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Abstract
MPEG-I, the upcoming standard for immersive video, has

steadily explored immersive video technology for free navigation
applications, where any virtual viewpoint to the scene is created
using Depth Image-Based Rendering (DIBR) from any number
of stationary cameras positioned around the scene. This explo-
ration has recently evolved towards a rendering pipeline using
camera feeds, as well as a standard file format, containing all
information for synthesizing a virtual viewpoint to a scene. We
present an acceleration of our Reference View Synthesis software
(RVS) that enables the rendering in real-time of novel views in a
head mounted display, hence supporting virtual reality (VR) with
6 Degrees of Freedom (6DoF) including motion parallax within
a restricted viewing volume. In this paper, we explain its main
engineering challenges.

Introduction
In the domain of Virtual Reality (VR) free navigation, there

exists a continuum of approaches as proposed by the Milgram
scale [27], exposing two extremes: on one hand, the explicit 3D
polygonal model approach, typically used in 3D games, and on
the other hand, the image-based approach, with 360 video as a
typical representative. The former provides full 6 Degrees of
Freedom (6DoF) navigation, while the latter is restricted to ro-
tational head movements (3DoF). An intermediate approach con-
sists of allowing 6DoF in a restricted volume, aka 3DoF+, by us-
ing Depth Image-Based Rendering (DIBR) [15].

DIBR is a topic of interest in the MPEG-I (“I”=Immersive)
video activities of the worldwide MPEG standardization commit-
tee since a couple of years, seeking to find solutions for immer-
sive video in head mounted displays, without the need of fully
describing the scene geometrically with polygonal 3D primitives.
In particular, for natural scenery, such explicit 3D model would be
too difficult to generate, inevitably resulting in an uncanny valley
effect with little cinematic quality.

Historically, the MPEG-I video expert group has first devel-
oped VSRS (View Synthesis Reference Software) [43] and asso-
ciated depth estimation DERS (Depth Estimation Reference Soft-
ware) [47], and in early 2019 a new Reference View Synthesizer
(RVS) [12, 14] was developed (quality gains of RVS over VSRS
can be found in [13]), which is a fundamental ingredient (besides
of the compression add-ons) of the upcoming MPEG-I video stan-
dard, to be released in 2020 [25], aka MIV: Metadata for Immer-
sive Video.

In this paper we present our real-time GPU implementation
of RVS, aka RaViS: Real-time accelerated View Synthesizer.

Thanks to RaViS’ real-time performances, we support
image-based 6DoF VR experiences with DIBR without any ex-

Figure 1. DIBR representation. The input images and their corresponding

depth maps are used to render a new image anywhere in 3D space.

plicit 3D modelling of the scene and objects. As such, we avoid
the uncanny valley effect for natural content 6DoF VR. Moreover,
we enable the creation of 3D cinematic quality content using only
a small amount of RGB pictures.

By closing this gap, we enable users to capture scenes with
standard cameras and explore their virtual copies in real-time.

Related Work
Various rendering methods exist for virtual reality. On

one side, we can explore 360 degrees videos content in HMD.
While reaching cinematic quality, this kind of content prevents the
movement of a user in 6 Degrees-of-Freedom (6DoF) supporting
only head rotations, therefore disrupting the VR experience. On
the other side, we have 3D content requiring artistic knowledge
and work to generate it. This content feels synthetic in VR and
comes in three flavours:

1) Game engines, for example, Unity [46], and Unreal En-
gine 4 [11] are able to render simple to medium complex geome-
tries in real-time. 2) High quality content similar to cinematic
content can be generated using 3D modelling software such as
Blender [3] by generating a scene in a cube around the user at
each viewpoint in every direction on a S2 sphere [28]. 3) Light-
fields solutions use a special kind of cameras which can capture a
scene from a large amount of small camera sensors, for example
the Lytro camera [34], offering native novel views.

In (1), we can use techniques such as photogrammetry [36,
33] to obtain high quality 3D objects that mimic reality without
the need for 3D artist to build them. They often consist in a very
high number of polygons (polycount) which prevent real-time for
scenes entirely based on this kind on models. Of course, (2) needs
to discretize a sphere around the viewing point and the space
around the end user. This kind of rendering takes from weeks to
months to be generated for any frame. Furthermore, in both cases,



we need to store and transmit this data to the end user which is
huge in both solutions. The main difference between (1) and (2)
is the polycount and the rendering which uses ray-tracing for (2).
Finally, (3) while of high quality, offers only content consisting of
head rotations and small translations (3DoF+). The photorealism
is close or higher to solution (2) [32].

DIBR [15, 45] is a technique that aims to generate novel
views of a scene using a number of fixed input images and their
corresponding depth maps. Given a novel viewpoint to generate,
DIBR displaces the colors from the input images to their new lo-
cation in accordance to the depth maps. For example, in Figure 1
we illustrate two input views with their associated depth maps
and in the center a projection of the color content in 3D. While
the two images are projected separately into the final position,
their blending results in a high quality view synthesis with little
disocclusions.

