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Abstract
The majority of internet traffic is video content. This drives

the demand for video compression in order to deliver high quality

video at low target bitrates. This paper investigates the impact

of adjusting the rate distortion equation on compression perfor-

mance. A constant of proportionality, k, is used to modify the

Lagrange multiplier used in H.265 (HEVC). Direct optimisation

methods are deployed to maximise BD-Rate improvement for a

particular clip. This leads to up to 21% BD-Rate improvement

for an individual clip. Furthermore we use a more realistic cor-

pus of material provided by YouTube. The results show that direct

optimisation using BD-rate as the objective function can lead to

further gains in bitrate savings that are not available with previ-

ous approaches.

Introduction
Video content is predicted to rise to over 80% of internet

traffic by the year 2021 [1]. This continues to drive video com-

pression technology. A successful video codec would provide a

bitstream which is capable of being decoded at the highest possi-

ble quality for a target bitrate, or the lowest possible bitrate for a

target quality or distortion. One of the key challenges to be solved

in the design of a practical codec is the tradeoff between rate and

distortion. A Lagrange multiplier approach was advocated by Sul-

livan et al [2] and that has been the adopted view since 1998. In

this approach the codec makes a number of decisions in order to

minimise a cost J as follows.

J = D+λR (1)

As can be seen J combines both a distortion D (for a frame

or macroblock) and a rate R (the number of coded bits for that

unit) through the action of the Lagrangian multiplier λ . Differ-

ent choices for λ result in different R/D tradeoffs. The idea is

used across a wide range of codec operations e.g. block type

(Skipped/Intra/Inter), motion vectors and bit allocation at the

frame and clip levels [3].

The choice of λ was determined experimentally in the early

days of codec research [4]. This parameter can be considered as

a kind of hyperparameter in a hybrid codec as it affects so many

other decisions. This was originally implemented for the H.263

codec and then modified for H.264 and H.265 (HEVC) [5]. The

approach was to select a value based on a cohort of examples

such that the performance was optimised on average across the

set. That set was quite small, less than 5 examples. More recently,

Katsavounidis et al [6][7] recognised that by choosing codec hy-

perparameters per clip significant gains could be achieved. This is

because the statistics of video clips varies greatly over any corpus.

While that work considered only the design of a bitrate ladder for

DASH streaming, it provided an impetus for per clip optimisation

throughout the codec system. Covell et al[8] also built on that idea
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Figure 1. Rate Distortion curves for sequence: Gaming 360P-1e31. The

RD curves generated using any one of the proposed algorithms outperforms

the curve for X265 using the default λ (black).

by optimising other codec hyperparameters (CRF) in that case for

per clip transcoding.

This paper explores the idea that a better λ exists for an in-

dividual video clip. Unlike previous work, λ was adjusted us-

ing direct optimisation techniques using BD-Rate as the objective

function. In addition, a more comprehensive and modern corpus

of test data was used, provided recently by YouTube [9]. For a

given clip it was found that up to a 21% improvement can be had

by adjusting the Lagrangian multiplier in the rate distortion equa-

tion. An example of the gains reported in this paper are shown in

Figure 1. The proposed algorithms all result in RD performance

that is well above the default behaviour in the X265 codec (in this

case). This result is discussed in more detail later, but it contrasts

well with previous work that reports up to 11% improvement. The

next section presents more detailed background and a review of

recent work.

Lagrangian Multiplier in Compression
There has been a tremendous amount of work done to es-

tablish what the Lagrangian multiplier should be in the different

iterations of the MPEG codecs (H.263, H.264 and H.265). Being

able to find the balance between the quality of decoded images

and channel capacity is the fundamental problem which the rate

distortion algorithm attempts to solve [10].

As alluded to in the introduction, the seminal work of Sulli-

van and Wiegand[2] laid the foundation for an experimental ap-

proach to choosing an appropriate λ . In that work, they estab-

lished the relationship between quantisation step size Q (used for

DCT coefficient quantisation) and the distortion D in a frame i.e.

http://arxiv.org/abs/2204.08965v1


D(Q) = aQ2, where a is a constant relating to the content. Min-

imising J wrt D then yields a relationship λ = D/b where b is

another content related constant. Combining these two relation-

ships then leads to a relationship between λ and Q as follows

λ = 0.85×Q2 (2)

where the constant was determined experimentally over a small

corpus of 3 video clips (CIF resolution). This was explicitly pre-

sented for H.263 in 2001 [3].

