, b =

B

R+G+B

whereR,G, andB are the red, green, and blue channel measurements and r+g+b = 1.
In what follows, let all vectors be row vectors, ê = (r̂, ĝ, b̂) be the estimated illuminant,
and e = (r, g, b) be the ground truth illuminant.

The most widely used distance measure [22,27], recovery angular error, measures
the angular distance between the estimated illuminant and the ground truth illuminant,

distθ(ê, e) = cos−1
(

ê · eT

‖ê‖‖e‖

)
,

where ê·eT is the dot product of the vectors, ‖·‖ is the Euclidean norm, and we assume
the angular distance is measured in degrees. Gijsenij, Gevers, and Lucassen [22] note
that human observers sometimes judge the recovery angular error to underestimate the
perceived differences between two images. One reason is that the recovery angular er-
ror ignores the direction of the deviation from the ground truth, which can be important
from a perceptual point of view.

Finlayson and Zakizadeh [19] propose reproduction angular error as a distance
measure, where the angular error is determined after the image has been corrected
with the estimated illuminant. Given an estimated illuminant ê = (r̂, ĝ, b̂), a diagonal
correction matrix is given by D = diag(ĝ/r̂, ĝ/ĝ, ĝ/b̂). Once the correction has been
applied to an image, the angular error between the white balanced ground truth and the
target of uniform gray 1 = (1, 1, 1) can be determined,

distrep(ê, e) = cos−1
(
(DeT )T · 1T

‖DeT ‖‖1‖

)

=cos−1

 r/r̂ + g/ĝ + b/b̂√
(r/r̂)2 + (g/ĝ)2 + (b/b̂)2

√
3

 .

In other words, given a part of the image that is known to be achromatic, we are mea-
suring how close in degrees it is to being achromatic once the image has been white
balanced using the estimated illuminant.

Gijsenij et al. [22] discuss the use of the Minkowski distance for measuring the
distance between the estimated and the ground truth illuminant. Two special cases are
the Taxicab distance,

dist1(ê, e) = |r̂ − r|+ |ĝ − g|+ |̂b− b|,

and the Euclidean distance,

dist2(ê, e) =

√
(r̂ − r)2 + (ĝ − g)2 + (̂b− b)2.

Gijsenij et al. [22] note that the Euclidean distance treats each of the RGB channels
uniformly whereas it is known that the sensitivity of the human eye to perceived differ-
ences varies across color channels. To this end, Gijsenij et al. [22] define the perceptual
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Euclidean error,

distped(ê, e) =

√
wr(r̂ − r)2 + wg(ĝ − g)2 + wb(̂b− b)2,

where weightswr, wg , andwb capture this sensitivity andwr+wg+wb = 1. In experi-
ments, Gijsenij et al. [22] found that the weight vector (wr, wg, wb) = (0.21, 0.71, 0.08)
gave a higher correlation with the judgment of human observers than that of distθ,
dist1, and dist2.

3 Our Proposal
In this section, we present our approach for white balancing based on ensembles of
multivariate regression trees. We begin with a brief review of univariate (ordinary)
regression trees and how they were applied by Cheng et al. [12] for white balancing.

3.1 Univariate regression trees
Univariate regression trees are constructed in a greedy, top-down manner from a set
of labeled training examples {(x1, y1), . . . , (xn, yn)}, where xi = (xi1, . . . , xim) is
a vector of feature values and yi is a scalar response variable (see, e.g., [8, 25, 33]).
As it is sufficient for our purposes, we assume that the feature values and the response
variable are real-valued. The root node of the tree is associated with all the training
examples. At each step in the construction of the tree, the training examples at a node
are partitioned by choosing the feature j ∈ {1, . . . ,m} and partition p that minimizes
the total of the squared-error loss functions,

argmin
c1

∑
i∈L(j,p)

(yi − c1)2 + argmin
c2

∑
i∈R(j,p)

