
RaViS: Real-time accelerated View Synthesizer for immersive
video 6DoF VR
Daniele Bonatto, Sarah Fachada, Gauthier Lafruit
Laboratory of Image Synthesis and Analysis, Université Libre de Bruxelles; Brussels, Belgium

Abstract
MPEG-I, the upcoming standard for immersive video, has

steadily explored immersive video technology for free navigation
applications, where any virtual viewpoint to the scene is created
using Depth Image-Based Rendering (DIBR) from any number
of stationary cameras positioned around the scene. This explo-
ration has recently evolved towards a rendering pipeline using
camera feeds, as well as a standard file format, containing all
information for synthesizing a virtual viewpoint to a scene. We
present an acceleration of our Reference View Synthesis software
(RVS) that enables the rendering in real-time of novel views in a
head mounted display, hence supporting virtual reality (VR) with
6 Degrees of Freedom (6DoF) including motion parallax within
a restricted viewing volume. In this paper, we explain its main
engineering challenges.

Introduction
In the domain of Virtual Reality (VR) free navigation, there

exists a continuum of approaches as proposed by the Milgram
scale [27], exposing two extremes: on one hand, the explicit 3D
polygonal model approach, typically used in 3D games, and on
the other hand, the image-based approach, with 360 video as a
typical representative. The former provides full 6 Degrees of
Freedom (6DoF) navigation, while the latter is restricted to ro-
tational head movements (3DoF). An intermediate approach con-
sists of allowing 6DoF in a restricted volume, aka 3DoF+, by us-
ing Depth Image-Based Rendering (DIBR) [15].

DIBR is a topic of interest in the MPEG-I (“I”=Immersive)
video activities of the worldwide MPEG standardization commit-
tee since a couple of years, seeking to find solutions for immer-
sive video in head mounted displays, without the need of fully
describing the scene geometrically with polygonal 3D primitives.
In particular, for natural scenery, such explicit 3D model would be
too difficult to generate, inevitably resulting in an uncanny valley
effect with little cinematic quality.

Historically, the MPEG-I video expert group has first devel-
oped VSRS (View Synthesis Reference Software) [43] and asso-
ciated depth estimation DERS (Depth Estimation Reference Soft-
ware) [47], and in early 2019 a new Reference View Synthesizer
(RVS) [12, 14] was developed (quality gains of RVS over VSRS
can be found in [13]), which is a fundamental ingredient (besides
of the compression add-ons) of the upcoming MPEG-I video stan-
dard, to be released in 2020 [25], aka MIV: Metadata for Immer-
sive Video.

In this paper we present our real-time GPU implementation
of RVS, aka RaViS: Real-time accelerated View Synthesizer.

Thanks to RaViS’ real-time performances, we support
image-based 6DoF VR experiences with DIBR without any ex-

Figure 1. DIBR representation. The input images and their corresponding

depth maps are used to render a new image anywhere in 3D space.

plicit 3D modelling of the scene and objects. As such, we avoid
the uncanny valley effect for natural content 6DoF VR. Moreover,
we enable the creation of 3D cinematic quality content using only
a small amount of RGB pictures.

By closing this gap, we enable users to capture scenes with
standard cameras and explore their virtual copies in real-time.

Related Work
Various rendering methods exist for virtual reality. On

one side, we can explore 360 degrees videos content in HMD.
While reaching cinematic quality, this kind of content prevents the
movement of a user in 6 Degrees-of-Freedom (6DoF) supporting
only head rotations, therefore disrupting the VR experience. On
the other side, we have 3D content requiring artistic knowledge
and work to generate it. This content feels synthetic in VR and
comes in three flavours:

1) Game engines, for example, Unity [46], and Unreal En-
gine 4 [11] are able to render simple to medium complex geome-
tries in real-time. 2) High quality content similar to cinematic
content can be generated using 3D modelling software such as
Blender [3] by generating a scene in a cube around the user at
each viewpoint in every direction on a S2 sphere [28]. 3) Light-
fields solutions use a special kind of cameras which can capture a
scene from a large amount of small camera sensors, for example
the Lytro camera [34], offering native novel views.