Updates to these experiments then yielded similar relation-

ships for H.264 and H.265 (HEVC). Because of the introduction

of bi-directional (B) frames the constants are all different. In fact

three different relationships were established for each of the Intra

(I), Predicted (P) and B frames as follows.

λI = 0.57×2(Q−12)/3 (3)

λP = 0.85×2(Q−12)/3 (4)

λB = 0.68×max(2,min(4,(Q−12)/6))×2(Q−12)/3 (5)

Clearly the size of the corpus used for these experiments was

quite small, so there is room for exploration with a larger corpus.

In addition, average performance is known to be worse than in-

dividual adaptation as discussed previously. Hence the following

section outlines different methods which have been used to deter-

mine a better Lagrangian multiplier for use in video encoding.

Adaptive Lagrange Multipliers
There have been a few attempts to adjust the rate distortion

optimisation within a video codec. In all cases, the authors have

discovered that a better λ does exist per clip. The techniques are

best considered as two classes. In one class (M-Algorithms), λ is

adjusted away from the default stated previously, using a constant

of proportionality k as follows

λnew = k×λorig (6)

where λorig is the default Lagrangian multiplier estimated in the

video codec, and λnew is the updated Lagrangian. Algorithms in

this class, learn a relationship between k and features extracted

from the video stream. Zhang and Bull [11] used a single fea-

ture DP/DB, the ratio between the MSE of P and B frames. This

feature gives some notion of temporal complexity. Experiments

based on the DynTex database yielded a choice for k as follows.

k = a(DP/DB +d)b +c (7)

where a,b,c and d were experimentally calculated and different

for each codec tested (H.264 and H.265). In their work, k was

updated every GOP and they report up to 11% improvement in

BD-Rate. This approach of fitting a simple curve was also used by

Yang et al, except that they used a different feature, a perceptual

content measurement PC as follows

k = aPC−b (8)

where again a,b were determined experimentally using a corpus

of the Derfs dataset. Unlike Zhang and Bull, this was a straight

line fit, the loss in complexity of the fit is compensated for by the

increase in complexity of the feature.

Ma et al [12] used four features with a SVM to determine

k. The SVM was determined using the DynTex dataset. They re-

ported up to 2dB improvement in PSNR and 0.05 improvement in

SSIM at equal bitrates. The four video features measured spatial

and temporal complexity directly from texture and motion mea-

surements on the pixel level data itself. Hamza et al [13] also

take a Machine learning based approach but here using a seman-

tic scene model. Their work used the Derfs dataset and reported

up to 6% BD-Rate improvement.

Since λ is linked to Q as explained previously, the second

class of algorithms (Q-algorithms) adjusted λ implicitly by ad-

justing the quantiser parameter Q. Papadopoulos et al[14] applied

an offset to Q, in HEVC, based on the ratio of the distortion in the

P and B frames. Each QP was updated from the previous Group

of Pictures (GOP) using the following equation:

QP = a×MSEratio−b (9)

where a,b are constants determined experimentally. This lead

to an average BD-Rate improvement of 1.07% on the DynTex

dataset. With up to 3% BD-Rate improvement achieved for a

single sequence. Taking a local, exhaustive approach, Im and

Chan [15] proposed encoding a frame multiple times in a video.

Each frame was encoded using a Quantiser Parameter from the

set (QP ∈ (QP,QP±1,QP±2,QP±3,QP±4)). This led to an

increased complexity in coding in HEVC, however for a single

sequence achieved a 14.15% BD-Rate improvement.

However, both M/Q-Algorithms have overlooked the possi-

bility that a direct search using BD-Rate as the objective function,

could lead to even more improvements. In some way all these

previous works have reported data showing k versus BD−Rate,

but they use various summary models to simplify this relationship

across a corpus. By using instead Direct optimisation, we are able

to explore just how much more BD-Rate gains there are per-clip.

This idea is presented next.

Direct Optimisation
The approach adopted here falls under the M-algorithm class

discussed above. Hence an estimate of k is required such that

λnew = k × λorig. In this work however, we directly minimise

BD-Rate with respect to k using a range of optimisation strate-

gies. Furthermore, we deploy the optimisation strategies using

a modern dataset of User Generated content containing realistic

material provided by YouTube [9]. The new objective function is

now directly the BD-Rate [16] as a function of k, Br(k) as follows.

Br(k) =

∫ D2

D1

(R1(D)−Rk(D))dD (10)

where the integral is evaluated over the quality range D1..D2.