(yi − c2)2, (1)

where the partition is into two subsets, L(j, p) and R(j, p), formed by branching on
feature j according to xij ≤ p and xij > p, respectively. For the squared-error loss
function, for any choice of feature j and partition p the minimization is solved by
taking the scalar c1 to be the mean of the yi values in the left branch and the scalar
c2 to be the mean of the yi values in the right branch (see, e.g., [25]). Once the best
pair (j, p) is found, a left child node and right child node are added to the tree and are
associated with the subsets L(j, p) and R(j, p). The partitioning continues until some
stopping criterion is met, in which case the node is a leaf and is labeled with the scalar c
associated with the subset of examples at the node.

To estimate an illuminant e = (r, g, b), Cheng et al. [12] predict the r chromatic-
ity and the g chromaticity independently using separate univariate trees fit with the
squared-error loss function and from these two values the estimate of the b chromatic-
ity can be determined using b = 1 − r − g. Cheng et al. [12] use four pairs of simple
features in their univariate trees: (f1r , f1g ), the mean color chromaticity as provided by
the gray-world algorithm; (f2r , f2g ), the brightest color chromaticity, an adaptation of
the white-patch algorithm; (f3r , f3g ), the bin average of the mode of the RGB histogram,
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and (f4r , f4g ), the mode of the kernel density estimate from the normalized chromatic-
ity plane. An important contribution of their work is a novel method for training and
combining the predictions of an ensemble of trees using these features that is both fast
and accurate, leading to the best overall performance to date on diverse image sets.

Two important points are that Cheng et al.’s [12] method (i) predicts the r and
g chromaticities independently, and (ii) minimizes the distance measure of interest—
in their work, the recovery angular error—indirectly by minimizing the squared-error
loss function. Our starting point is (i) the observation that our response variable is not
a scalar but a vector e = (r, g, b) of chromaticities, and (ii) the related observation that
independently fitting using the squared-error loss function is not necessarily a good
surrogate for minimizing distance measures used in white balancing (see Example 1).

Example 1. Let e = (r, g, b) be the ground truth illuminant. Consider the two esti-
mates of the illuminant ê1 = (r̂1, ĝ1, b̂1) and ê2 = (r̂2, ĝ2, b̂2), where

r̂1 = r + α, r̂2 = r + α,

ĝ1 = g + α, ĝ2 = g − α,
b̂1 = 1− r̂1 − ĝ1 = b− 2α, b̂2 = 1− r̂2 − ĝ2 = b,

and α > 0 is some residual error. Here, the pair of estimates r̂1 and r̂2 and the pair of
estimates ĝ1 and ĝ2 both have equal squared error (α2). Thus, from the point of view
of independently fitting using the squared-error loss function, the two estimates of the
illuminant have equal error. However, for distance measures that have been proposed
for white balancing (see Section 2), the error of the estimate ê1 is larger (and can
be much larger) than that of ê2. For example, let e = (13 ,

1
3 ,

1
3 ) and α = 0.05. For

the recovery angular error, distθ(ê1, e) = 11.977 and distθ(ê2, e) = 6.983. Thus,
minimizing the squared error is not necessarily a good surrogate for minimizing a
distance measure of interest in white balancing.

3.2 Multivariate regression trees
Multivariate regression trees are constructed in a greedy, top-down manner from a set
of labeled training examples {(x1,y1), . . . , (xn,yn)}, where as before xi is a vector of
feature values but now yi = (yi1, . . . , yik) is a vector of response variables [13,29,35].