DIBR with one input image has been attempted in CPU tak-
ing several seconds to minutes to render one frame [43, 30] and
some GPU implementations exists [30, 8, 37]. However, employ-
ing only one input view as entry limits the navigability of a scene
as it lacks depth information around the main viewpoint, resulting
in a lot of disocclusions near the borders of the objects.

On the other side of the DIBR spectrum lies Light Field (LF)
rendering techniques where the plenoptic function of a scene is
sampled using a large number of imaging sensors called lenslet
arrays [48]. However, the plenoptic function is a dense function
in space, and thus acquiring a picture requires several lenses very
close to each other. By re-sampling the obtained light field from
a camera, we can reconstruct the scene from any viewpoint in the
sensor total baseline [48]. LF obtains very high quality outputs
for small scene displacements. A recent attempt from Google [32]
produced very high quality outputs in head mounted displays, but
their data processing workflow is extremely slow and needs ex-
pensive hardware to produce a very limited head movement.

All DIBR techniques are dependent on the depth quality.
Several techniques of depth estimation are used depending on the
type of input views. In practice we use a depth estimation soft-
ware for multi-view camera setups and LF, which solves the cor-
respondence problem and constructs a depth map from the input
views.

Methodology
For the sake of clarity, we develop how one input view is

warped to its final place and then we will generalize on n images
and how we achieve this exploiting the GPU parallelization. Our
procedure is described in Figure 1. First, we describe what the
needed inputs for our algorithm are, how to project the textures to
their final position and finally how to blend them.

An input view in DIBR refers to a texture (the image cap-
tured by a camera) and a depth map with its calibration data.
Usually, for natural scenes, we only have access to the textures
datasets without proper calibration data (Section Calibration).

To synthesize novel views, DIBR uses the depth information
and the calibration parameters to displace the colored pixels in 3D
to a virtual position. Given an input and the virtual pose, we warp
the colors of the texture to their final position by mathematically
projecting and unprojecting them using the extrinsic matrices and
the depth map.

Mapping each color pixel to its final destination results in a

sparse colored point cloud. To avoid meshing the point cloud -
for example with Poisson reconstruction [20], which is extremely
compute intensive- the input texture is directly meshed by build-
ing triangles between adjacent pixels, interpreted as vertices in
space thanks to their depth information. By continuous deforma-
tion, those triangles are warped during the projection and unpro-
jection step. We then leverage the OpenGL rasterization to fill
them by interpolating between the colors. This method avoids oc-
clusions and is essentially cost free. However, interfaces between
objects give elongated triangles due to the high depth variation.
In the blending procedure, we discard those elongated triangles
(Figure 6(a)), resulting in more pleasing images as in Figure 6(b).
In Fig. 2(b) bottom center image, we observe the discarded tri-
angles as a hole in the chair. This last step avoids to mesh the
3D point cloud, and inpaints the smallest disocclusions. Further-
more, this step is done in the vertex shader, avoiding unnecessary,
per fragment, computations.

When all the views are synthesized in their final position, we
blend them together by averaging them. Depending on which in-
put views are used, several unavoidable disocclusions can appear
as in Fig. 2(b) bottom right, where the information was simply
missing over all the input views. But, in average, a lot of disoc-
clusions are filled. We observe some blending defects in small
regions such as in Fig. 2(b) bottom left.

The blending takes part in two specialized Framebuffer Ob-
jects (FBO) that are in charge of accumulating the colors. The
first FBO stores the current generated view, while the second FBO
stores the blended views. We use these two FBO as ping-pong
buffers to limit the memory usage.

To render in 3D, the HMD pose is used to generate two vir-
tual camera views approximately 6 cm apart for the two eyes of
the user.

The number of input views matters to avoid disocclusions,
however, for planar datasets, where every image is in the same
plane, adding novel views does not improve these disocclusions.
We noted that taking 4 input views around the HMD position
gives good results without slowing down the process. This is ob-
viously dependent on the dataset. In the first row of Figure 2,
three different viewpoints of a scene generated from only 4 cam-
eras can be observed. In the second row, several disocclusions can
be observed.

Depth Maps
The quality of the depth maps directly impacts the final syn-

thesized image. 3D content offers automatically depth maps as-
sociated with any frame. This luxury does not exist in natural
scenes. Depending on the texture acquisition, several techniques
are used to obtain good quality depth maps. We can distinguish,
RGB cameras, Active Depth acquisition sensors and Light-Field
Imagery.