R1(D),Rk(D) are the RD curves corresponding to the default

(k = 1) and the evaluated multiplier k respectively. Each RD oper-

ating point is generated at a constant bitrate within a range which

matches typical streaming media use cases. The overall optimisa-

tion process is then as follows.

1. Generate an RD curve using λorig and Rt = 256k : 7M. We

use 11 operating points in this range.

2. Define our BD-Rate objective function as specified above in

equation 10. We use the same polynomial-log fit for evalu-

ating the integral as recommended in [16].
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Figure 2. BD Rate(%) vs k using two clips ((NewsClip 720P-7745 and

CoverSong 720P-3dca). Top : Multi-Res search, where X’s are the initial

search results, the solid line is the fit spline interpolation and +’s are the

subsequent searches. Bottom : Brents Method ♦ and Golden Section �.

3. Starting from k = 1.0, minimise Br(k), BD-Rate, wrt k using

any typical optimisation routine.

Note that for every evaluation of Br(k) , eleven (11) encodes are

required as well as the subsequent BD-Rate calculation itself.

Optimisation Algorithms
Three simple direct optimisation algorithms were tested. The

first used a multi-resolution search (multi-res). This is a simple

brute force strategy in which successively refined grid positions

in k were searched. The initial grid was k = 0.2 : 0.4 : 3.0. The

value of k which yielded the minimum Br(k), k1
opt was calculated

based on a spline curve fit to the sparse points, evaluated at steps

of 0.01. Successive refinements searching positions of kn
opt ±∆

were then performed with ∆ = 0.2,0.1,0.05 in succession. Figure

2 shows this process in action using two clips. X’s indicate the

initial evaluated positions, and the solid line is the initial curve

fit. The subsequent refinement grids are indicated with +. This

process therefore always required 15 evaluations of the objective

function.

Golden Section Search and Brent’s method [17] were used

as the other two optimisation schemes. These are smarter direct

search methods using local curve fits. As the multi-res method

required fifteen (15) evaluations of the objective function, these

optimisation routines were terminated after fifteen iterations and

a tolerance of 0.02% in the objective function. This allowed a fair

comparison.

An example of the search results (k vs BD-Rate) for the

methods can be seen in Figure 2 for two particular clips. Imple-

mentation details are in the next section, but one key observation

here is the very different appearance of each curve. This shows

that a summary model (e.g. used by Zhang and Bull) may be un-

able to exploit all the gains available. Furthermore, we note that

the points discovered by the direct search methods deviate from

the initial smooth curve fit near the minimum. This shows the

complexity of the surface in the region of interest. Finally, note

that the initial iterations of Brent’s and Golden searches cover a

very similar curve as the Multi-res approach. This means that the

complexity of the curves is actually limited to the region near the

minimum.

Implementation details
For this work VideoLAN’s [18] implementation of H.265

was used , x2651. The codebase was modified to take as an argu-

ment, the multiplier k and hence alter the Lagrangian constraint 6

used in RD control throughout the codec.

In order to generate Rate Distortion curves (RD-curve), each

video was encoded using the default input parameters for x265 at

a constant bitrate. The target bitrate was set within the range of

256k to 7M. Both SSIM and PSNR were used as the distortion

metric. The command invocation used for each video encode was

as follows:

x265 --input SEQ.y4m --bitrate <XXXX>

--tune-<YYYY> --<YYYY> --csv-log-level 2 --csv

DATA.csv --output OUT.mp4

Where SEQ, OUT and DATA are the filenames for the raw

input file, output encoded video and the log file for an encode re-

1Version: 3.0+28-gbc05b8a91



Figure 3. Example frames from each class in the YouTube dataset.

spectively. XXXX is the target bitrate and YYYY is the distortion

metric used, either PSNR or SSIM.

Dataset
Previous work in this space [11][12][14] has used generally

low resolution video with content that does not reflect current use.

A sub-sample of videos from the recently released YouTube-UGC

Dataset2 [9] was therefore selected for use in this paper3. This

should provide a better representation of widely used and viewed

video content. Each video clip used was 150 frames (5 seconds)

in length to match the chunks typically used by Dynamic Adap-

tive Streaming over HTTP (DASH) systems. The selected clips

contained Forty-four (44) at 720p resolution and thirty-three (33)

clips at 360p resolution, all at 30 fps. These clips represented

eleven (11) classes of video as specified by the YouTube team. A

sample of each class of the clips can be seen in Figure 3.