Our proposed method for illuminant estimation is for a single tree to simultane-
ously predict all three chromaticity components of an illuminant e = (r, g, b), rather
than multiple trees predicting them independently, thus taking into account that the
chromaticity components of the illuminant are correlated and constrained (see Fig-
ure 2). An innovation of our approach is to fit a multivariate regression tree by directly
minimizing a distance measure (loss function) of interest. Previous work on multi-
variate regression trees has addressed only loss functions that are variants of the well-
known squared-error loss function [13, 35]. In our proposed method, at each step in
the construction of the multivariate regression tree, the training examples at a node are
partitioned by choosing a feature j ∈ {1, . . . ,m} and partition p that minimizes the

6



· · ·f 1
r > 0.4191

4: (0.3622, 0.4727, 0.1651)f
1
r
≤ 0.4191f 4

r > 0.4078

· · ·f 4
r > 0.2902

8: (0.2897, 0.4674, 0.2429)f
4
r
≤ 0.2902

f
4
r
≤ 0.40

78
f 1
r >

0.3297

· · ·f 3
r > 0.2840

8: (0.2503, 0.4779, 0.2718)f
3
r
≤ 0.2840f 2

r > 0.2658

· · ·f 4
g > 0.4549

· · ·f
4
g
≤ 0.4549

f
2
r
≤ 0.26

58

f
1
r
≤ 0.3

29
7

Figure 2: An example multivariate regression tree when the distance measure is re-
covery angular error, showing only the first four layers (out of 18 layers). The three
(green) leaf nodes are labeled with the number of training examples at that node and
the illuminant estimation if that node is reached. Also shown are the four images as-
sociated with the bottom-most leaf node; the images have been gamma corrected for
presentation.

total of the loss functions,

argmin
ê1

∑
i∈L(j,p)

dist(ê1, ei) + argmin
ê2

∑
i∈R(j,p)

dist(ê2, ei), (2)

where the partition is into two subsets, L(j, p) and R(j, p), formed by branching on
feature j according to xij ≤ p and xij > p, respectively; dist(·, ·) is a distance measure
that has been proposed for white balancing (see Section 2); and ê1, ê2, and ei are
normalized RGB vectors in R3, i.e., the chromaticities sum to one. The partitioning
continues until some stopping criteria is met, in which case the node is a leaf and is
labeled with the estimated illuminant ê associated with the subset of examples at the
node. When such a tree is used in white balancing an image that has not been seen
before, one starts at the root and repeatedly tests the feature at a node and follows
the appropriate branch until a leaf is reached. The label of the leaf is the estimated
illuminant of the image.
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Figure 3: Our adaptation of Cheng et al.’s [12] learning-based method. Given an
input image, four pairs of feature values are calculated, the feature values are used by
each tree in the ensemble to predict the illumination, and the individual predictions
{ê1, . . . , êk} are combined into a single estimate ê of the illuminant that is used to
white balance the image.

3.3 Ensembles of multivariate regression trees
To improve predictive accuracy, an ensemble of trees is learned where each tree is a
multivariate regression tree. Various methods have been proposed for constructing en-
sembles including manipulating the training examples, manipulating the input features,
injecting randomness into the learning algorithm, and combinations of these methods
(see [15]). We adopt the method for constructing ensembles that injects randomness
into the construction of an individual tree. When constructing the tree, each feature j
partition p pair considered in Equation 2 is accumulated along with the total of the loss
functions associated with the pair. Rather than taking the (j, p) pair that minimizes the
total of the loss functions, a (j, p) pair is chosen at random from all of the pairs that are
within a given percentage of the minimum. This ensures that diverse yet accurate trees
are constructed. We also experimented with bagging [6] and Cheng et al.’s method [12],
two methods that manipulate the training examples to construct diverse trees, and with
random forests [7, 26], a method that manipulates both the training examples and the
input features. However, in each case the alternative led to a decrease in accuracy.

Given a new image, the individual predictions of the trees in the ensemble are
combined into a single estimated illuminant ê for the image as follows (see Figure 3).
Let S = {ê1, . . . , êk} be the set of predictions from the individual trees. The fi-
nal estimated illuminant is the normalized RGB vector ê = (r̂, ĝ, b̂) that minimizes∑
i∈S dist(ê, êi); i.e., the same minimization problem as the one that is solved in par-

titioning the training examples at a node and in labeling a leaf when constructing the
trees (Equation 2).