In (1), we can use techniques such as photogrammetry [36,
33] to obtain high quality 3D objects that mimic reality without
the need for 3D artist to build them. They often consist in a very
high number of polygons (polycount) which prevent real-time for
scenes entirely based on this kind on models. Of course, (2) needs
to discretize a sphere around the viewing point and the space
around the end user. This kind of rendering takes from weeks to
months to be generated for any frame. Furthermore, in both cases,



we need to store and transmit this data to the end user which is
huge in both solutions. The main difference between (1) and (2)
is the polycount and the rendering which uses ray-tracing for (2).
Finally, (3) while of high quality, offers only content consisting of
head rotations and small translations (3DoF+). The photorealism
is close or higher to solution (2) [32].

DIBR [15, 45] is a technique that aims to generate novel
views of a scene using a number of fixed input images and their
corresponding depth maps. Given a novel viewpoint to generate,
DIBR displaces the colors from the input images to their new lo-
cation in accordance to the depth maps. For example, in Figure 1
we illustrate two input views with their associated depth maps
and in the center a projection of the color content in 3D. While
the two images are projected separately into the final position,
their blending results in a high quality view synthesis with little
disocclusions.

DIBR with one input image has been attempted in CPU tak-
ing several seconds to minutes to render one frame [43, 30] and
some GPU implementations exists [30, 8, 37]. However, employ-
ing only one input view as entry limits the navigability of a scene
as it lacks depth information around the main viewpoint, resulting
in a lot of disocclusions near the borders of the objects.

On the other side of the DIBR spectrum lies Light Field (LF)
rendering techniques where the plenoptic function of a scene is
sampled using a large number of imaging sensors called lenslet
arrays [48]. However, the plenoptic function is a dense function
in space, and thus acquiring a picture requires several lenses very
close to each other. By re-sampling the obtained light field from
a camera, we can reconstruct the scene from any viewpoint in the
sensor total baseline [48]. LF obtains very high quality outputs
for small scene displacements. A recent attempt from Google [32]
produced very high quality outputs in head mounted displays, but
their data processing workflow is extremely slow and needs ex-
pensive hardware to produce a very limited head movement.

All DIBR techniques are dependent on the depth quality.
Several techniques of depth estimation are used depending on the
type of input views. In practice we use a depth estimation soft-
ware for multi-view camera setups and LF, which solves the cor-
respondence problem and constructs a depth map from the input
views.

Methodology
For the sake of clarity, we develop how one input view is

warped to its final place and then we will generalize on n images
and how we achieve this exploiting the GPU parallelization. Our
procedure is described in Figure 1. First, we describe what the
needed inputs for our algorithm are, how to project the textures to
their final position and finally how to blend them.

An input view in DIBR refers to a texture (the image cap-
tured by a camera) and a depth map with its calibration data.
Usually, for natural scenes, we only have access to the textures
datasets without proper calibration data (Section Calibration).

To synthesize novel views, DIBR uses the depth information
and the calibration parameters to displace the colored pixels in 3D
to a virtual position. Given an input and the virtual pose, we warp
the colors of the texture to their final position by mathematically
projecting and unprojecting them using the extrinsic matrices and
the depth map.

Mapping each color pixel to its final destination results in a

sparse colored point cloud. To avoid meshing the point cloud -
for example with Poisson reconstruction [20], which is extremely
compute intensive- the input texture is directly meshed by build-
ing triangles between adjacent pixels, interpreted as vertices in
space thanks to their depth information. By continuous deforma-
tion, those triangles are warped during the projection and unpro-
jection step. We then leverage the OpenGL rasterization to fill
them by interpolating between the colors. This method avoids oc-
clusions and is essentially cost free. However, interfaces between
objects give elongated triangles due to the high depth variation.
In the blending procedure, we discard those elongated triangles
(Figure 6(a)), resulting in more pleasing images as in Figure 6(b).
In Fig. 2(b) bottom center image, we observe the discarded tri-
angles as a hole in the chair. This last step avoids to mesh the
3D point cloud, and inpaints the smallest disocclusions. Further-
more, this step is done in the vertex shader, avoiding unnecessary,
per fragment, computations.