Results
Figure 4 shows the average BD-Rate improvement for each

sequence class for each of the three direct optimisation methods.

The bar chart shows that in almost all cases, Brent’s and Golden

methods are better than multi-res. Per class gains in BD-Rate are

within 0.5%-5%. For three classes (Live, Sports and Vlog) multi-

res is best. This is probably due to the restrictions on maximum

allowed iterations in the competing methods. The best BD-Rate

improvement for each class is listed in Table 1. Up to 21% is ob-

servered in an animation clip. The corresponding BD-Distortion

is less than 0.01dB. This highlights that the gains are all in bitrate

without loss in quality, and that there are significant gains to be

had per clip.

On average golden section and Brent’s search took 12.6 and

9.7 iterations respectively. This was with a 0.02% BD-Rate im-

provement tolerance used as the stopping citerion. Figure 1 shows

a comparison over the RD curves used for a single clip as an ex-

ample. The gains are larger at lower bitrates as expected. In this

example, the BR-Rate gain was 2.5% and Brent’s method took the

lowest number of iterations : 8.

Videos which were encoded without the stopping criterion

on the direct optimiser had an additional improvement in BD-

Rate. While a further increase in compression performance is

welcome, it comes with a heavy computational cost. Figure 5

shows an example of convergence in the direct optimisers in this

case without the stringent stopping criterion. As can be seen the

BD-Rate gains over 8% after 35 iterations. But the lower plot

shows the amount of gains achieved after each iteration as a frac-

tion of the final converged rate. Roughly 80% of the potential

2media.withyoutube.com
3The specific location of the chunks in the clips provided is available:

http://www.mee.tcd.ie/∼sigmedia/EI2020

Table 1: Best BD-Rate (%) improvement for each class of se-

quence using the three direct optimisation methods

Class Brent Golden Multi-Res

Animation 21.667 21.667 13.109

CoverSong 1.839 2.279 2.377

Gaming 1.858 1.762 1.665

HowTo 5.023 5.239 5.037

LiveMusic 1.570 1.810 1.776

LyricVideo 15.879 15.879 10.383

MusicVideo 6.417 6.760 0.516

NewsClip 2.481 2.371 2.251

Sports 8.391 7.583 8.378

TelevisionClip 10.533 10.238 9.486

Vlog 0.351 0.496 0.590

maximum BD-Rate improvement can be achieved within the first

fifteen(15) iterations, therefore the stopping criterion are not that

detrimental to performance especially in the light of computa-

tional load.

In practice, we are interested in the rate gains at a particu-

lar quality. For example a 40dB quality target is a good rule of

thumb for a streaming media service. BD-Rate measures instead

the average gain across the RD performance curve. We can show

our results in this light. Figure 6 is a cumulative histogram of the

percent bitrate improvement at 40 dB for the 77 clips encoded in

this paper. For 80% of the clips we can have up to 5% improve-

ment at this quality. This is a useful metric and further validates

the proposed methods.

Table 2 compares the results from this work with the results

from Zhang and Bull [11] applied to the dataset in this paper. The

comparison is not strictly fair because we do not adapt the k every

GOP and instead use a single GOP for all the clips. However the

results further reiterate the difference in the shapes of the curves

per clip. As can be seen our proposed algorithm estimates val-

ues of k that are quite different, and subsequently the BD-Rate

improvement is much better than that using k as equation 7.

Conclusion
This paper has presented a direct optimisation technique for

Lagrange multiplier estimation in a codec. The approach in some

sense represents an upper bound for what can be achieved by ad-

justing the Lagrangian multiplier. We report gains up to 21% on a

particular clip and 0.5−5% per class without affecting the qual-

ity. At a target quality of 40 dB, 80% of the clips had gains up to

5%. Furthermore, the work here has used a much more realistic

database of content provided by YouTube and for a larger number

of clips. The results also show that the relationship between k and

BD-Rate varies substantially between clips, and that the region

near the minimum is not a simple surface. These observations

point to further work in per clip optimisation using more sophisti-

cated machine learning techniques that exploit deeper features in

the content.
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Figure 5. These two plots illustrate the convergence of the optimisation

methods used for a particular clip (Sports 720P-0b9e). Top : BD-Rate. Bot-

tom : Normalised BD-Rate improvement. The normalised plot shows the

BD-Rate improvement as a % of the maximum BD-Rate possible for this clip.

Hence it shows that 80% of the possible BD-Rate improvement is attained

within the first 15 iterations.
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Brents Method
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