For RGB captured images, we do not have any information
about the depth; for planar and linear camera arrangements sev-
eral Stereo-matching techniques exists and are commonly used.
While they are often slow, they offer high quality outputs. They
consist in solving the corresponding problem between every two
input views and proceeding with a global non-parallelizable opti-
mization step [24, 40].

For cameras in a general position, we can find features in
the images and match them to estimate the cameras relative po-



Figure 2. Classroom dataset. Top row: Synthesized views using 4 input views and rotating around a central point in the scene. Bottom row: Zoomed in details

of a bad blending (hardly visible at full scale), a small disocclusion and a full disocclusion. All three problems are due to missing information (i.e. information not

captured by any camera).

sition and rotation. Then the images are projected to a common
projection plane to run a stereo matching algorithm between the
rectified views.

Active sensing cameras (such as Microsoft Kinect [49]) use
structured light, random light pattern matching, or Time-of-Flight
technologies to obtain the depth map associated with the image.
Those RGB-D cameras generate accurate depth maps for the im-
age. However, the depth sensor is usually not aligned with the
RGB sensor and the output resolution is often far less than the
RGB resolution. Depth scaling and inpainting need to be per-
formed to obtain high quality images as in [41].

For Light-Field imagery (Lytro), we obtain a sample of the
plenoptic function at a given time. By resampling it, we can gen-
erate multiple input views with different small baselines for static
scenery. When we obtain those sampled views, they are in a 2D
plane, and the problem reduces to stereo matching in any direc-
tion. Several new methods use multiple light field cameras to do
multi-scale stereo matching [39, 38].

In the present paper, we mainly used DERS [47], the
Depth Estimation Reference Software from the MPEG commu-
nity, which performs depth estimation with 4 input views in any
spatial pose. DERS has advanced features such as a Graph-Cut
optimization to refine the depth maps and temporal enhancement
to speed up the computations by using multiple frames in dynamic
content. We also used RDE (Reference Depth Estimation) soft-
ware [40], the novel version of DERS which extends it by taking
any number of input views.

Results and Discussion
Experiments were done on a PC with Intel Xeon E5-

2680@2.7GHz CPU and NVIDIA GTX 1080TI GPU, follow-

ing natural head movements on a Oculus Rift HMD, as shown
in Figure 4 for the heads movements of Figure 3. We achieve 90
FPS real-time performance for 6DoF stereoscopic VR with DIBR
based on 4 full-HD reference views. Each frame consists of two
rendering passes, one for each eye; the maximum time per frame
being 5 ms.

Several datasets were used to have a representative land-
scape. 3D content with perfect depth maps (eg: Classroom), real
scenery with Kinect depth map (eg: ULB Unicorn) and stereo-
matching estimated depth maps (eg: ULB BabyUnicorn) were
used. A review of the different datasets is out of the scope of this
paper and can be found in [41].

Moreover, care has been taken to obtain robustness against
depth errors by using the Poznan Depth Refinement tool
(PDR) [10, 6]. Resulting depth maps are shown in Figure 3. For
instance, for a scene at 1.5 m distance, we use a color camera ar-
ray with optical axes separation of 20 x 30 cm. 2x2 depth maps
are estimated, cf. Figure 3(a); they are clearly imperfect. Never-
theless, with RaViS we obtain the high-quality synthesized virtual
view of Figure 3(b), corresponding to the central position in the
2x2 camera plane; a video can be found on [5]. A video demo,
corresponding to Figure 3(c) using RaViS, can be found in [4].

The position of the head can be retrieved in real-time as
shown in the pose trace of Figure 4 where a selected trajectory
was designed in order to analyze the output views during various
natural user movements.

Technicalities
Software

The software is coded in C++11 using OpenCV [31] to han-
dle the textures and depth map images. Custom code is made in



Figure 3. (a) 4×4 depth maps, (b) synthesized virtual view with DIBR/RaViS, (c) real-time, image-based 6DoF VR

Figure 4. Pose traces when wearing an Oculus Rift HMD corresponding to

Figure 3. The three colors correspond to the three phases of the navigation:

left-right movements, forward movements and left-right movements closer to

the scene.

Figure 5. Unicorn dataset. All the synthesized views use 4 inputs. From

left to right: VSRS, real image, our method described in this paper. The loss

of quality comes from the depth map quality. In Figure 7(b) we can observe

our results with better depth maps extracted from 8 input views.

order to load any YUV format file and a custom Json parser is
used to parse the configuration files. An example of configuration
files can be found in Section Calibration. While there are many
commercially available HMDs, we wanted to focus on HTC Vive
and Oculus Rift as they are two of the most popular headsets. To
interact with the HMD, we needed to choose between OSVR [35]
an open-source solution for virtual reality and OpenVR [44] a
closed-source library from Valve. At the time, OSVR was not
advanced enough and several major bugs existed. OpenVR was
therefore chosen.Our view synthesis method is refactored in the
new MPEG-I standard, MIV.