When all the views are synthesized in their final position, we
blend them together by averaging them. Depending on which in-
put views are used, several unavoidable disocclusions can appear
as in Fig. 2(b) bottom right, where the information was simply
missing over all the input views. But, in average, a lot of disoc-
clusions are filled. We observe some blending defects in small
regions such as in Fig. 2(b) bottom left.

The blending takes part in two specialized Framebuffer Ob-
jects (FBO) that are in charge of accumulating the colors. The
first FBO stores the current generated view, while the second FBO
stores the blended views. We use these two FBO as ping-pong
buffers to limit the memory usage.

To render in 3D, the HMD pose is used to generate two vir-
tual camera views approximately 6 cm apart for the two eyes of
the user.

The number of input views matters to avoid disocclusions,
however, for planar datasets, where every image is in the same
plane, adding novel views does not improve these disocclusions.
We noted that taking 4 input views around the HMD position
gives good results without slowing down the process. This is ob-
viously dependent on the dataset. In the first row of Figure 2,
three different viewpoints of a scene generated from only 4 cam-
eras can be observed. In the second row, several disocclusions can
be observed.

Depth Maps
The quality of the depth maps directly impacts the final syn-

thesized image. 3D content offers automatically depth maps as-
sociated with any frame. This luxury does not exist in natural
scenes. Depending on the texture acquisition, several techniques
are used to obtain good quality depth maps. We can distinguish,
RGB cameras, Active Depth acquisition sensors and Light-Field
Imagery.

For RGB captured images, we do not have any information
about the depth; for planar and linear camera arrangements sev-
eral Stereo-matching techniques exists and are commonly used.
While they are often slow, they offer high quality outputs. They
consist in solving the corresponding problem between every two
input views and proceeding with a global non-parallelizable opti-
mization step [24, 40].

For cameras in a general position, we can find features in
the images and match them to estimate the cameras relative po-



Figure 2. Classroom dataset. Top row: Synthesized views using 4 input views and rotating around a central point in the scene. Bottom row: Zoomed in details

of a bad blending (hardly visible at full scale), a small disocclusion and a full disocclusion. All three problems are due to missing information (i.e. information not

captured by any camera).

sition and rotation. Then the images are projected to a common
projection plane to run a stereo matching algorithm between the
rectified views.

Active sensing cameras (such as Microsoft Kinect [49]) use
structured light, random light pattern matching, or Time-of-Flight
technologies to obtain the depth map associated with the image.
Those RGB-D cameras generate accurate depth maps for the im-
age. However, the depth sensor is usually not aligned with the
RGB sensor and the output resolution is often far less than the
RGB resolution. Depth scaling and inpainting need to be per-
formed to obtain high quality images as in [41].

For Light-Field imagery (Lytro), we obtain a sample of the
plenoptic function at a given time. By resampling it, we can gen-
erate multiple input views with different small baselines for static
scenery. When we obtain those sampled views, they are in a 2D
plane, and the problem reduces to stereo matching in any direc-
tion. Several new methods use multiple light field cameras to do
multi-scale stereo matching [39, 38].

In the present paper, we mainly used DERS [47], the
Depth Estimation Reference Software from the MPEG commu-
nity, which performs depth estimation with 4 input views in any
spatial pose. DERS has advanced features such as a Graph-Cut
optimization to refine the depth maps and temporal enhancement
to speed up the computations by using multiple frames in dynamic
content. We also used RDE (Reference Depth Estimation) soft-
ware [40], the novel version of DERS which extends it by taking
any number of input views.