3.4 Fitting multivariate regression trees
In fitting a multivariate regression tree to a set of labeled training examples, the idea
is to repeatedly, in a greedy and top-down manner, find the best feature j and partition
p that results in the largest drop in the total error, as measured by a given distance
measure (see Equation 2). The minimization in Equation 2 is a constrained, non-linear
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optimization problem. The problem must be solved many times when learning the
ensemble of trees (approximately 40,000 calls to the minimization routine is typical
for constructing a single tree) and also once every time the ensemble is applied to a
new image and the individual predictions of the trees are combined to obtain a final
estimated illuminant. Note that learning the trees is an offline process that occurs once
while applying the ensemble to a new image is an online process that will occur many
times, as it occurs each time an image is captured by the camera.

The minimization problem can be solved using exact but sophisticated and compu-
tationally expensive numerical optimization routines such as those based on interior-
point or sequential quadratic programming methods. Exact methods are suitable for of-
fline learning of a single ensemble of multivariate trees, but unfortunately are too slow
for experimental evaluation where cross-validation and repeated trials are necessary to
obtain accurate estimates of performance. This impediment also arises in univariate
trees when using loss functions other than squared error (see, e.g., [25, p. 342]). As
well, sophisticated exact methods are unlikely to be suitable for online application of
the ensemble onboard the camera, given the real-time and space considerations.

Our proposed method is to solve the minimization problem approximately by taking
the median of the ground truth illuminants of the training examples at a node and nor-
malizing so that the RGB values sum to one (see Example 2). The method is simple and
fast. As we show in supplementary material, the method often finds the exact solution
and otherwise finds good quality approximate solutions for distance measures that arise
in white balancing. Further, solving the minimization problem approximately does not
appear to have a significant impact on the accuracy of the multivariate regression trees,
perhaps because the tree construction itself is a greedy (and hence approximate) pro-
cess.

Example 2. Consider the follow three training examples, where the ground truth il-
luminants are shown but feature values are not shown, and let dist2 be the distance
measure.

example r g b
e1 0.4285 0.4468 0.1247
e2 0.4221 0.4473 0.1306
e3 0.4098 0.4682 0.1220

Taking the median of the training examples gives (0.4221, 0.4473, 0.1247) and nor-
malizing so that the RGB values sum to one results in the illuminant estimate (0.4246,
0.4500, 0.1254) with an associated cost of 3.5134. Taking the mean of the training
examples results in the illuminant estimate (0.42012, 0.45411, 0.12577) with an as-
sociated cost of 3.7619. The illuminant estimate that exactly minimizes the sum of
the distance measure over the training examples is (0.4228, 0.4487, 0.1285) with an
associated cost of 3.4049.
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4 Experimental Evaluation
In this section, we compare a MATLAB implementation of our multivariate regression
tree method to Cheng et al.’s [12] method1.

4.1 Image sets
We used the following image sets in our experiments.

SFU Laboratory image set. The SFU Laboratory image set consists of images of
objects in a laboratory setting captured by a video camera under 11 different illuminants
[2]. Following previous work, we use a common subset of 321 images (the minimal
specularities and non-negligible dielectric specularities subset). A single image is the
average of 50 video frames and is stored as a 16-bit TIFF file. In contrast to more
recent image sets, the images are not captured as a camera RAW image file and thus
have been processed by the camera. A white reference standard was used to determine
ground truth, but the white reference does not appear in the images.

Gehler-Shi image set. The Gehler-Shi image set consists of 568 indoor and outdoor
images captured by two different cameras [20,36]. As done in previous work, we used
the reprocessed version of the image set which starts from a camera RAW image file
that has been minimally processed by the camera and creates a linearly processed,
lossless 12-bit PNG file using the well-known dcraw program. Each image contains a
color checker for determining ground truth.