File compression
Historically, MPEG uses YUV file format with 4:2:0 chroma

subsampling for static and dynamic content. A YUV file stores
images in one lumina channel (Y) and two subsampled chromina
channels (UV). Depending on the subformat, the chroma channels
can be scaled down as they convey less visual information. This
format is easy to parse but has no compression at all. As the
limiting factor is the size of the VRAM, the number of loaded
textures and depth in RaViS is limited by their total size. One
1920×1080 frame in a YUV420p8le format takes 1920×1080×
(1+1/2×2)×8bits ≈ 4MB without depending on the content of
the image.

In RaViS, static content is loaded in YUV or PNG file for-
mat indifferently while dynamic content (texture and depth) is en-
coded with a H.256 codec in a pre-processing step, yielding a high
compression and input views with small video bitstreams. Each
time the movie is read, the different input views are decoded in
real time exploiting the CUDA decoders of the GPU [29].

In the standardization process, MPEG will exploit the redun-
dant information of the textures and depth maps in the different
input views to generate texture atlases in YUV format, which will
be smaller than all the views coded independently. Furthermore,
for more than one frame content, they can exploit the information
from previous frames to compress the information similarly to the
H.256 codec. Further details can be found in [25].

Conclusion
We presented here a real-time view synthesis software deliv-

ering 90 FPS using three to four input views in a head mounted
display. The strongest points are its ability to synthesize virtual
views from a minimal set of lightweight (small filesize/bitstream)
input views. The depth estimation needs to be improved, but sev-
eral approaches give already good results depending on the acqui-
sition technology used. Its adoption by the MPEG-I community
shows a sustained interest on this kind of technologies. Several
improvements still require our attention, such as, further com-



(a) (b)

Figure 6. Museum dataset, 4 blended input views. (a) Without discarding the elongated triangles. (b) Discarding the triangles results in few disocclusions

depending on the input cameras’ pose. Deep black regions are disocclusions that are not covered by any input camera view and are left unpainted.

(a)

Figure 7. View synthesis in HMD resolution from 8 input views. Dataset:

ULB Unicorn.

pression to transmit the data over internet and better handling of
occlusions.

Annexes
Calibration

Calibration data is divided in intrinsic and extrinsic matri-
ces. While intrinsic values depend on the camera (focal, central
point), extrinsic ones depend on the pose of the camera in the
scene (rotation, translation). The extrinsic matrix contains 12 val-
ues that need to be estimated. The pose estimation problem is
well known [19, 26]. For small datasets, classical OpenCV cali-
bration algorithms are used, while with large datasets, photogram-
metry [36] can be used to obtain good estimated parameters by
refining the values using all the images in the dataset. In section
Depth Maps we discuss how depth maps can be computed using
the textures.

File Formats

A unified file format is designed in order to select which are
the input files, where to find the files and which view needs to
be synthesized. The format is described in [23]. An example is
shown in Figure 8 and its associated cameras file in Figure 9.
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1 {
2 "Version": "2.0",

3 "InputCameraParameterFile":

4 "./ cameras.json",

5 "VirtualCameraParameterFile":

6 "./ cameras.json",

7 "InputCameraNames": [

8 "cam_name_01",

9 "cam_name_02",

10 ...

11 ],

12 "VirtualCameraNames": ["cam_name_XY"],

13 "ViewImageNames": [

14 "./ dataset/texture_000001.yuv",

15 "./ dataset/texture_000002.yuv",

16 ...

17 ],

18 "DepthMapNames": [

19 "./ dataset/depth_000001.yuv",

20 "./ dataset/depth_000002.yuv",

21 ...

22 ],

23 "OutputFiles": [

24 "Texture_out_cam_0000XY.png"

25 ],

26 "StartFrame": 0,

27 "NumberOfFrames": 1,

28 "Precision": 2.0,

29 "ColorSpace": "RGB",

30 "ViewSynthesisMethod": "Triangles",

31 "BlendingMethod": "Multispectral",

32 "BlendingLowFreqFactor": 1.0,

33 "BlendingHighFreqFactor": 4.0

34 }

Figure 8. experiment.json, a configuration for an experiment.

1 {
2 "Version": "1.0",

3 "cameras": [{
4 "Name": "cam_name",

5 "Position": [px, py, pz],

6 "Rotation": [Rx, Ry, Rz],

7 "Depth_range": [650, 1550],

8 "Resolution": [1920, 1080],

9 "Projection": "Perspective",

10 "Focal": [fx, fy],

11 "Principle_point":

12 [pp_x, pp_y],

13 "BitDepthColor": 8,

14 "BitDepthDepth": 16,

15 "ColorSpace": "YUV420",

16 "DepthColorSpace": "YUV400"

17 },
18 {...}]
19 }

Figure 9. cameras.json, pose and format of all cameras in a dataset
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