Results and Discussion
Experiments were done on a PC with Intel Xeon E5-

2680@2.7GHz CPU and NVIDIA GTX 1080TI GPU, follow-

ing natural head movements on a Oculus Rift HMD, as shown
in Figure 4 for the heads movements of Figure 3. We achieve 90
FPS real-time performance for 6DoF stereoscopic VR with DIBR
based on 4 full-HD reference views. Each frame consists of two
rendering passes, one for each eye; the maximum time per frame
being 5 ms.

Several datasets were used to have a representative land-
scape. 3D content with perfect depth maps (eg: Classroom), real
scenery with Kinect depth map (eg: ULB Unicorn) and stereo-
matching estimated depth maps (eg: ULB BabyUnicorn) were
used. A review of the different datasets is out of the scope of this
paper and can be found in [41].

Moreover, care has been taken to obtain robustness against
depth errors by using the Poznan Depth Refinement tool
(PDR) [10, 6]. Resulting depth maps are shown in Figure 3. For
instance, for a scene at 1.5 m distance, we use a color camera ar-
ray with optical axes separation of 20 x 30 cm. 2x2 depth maps
are estimated, cf. Figure 3(a); they are clearly imperfect. Never-
theless, with RaViS we obtain the high-quality synthesized virtual
view of Figure 3(b), corresponding to the central position in the
2x2 camera plane; a video can be found on [5]. A video demo,
corresponding to Figure 3(c) using RaViS, can be found in [4].

The position of the head can be retrieved in real-time as
shown in the pose trace of Figure 4 where a selected trajectory
was designed in order to analyze the output views during various
natural user movements.

Technicalities
Software

The software is coded in C++11 using OpenCV [31] to han-
dle the textures and depth map images. Custom code is made in



Figure 3. (a) 4×4 depth maps, (b) synthesized virtual view with DIBR/RaViS, (c) real-time, image-based 6DoF VR

Figure 4. Pose traces when wearing an Oculus Rift HMD corresponding to

Figure 3. The three colors correspond to the three phases of the navigation:

left-right movements, forward movements and left-right movements closer to

the scene.

Figure 5. Unicorn dataset. All the synthesized views use 4 inputs. From

left to right: VSRS, real image, our method described in this paper. The loss

of quality comes from the depth map quality. In Figure 7(b) we can observe

our results with better depth maps extracted from 8 input views.

order to load any YUV format file and a custom Json parser is
used to parse the configuration files. An example of configuration
files can be found in Section Calibration. While there are many
commercially available HMDs, we wanted to focus on HTC Vive
and Oculus Rift as they are two of the most popular headsets. To
interact with the HMD, we needed to choose between OSVR [35]
an open-source solution for virtual reality and OpenVR [44] a
closed-source library from Valve. At the time, OSVR was not
advanced enough and several major bugs existed. OpenVR was
therefore chosen.Our view synthesis method is refactored in the
new MPEG-I standard, MIV.

File compression
Historically, MPEG uses YUV file format with 4:2:0 chroma

subsampling for static and dynamic content. A YUV file stores
images in one lumina channel (Y) and two subsampled chromina
channels (UV). Depending on the subformat, the chroma channels
can be scaled down as they convey less visual information. This
format is easy to parse but has no compression at all. As the
limiting factor is the size of the VRAM, the number of loaded
textures and depth in RaViS is limited by their total size. One
1920×1080 frame in a YUV420p8le format takes 1920×1080×
(1+1/2×2)×8bits ≈ 4MB without depending on the content of
the image.

In RaViS, static content is loaded in YUV or PNG file for-
mat indifferently while dynamic content (texture and depth) is en-
coded with a H.256 codec in a pre-processing step, yielding a high
compression and input views with small video bitstreams. Each
time the movie is read, the different input views are decoded in
real time exploiting the CUDA decoders of the GPU [29].

In the standardization process, MPEG will exploit the redun-
dant information of the textures and depth maps in the different
input views to generate texture atlases in YUV format, which will
be smaller than all the views coded independently. Furthermore,
for more than one frame content, they can exploit the information
from previous frames to compress the information similarly to the
H.256 codec. Further details can be found in [25].