NUS and NUS-Laboratory 8-camera image sets. The NUS 8-camera image set
consists of 1736 images captured by eight different cameras [10], where in most cases
each camera has photographed the same scene. Each image is captured as a minimally
processed camera RAW image file and is linearly processed to create a lossless 16-bit
PNG file. Each image contains a color checker for determining ground truth. The
NUS-Laboratory 8-camera image set is a complementary laboratory set of 840 images
captured with the same cameras. These additional images correct for a bias towards
images captured outdoors in daylight [11].

4.2 Experimental methodology
The main goal of our experiments is to compare our multivariate regression tree method—
where each tree simultaneously predicts all three chromaticity components of an illu-
minant and the trees are fit by directly minimizing a distance measure of interest—to
Cheng et al.’s [12] univariate tree method. To that end, we followed Cheng et al.’s [12]
original experimental setup closely. In particular, we used the following methodology
in our experimental evaluation.

Training data generation. Cheng et al. [12] use four pairs of simple features in their
univariate trees (see the description in Section 3.1) and in our main set of experiments,
we used the same features. In both approaches, training and testing is done on each
camera separately; i.e., a predictive model is built for a particular model of camera
rather than a generic model that can be used by any camera. To construct the machine

1The software is available at: https://cs.uwaterloo.ca/˜vanbeek/Research/
research_cp
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Table 1: Comparison of accuracy of our proposed ensembles of multivariate regres-
sion trees against Cheng et al. [12] on the SFU Laboratory [2] image set, for various
performance measures.

tri- best worst
meas. meth. mean med. mean 25% 25%

Sony DXC-930, 321 images

distθ
Cheng 4.24 2.24 2.85 0.35 11.29
Ours 4.04 1.85 2.50 0.25 11.20

distrep
Cheng 4.62 2.68 3.24 0.43 11.95
Ours 4.45 2.40 2.89 0.30 12.03

distped
Cheng 2.07 1.18 1.45 0.19 5.35
Ours 1.99 1.04 1.33 0.14 5.38

learning data for a camera, each image taken by the camera in an image set is processed
by (i) normalizing the image to a [0, 1] image, using the saturation level and darkness
level of the camera, (ii) masking out the saturated pixels and the color checker, if
present, (iii) determining the feature values for the image, and (iv) labeling the example
using the ground truth illuminant. The result is a set of labeled training examples
{(x1,y1), . . . , (xn,yn)}, where xi = (f1r , f

1
g , . . . , f

4
r , f

4
g ) is a vector of feature values

and yi = (ri, gi, bi) is the ground truth illuminant.
Parameter selection. In both approaches, parameters were set on 1/3 of the Gehler-

Shi image set using distθ as the distance measure. The parameters were then fixed for
all other cameras, image sets, and distance measures. Cheng et al. [12] set the following
parameters: (i) the number of trees in an ensemble (30×4×2 = 240 trees, where each
feature pair is used to build a tree for predicting r and a tree for predicting g, and this is
repeated 30 times), (ii) the amount of overlap and the number of slices of the training
data used in constructing the ensemble, and (iii) a threshold value for determining the
consensus of the ensemble. In our method, we set the following parameters: (i) the
number of trees in an ensemble (30 trees), (ii) the amount of randomization used in
constructing the ensemble (10%; see 3.3), and (iii) a threshold value, where a node is
partitioned only if the average error at the node is greater than the threshold (0.5).

As well, Cheng et al. [12] use the MATLAB routine fitrtree for fitting a tree
using the squared-error loss function. The routine has two parameters that were used
at their default values: each branch node in the tree has at least “MinParentSize = 10”
examples and each leaf has at least “MinLeafSize = 1” examples per tree leaf. These
values are used as a stopping criteria when building the tree. We used the same stopping
criteria in our implementation for fitting a tree using a chosen white balancing distance
measure.

Performance evaluation. We used standard k-fold cross validation, to evaluate and
compare the accuracy of our method and Cheng et al.’s [12] method. In k-fold cross
validation, the image set is randomly partitioned into k approximately equal folds and
each of the folds is, in turn, used as a testing set and the remaining k− 1 folds are used
as a training set. In our experiments we used 10-fold cross validation, as 10-fold is
the most widely recommended, especially for our setting where the amount of data per
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Table 2: Comparison of accuracy of our proposed ensembles of multivariate regression
trees against Cheng et al. [12] on the Gehler-Shi [20,36] image set, for various distance
measures.

tri- best worst
meas. meth. mean med. mean 25% 25%

Canon 1D, 86 images

distθ
Cheng 3.74 2.83 2.91 0.74 8.30
Ours 3.57 2.45 2.75 0.81 8.13

distrep
Cheng 4.62 3.59 3.73 0.89 10.10
Ours 4.38 3.21 3.53 0.92 9.66

distped
Cheng 1.58 1.23 1.27 0.36 3.40
Ours 1.53 1.10 1.20 0.37 3.41

Canon 5D, 482 images

distθ
Cheng 2.18 1.37 1.54 0.35 5.42
Ours 2.06 1.20 1.38 0.27 5.32

distrep
Cheng 2.85 1.77 2.00 0.42 7.13
Ours 2.68 1.54 1.77 0.34 6.96

distped
Cheng 0.96 0.63 0.70 0.17 2.30
Ours 0.92 0.57 0.63 0.15 2.29

camera is limited in some regions of the output space [3, 25, 28]. To reduce variance,
the statistics we report are the result of performing 30 runs of 10-fold cross validation
with different random seeds. Both methods share the same random seeds so that the
partitions into training and test are the same for each algorithm for each experiment.
Although for space considerations we only directly compare against Cheng et al.’s [12]
method, we note that results comparing [12] to many other algorithms can be found in
their original paper (the results reported here differ somewhat to those reported in [12]
on common image sets as that paper uses 3-fold cross validation and reports results
based on only a single run).

4.3 Experimental results
We compared the two approaches on accuracy, simplicity, and speed. All experiments
were performed on a PC with an Intel i7-6700K, 4GHz running MATLAB R2016a.

Accuracy. Tables 1–4 show a comparison of the accuracy of our method of ensem-
bles of multivariate regression trees against Cheng et al.’s [12] method on three distance
measures (for space reasons results for distance measures dist1 and dist2 are omitted).
For uniformity of presentation, the results for distped are multiplied by 102. Note that,
for each camera, in Cheng et al.’s [12] method an ensemble is fit once using the squared
error and then evaluated on each of the distance measures, whereas in our method an
ensemble is fit and evaluated on each of the distance measures. In practice, of course,
in our method one would choose the distance measure that best fit with the intended
purpose. It has been noted that the mean is a poor summary statistic in this context and
more appropriate statistical measures are the median and the trimean [22, 27]. We also
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Table 3: Part I: Comparison of accuracy of our proposed ensembles of multivari-
ate regression trees against Cheng et al. [12] on the combined NUS [10] and NUS-
Laboratory 8-camera [11] image sets, for various distance measures.