Conclusion
We presented here a real-time view synthesis software deliv-

ering 90 FPS using three to four input views in a head mounted
display. The strongest points are its ability to synthesize virtual
views from a minimal set of lightweight (small filesize/bitstream)
input views. The depth estimation needs to be improved, but sev-
eral approaches give already good results depending on the acqui-
sition technology used. Its adoption by the MPEG-I community
shows a sustained interest on this kind of technologies. Several
improvements still require our attention, such as, further com-



(a) (b)

Figure 6. Museum dataset, 4 blended input views. (a) Without discarding the elongated triangles. (b) Discarding the triangles results in few disocclusions

depending on the input cameras’ pose. Deep black regions are disocclusions that are not covered by any input camera view and are left unpainted.

(a)

Figure 7. View synthesis in HMD resolution from 8 input views. Dataset:

ULB Unicorn.

pression to transmit the data over internet and better handling of
occlusions.

Annexes
Calibration

Calibration data is divided in intrinsic and extrinsic matri-
ces. While intrinsic values depend on the camera (focal, central
point), extrinsic ones depend on the pose of the camera in the
scene (rotation, translation). The extrinsic matrix contains 12 val-
ues that need to be estimated. The pose estimation problem is
well known [19, 26]. For small datasets, classical OpenCV cali-
bration algorithms are used, while with large datasets, photogram-
metry [36] can be used to obtain good estimated parameters by
refining the values using all the images in the dataset. In section
Depth Maps we discuss how depth maps can be computed using
the textures.

File Formats

A unified file format is designed in order to select which are
the input files, where to find the files and which view needs to
be synthesized. The format is described in [23]. An example is
shown in Figure 8 and its associated cameras file in Figure 9.

Acknowledgements
This work uses copyrighted materials: Unicorn dataset [7]

created in the 3DLicorneA project, supported by Innoviris the
Brussels Institute for Research and Innovation Belgium, under
contract No.: 2015-DS-39a/b/c/d, 3DLicorneA. ULB BabyUni-
corn dataset [41]. Technicolor Museum, Technicolor. All rights
reserved Copyright c© 2017-2018 [9] and Classroom dataset [22].



1 {
2 "Version": "2.0",

3 "InputCameraParameterFile":

4 "./ cameras.json",

5 "VirtualCameraParameterFile":

6 "./ cameras.json",

7 "InputCameraNames": [

8 "cam_name_01",

9 "cam_name_02",

10 ...

11 ],

12 "VirtualCameraNames": ["cam_name_XY"],

13 "ViewImageNames": [

14 "./ dataset/texture_000001.yuv",

15 "./ dataset/texture_000002.yuv",

16 ...

17 ],

18 "DepthMapNames": [

19 "./ dataset/depth_000001.yuv",

20 "./ dataset/depth_000002.yuv",

21 ...

22 ],

23 "OutputFiles": [

24 "Texture_out_cam_0000XY.png"

25 ],

26 "StartFrame": 0,

27 "NumberOfFrames": 1,

28 "Precision": 2.0,

29 "ColorSpace": "RGB",

30 "ViewSynthesisMethod": "Triangles",

31 "BlendingMethod": "Multispectral",

32 "BlendingLowFreqFactor": 1.0,

33 "BlendingHighFreqFactor": 4.0

34 }

Figure 8. experiment.json, a configuration for an experiment.

1 {
2 "Version": "1.0",

3 "cameras": [{
4 "Name": "cam_name",

5 "Position": [px, py, pz],

6 "Rotation": [Rx, Ry, Rz],

7 "Depth_range": [650, 1550],

8 "Resolution": [1920, 1080],

9 "Projection": "Perspective",

10 "Focal": [fx, fy],

11 "Principle_point":

12 [pp_x, pp_y],

13 "BitDepthColor": 8,

14 "BitDepthDepth": 16,

15 "ColorSpace": "YUV420",

16 "DepthColorSpace": "YUV400"

17 },
18 {...}]
19 }

Figure 9. cameras.json, pose and format of all cameras in a dataset

References
[1] Valerie Allie, Bart Kroon, and Lu Yu. Workshop on cod-

ing technologies for immersive audio/visual experiences, July
2019. https://mpeg.chiariglione.org/about/events/workshop-coding-
technologies-immersive-audiovisual-experiences.