tri- best worst
meas. meth. mean med. mean 25% 25%

Canon EOS-1Ds Mark III, 364 images

distθ
Cheng 2.13 1.45 1.61 0.36 5.06
Ours 2.03 1.25 1.46 0.26 5.09

distrep
Cheng 2.81 1.89 2.14 0.46 6.71
Ours 2.64 1.56 1.88 0.35 6.60

distped
Cheng 1.00 0.70 0.76 0.19 2.32
Ours 0.96 0.60 0.69 0.14 2.37

Canon EOS 600D, 305 images

distθ
Cheng 2.21 1.55 1.67 0.45 5.12
Ours 2.26 1.61 1.74 0.33 5.30

distrep
Cheng 2.92 2.04 2.23 0.57 6.76
Ours 2.96 2.07 2.29 0.43 6.92

distped
Cheng 1.01 0.72 0.78 0.23 2.32
Ours 1.02 0.72 0.78 0.15 2.40

Fujifilm X-M1, 301 images

distθ
Cheng 2.17 1.35 1.54 0.31 5.39
Ours 2.19 1.21 1.46 0.23 5.72

distrep
Cheng 2.94 1.77 2.07 0.40 7.37
Ours 3.00 1.60 1.99 0.32 7.94

distped
Cheng 1.04 0.66 0.75 0.17 2.54
Ours 1.04 0.59 0.72 0.12 2.72

Nikon D5200, 305 images

distθ
Cheng 2.07 1.30 1.47 0.39 5.02
Ours 2.03 1.15 1.34 0.30 5.18

distrep
Cheng 2.92 1.89 2.11 0.49 7.11
Ours 2.87 1.64 1.95 0.40 7.36

distped
Cheng 1.03 0.66 0.76 0.23 2.43
Ours 0.99 0.59 0.69 0.16 2.46

report the mean of the best 25% errors, and the mean of the worst 25% errors. Figure 1
summarizes the percentage improvement in accuracy for the median of all the distance
measures. On these image sets, our method has improved accuracy for 10 out of 11
cameras and 50 out of 55 combinations of camera and distance measure. Only for one
camera does our method lead to a decrease in accuracy and the percentage decrease in
the median is bounded by 4.5%.

As can be seen in Figure 1 and Tables 1–4, our method compares favorably on the
two statistics—median and trimean—that are arguably the most important in white bal-
ancing. Nevertheless, it can also be seen that Cheng et al.’s [12] method consistently
outperforms our method on the mean of the worst 25% errors and it has been con-

13



Table 4: Part II: Comparison of accuracy of our proposed ensembles of multivari-
ate regression trees against Cheng et al. [12] on the combined NUS [10] and NUS-
Laboratory 8-camera [11] image sets, for various distance measures.

tri- best worst
meas. meth. mean med. mean 25% 25%

Olympus E-PL6, 313 images

distθ
Cheng 1.77 1.11 1.25 0.26 4.38
Ours 1.77 1.02 1.18 0.23 4.56

distrep
Cheng 2.45 1.49 1.70 0.36 6.15
Ours 2.46 1.39 1.60 0.32 6.41

distped
Cheng 0.87 0.56 0.63 0.15 2.11
Ours 0.86 0.50 0.58 0.13 2.20

Panasonic Lumix DMC-GX1, 308 images

distθ
Cheng 2.22 1.41 1.57 0.36 5.47
Ours 2.12 1.17 1.35 0.23 5.63

distrep
Cheng 3.02 1.92 2.17 0.45 7.44
Ours 2.88 1.53 1.87 0.29 7.68

distped
Cheng 1.03 0.68 0.75 0.21 2.44
Ours 0.98 0.59 0.66 0.13 2.50

Samsung NX2000, 307 images

distθ
Cheng 2.16 1.38 1.52 0.39 5.33
Ours 2.15 1.30 1.47 0.33 5.45

distrep
Cheng 2.96 1.85 2.07 0.49 7.38
Ours 2.94 1.71 1.97 0.42 7.55

distped
Cheng 1.08 0.73 0.80 0.23 2.55
Ours 1.08 0.71 0.77 0.19 2.62

Sony SLT-A57, 373 images

distθ
Cheng 1.99 1.37 1.49 0.38 4.68
Ours 1.86 1.09 1.29 0.28 4.65

distrep
Cheng 2.76 1.88 2.05 0.49 6.55
Ours 2.54 1.49 1.78 0.38 6.37

distped
Cheng 0.98 0.68 0.75 0.21 2.26
Ours 0.94 0.55 0.66 0.16 2.34

tended that reducing worst-case performance is also important [32]. In the experiments
reported so far, we followed Cheng et al.’s [12] original experimental setup closely
including using the same features. However, an examination of why our method did
more poorly on the mean of the worst 25% errors suggested that our method was run-
ning out of predictive features when building our multivariate trees. We thus pursued
a secondary set of experiments where we added one additional pair of features: (fsgr ,
fsgg ), the color chromaticity as provided by the shades-of-gray algorithm [18]. The
shades-of-gray algorithm is based on the lp-norm, for p = 5. Figure 4 summarizes the
results and it can be seen that the addition of the feature improved the performance of
our method on the worst cases, albeit at the expense of reducing the improvement on
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(a) (b)

Figure 4: Percentage improvement of our method over Cheng et al. [12] when adding
the feature shades-of-gray for (a) the median and (b) the mean of the worst 25% of the
distance measures for an image set, where each image set is captured by a single model
of a camera, and there are 11 image sets and 5 distance measures for each image set.
For 50 (/55) times our method gave an improvement in the median and for 38 (/55)
times our method gave an improvement in the mean of the worst 25%.

the median.
Simplicity. We also compared the size of the trees constructed by both methods.

For the Canon 1Ds Mark III camera, we recorded the size of each tree and the size
of each ensemble of trees, as measured by the number of nodes. The following table
shows averages over 30 runs.

method measure tree ensemble
Cheng all 206.6 49,575.0

Ours

distθ 143.9 4,317.2
distrep 153.6 4,609.0
dist1 153.3 4,598.4
dist2 147.8 4,435.0
distped 110.9 3,327.6

It can be seen that our method leads to ensembles that are an order of magnitude
smaller.

Speed. We also compared the speed of both methods. For the offline training of the
trees, building our multivariate trees is considerably slower. For example, for the Canon
EOS-1Ds Mark III camera and an image set of 364 images the times were 14.6 seconds
versus 311.3 seconds. A partial reason is that Cheng et al. [12] use the MATLAB
routine fitrtree for fitting a tree which automatically parallelizes training. For
the online run-time, the two methods are for practical purposes identical, ours being
negligibly faster due to having fewer trees in an ensemble, but both completing in
approximately 0.5 seconds or less.

We conclude the experimental evaluation with a brief comparison to the current
best-performing convolutional neural network (CNN) approach [37]. In terms of accu-
racy, on the NUS 8-camera image set, Shi et al. [37] report percentage improvements
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over Cheng et al. [12] of 5.1% for the mean, 8.2% for the median, and 3.4% for the
trimean, where the improvement is measured over the geometric means of the eight
cameras. As a point of comparison, on the combined NUS and NUS-Laboratory 8-
camera image set, we achieve an improvement of 1.9% for the mean, 10.7% for the
median, and 7.1% for the trimean, again as measured over the geometric means. In
terms of simplicity and speed, the CNN approach is at a definite disadvantage. For
example, Shi et al. [37] state that processing an image takes approximately 3 seconds
on a GPU.

5 Conclusion
We show how multivariate regression trees, where each tree predicts multiple responses,
can be used to effectively estimate an illuminant for white balancing an image. In our
proposed method a multivariate regression tree is fit by directly minimizing a distance
measure of interest. We show empirically that overall our method leads to improved
performance on diverse image sets. Our ensembles of multivariate regression trees are,
with some exceptions, more accurate and considerably simpler, while inheriting the
fast run-time of previous work.
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A Approximation error
Our proposed method is to solve approximately the minimization problem posed in
Equation 2 for fitting multivariate trees (see Section 3.4). In this appendix, we report
on experiments investigating the quality of the approximate solutions.

Figure 5: Percent relative approximation error on each call to the minimization routine
when building one tree for the Canon EOS-1Ds Mark III camera. The red bars show the
median, the 75th percentile, the 95th percentile, and the maximum. For visualization
purposes, the results were transformed by taking the cube root of the percentage relative
error.

For determining the exact solution to the minimization problems we used the MAT-
LAB routine fmincon. Figure 5 shows how close to optimal the approximate solu-
tions were for the various distance measures. The majority of the approximate solutions
are within 1% of optimal.
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