[2] Angelo V. Arecchi, Tahar Messadi, and R. John Koshel. Field Guide
to Illumination. SPIE, August 2007.

[3] Blender Online Community. Blender - a 3D modelling and rendering
package. Blender Foundation, Blender Institute, Amsterdam, 2019.
http://www.blender.org.

[4] Daniele Bonatto, Sarah Fachada, and Gauthier Lafruit. RaViS: Real-
time Accelerated VIew Synthesis: Depth Image-Based Rendering
(DIBR), 2019. https://dipot.ulb.ac.be/dspace/bitstream/2013/291526/
5/demo unicorn 4views 1920x1080.mp4.

[5] Daniele Bonatto, Sarah Fachada, Arnaud Schenkel, and Gauthier
Lafruit. RVS View Synthesis with view-coherent depth maps and
DIBR, 2019. https://dipot.ulb.ac.be/dspace/bitstream/2013/294240/
3/DIBR ULB LISA.zip.

[6] Daniele Bonatto, Arnaud Schenkel, and Gauthier Lafruit. [MPEG-I
Visual] View-consistent depth maps for ULB babyunicorn sequence
[m50797]. Switzerland, Geneva, October 2019.

[7] Daniele Bonatto, Arnaud Schenkel, Tim Lenertz, Yan Li, and Gau-
thier Lafruit. ULB High Density 2d/3d Camera Array data set, ver-
sion 2 [M41083]. ISO/IEC JTC1/SC29/WG11, July 2017.

[8] Roberto Gerson de Albuquerque Azevedo, Fernando Ismério, Al-
berto Barbosa Raposo, and Luiz Fernando Gomes Soares. Real-Time
Depth-Image-Based Rendering for 3dtv Using OpenCL. In George
Bebis, Richard Boyle, Bahram Parvin, Darko Koracin, Ryan McMa-
han, Jason Jerald, Hui Zhang, Steven M. Drucker, Chandra Kamb-
hamettu, Maha El Choubassi, Zhigang Deng, and Mark Carlson, ed-
itors, Advances in Visual Computing, volume 8887, pages 97–106.
Springer International Publishing, Cham, 2014.

[9] Renaud Doré, Gerard Briand, and Thierry Tapie. Technicolor 3dof-
plus Test Materials [M42349]. ISO/IEC JTC1/SC29/WG11, page 8,
April 2018.

[10] Adrian Dziembowski. Manual of depth refinement software PDR
[w18708]. Sweden, Gothenburg, July 2019.

[11] Epic Games. Unreal Engine 4, September 2019. https://www.
unrealengine.com/.

[12] Sarah Fachada, Daniele Bonatto, Arnaud Schenkel, and Gauthier
Lafruit. Depth Image-Based View Synthesis with Multiple Reference
Views for Virtual Reality. In 2018 - 3DTV-Conference: The True Vi-
sion - Capture, Transmission and Display of 3D Video (3DTV-CON),
pages 1–4, Helsinki, June 2018. IEEE.

[13] Sarah Fachada, Daniele Bonatto, Arnaud Schenkel, and Gauthier
Lafruit. Free Navigation in Natural Scenery With DIBR: RVS and
VSRS in MPEG-I Standardization. In 2018 International Conference
on 3D Immersion (IC3D), pages 1–6, Brussels, Belgium, December
2018. IEEE.

[14] Sarah Fachada, Bart Kroon, Daniele Bonatto, Bart Sonneveldt, and
Gauthier Lafruit. Reference View Synthesizer (RVS) 2.0 manual,
[N17759]. Technical report, ISO/IEC JTC1/SC29/WG11, July 2018.

[15] Christoph Fehn. Depth-image-based rendering (DIBR), compres-
sion, and transmission for a new approach on 3d-TV. In Stereoscopic
Displays and Virtual Reality Systems XI, volume 5291, pages 93–105.
International Society for Optics and Photonics, May 2004.

[16] John Flynn, Michael Broxton, Paul Debevec, Matthew DuVall, Gra-
ham Fyffe, Ryan Overbeck, Noah Snavely, and Richard Tucker.
DeepView: View Synthesis With Learned Gradient Descent. page 10,

https://mpeg.chiariglione.org/about/events/workshop-coding-technologies-immersive-audiovisual-experiences
https://mpeg.chiariglione.org/about/events/workshop-coding-technologies-immersive-audiovisual-experiences
http://www.blender.org
https://dipot.ulb.ac.be/dspace/bitstream/2013/291526/5/demo_unicorn_4views_1920x1080.mp4
https://dipot.ulb.ac.be/dspace/bitstream/2013/291526/5/demo_unicorn_4views_1920x1080.mp4
https://dipot.ulb.ac.be/dspace/bitstream/2013/294240/3/DIBR_ULB_LISA.zip
https://dipot.ulb.ac.be/dspace/bitstream/2013/294240/3/DIBR_ULB_LISA.zip
https://www.unrealengine.com/
https://www.unrealengine.com/


July 2019.
[17] John Flynn, Ivan Neulander, James Philbin, and Noah Snavely.

DeepStereo: Learning to Predict New Views from the World’s Im-
agery. arXiv:1506.06825 [cs], June 2015. arXiv: 1506.06825.

[18] Shir Gur and Lior Wolf. Single Image Depth Estimation Trained via
Depth From Defocus Cues. page 10, 2019.

[19] Richard Hartley and Andrew Zisserman. Multiple view geometry in
computer vision. 2004. OCLC: 171123855.

[20] Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. Poisson
Surface Reconstruction, 2006.

[21] Vladimir Kolmogorov and Ramin Zabih. Multi-camera Scene Re-
construction via Graph Cuts. In Proceedings of the 7th European
Conference on Computer Vision-Part III, ECCV ’02, pages 82–96,
Berlin, Heidelberg, 2002. Springer-Verlag.

[22] Bart Kroon. 3dof+ test sequence ClassroomVideo [M42415].
ISO/IEC JTC1/SC29/WG11, April 2018.

[23] Bart Kroon. Reference View Synthesizer (RVS) manual [N18068].
ISO/IEC JTC1/SC29/WG11, page 19, October 2018.

[24] Deepika Kumari, Kamaljit Kaur, and Kamaljit Kaur. A Survey on
Stereo Matching Techniques for 3d Vision in Image Processing. In-
ternational Journal of Engineering and Manufacturing, 6(4):40–49,
July 2016.

[25] Gauthier Lafruit, Daniele Bonatto, Christian Tulvan, Marius Preda,
and Lu Yu. Understanding MPEG-I Coding Standardization in Im-
mersive VR/AR Applications. SMPTE Motion Imaging Journal,
128(10):33–39, November 2019.

[26] Yi Ma. An invitation to 3-D vision: from images to geometric mod-
els. Number 26 in Interdisciplinary Applied Mathematics Imaging,
vision, and graphics. Springer, New York, NY, nachdr. edition, 2010.
OCLC: 846177902.

[27] Paul Milgram, Haruo Takemura, Akira Utsumi, and Fumio Kishino.
Augmented reality: a class of displays on the reality-virtuality con-
tinuum. pages 282–292, Boston, MA, December 1995.

[28] Nozon. Nozon, November 2019. https://www.nozon.com/.
[29] NVIDIA. NVIDIA Video Codec SDK, August 2013. https://

developer.nvidia.com/nvidia-video-codec-sdk.
[30] J Ogniewski. High-Quality Real-Time Depth-Image-Based-

Rendering. page 8, 2017.
[31] OpenCV. OpenCV - Open Source Computer Vision Library,

November 2019. https://github.com/opencv/opencv.
[32] Ryan S. Overbeck, Daniel Erickson, Daniel Evangelakos, and Paul

Debevec. Welcome to Light Fields. In ACM SIGGRAPH 2018 Vir-
tual, Augmented, and Mixed Reality, SIGGRAPH ’18, pages 32:1–
32:1, New York, NY, USA, 2018. ACM. event-place: Vancouver,
British Columbia, Canada.

[33] Quixel. Quixel Megascans Library, 2019. https://quixel.com/.
[34] Raytrix. Raytrix, 2019. https://raytrix.de/.
[35] Razer. OSVR - Open-Source Virtual Reality, 2019. http://www.

osvr.org/.
[36] RealityCapture. RealityCapture, November 2019. https://www.

capturingreality.com/.
[37] Bernhard Reinert, Johannes Kopf, Tobias Ritschel, Eduardo Cuervo,

David Chu, and Hans-Peter Seidel. Proxy-guided Image-based Ren-
dering for Mobile Devices. Computer Graphics Forum, 35(7):353–
362, October 2016.

[38] Segolene Rogge, Beerend Ceulemans, Quentin Bolsee, and Adrian
Munteanu. Multi-stereo Matching for Light Field Camera Arrays.
In 2018 26th European Signal Processing Conference (EUSIPCO),
pages 251–255, Rome, September 2018. IEEE.

[39] Segolene Rogge and Adrian Munteanu. Depth Estimation In Light
Field Camera Arrays Based On Multi-Stereo Matching and Belief
Propagation. In 2018 - 3DTV-Conference: The True Vision - Cap-
ture, Transmission and Display of 3D Video (3DTV-CON), pages 1–4,
Helsinki, June 2018. IEEE.

[40] Ségolène Rogge, Daniele Bonatto, Jaime Sancho, Rubén Salvador,
Eduardo Juarez, Adrian Munteanu, and Gauthier Lafruit. MPEG-I
Depth Estimation Reference Software. 2019 International Confer-
ence on 3D Immersion (IC3D), 2019. http://pcs2019.org/.

[41] Arnaud Schenkel, Daniele Bonatto, Sarah Fachada, Henry-Louis
Guillaume, and Gauthier Lafruit. Natural Scenes Datasets for Explo-
ration In 6dof Navigation. In 2018 International Conference on 3D
Immersion (IC3D), pages 1–8, Brussels, Belgium, December 2018.
IEEE.

[42] Bart Sonneveldt and Bart Kroon. Modify synthesizer parameters
for TMIV (Test Model for Immersive Video) [M51371]. ISO/IEC
JTC1/SC29/WG11, October 2019.

[43] Olgierd Stankiewicz, Krzysztof Wegner, Masayuki Tanimoto, and
Marek Domański. Enhanced View Synthesis Reference Soft-
ware (VSRS) for Free-viewpoint television [M31520]. ISO/IEC
JTC1/SC29/WG11, January 2013.

[44] SteamVR. OpenVR, November 2019. https://github.com/
ValveSoftware/openvr.

[45] Wenxiu Sun, Lingfeng Xu, Oscar C Au, Sung Him Chui, and
Chun Wing Kwok. An overview of free viewpoint Depth-Image-
Based Rendering (DIBR). page 8, December 2010.

[46] Unity Technologies. Unity, April 2019. https://unity.com/.
[47] Krzysztof Wegner. Software Manual DERS. page 17, 2014.
[48] Cha Zhang and Tsuhan Chen. Light field sampling. Morgan &

Claypool Publishers, San Rafael, Calif., 2006. OCLC: 80767643.
[49] Zhengyou Zhang. Microsoft Kinect Sensor and Its Effect. IEEE

MultiMedia, 19(2):4–10, April 2012.

Authors Biography
Daniele Bonatto received a computational intelligence soft-

ware engineering degree in applied sciences from the Université
Libre de Bruxelles (ULB, 2016). He is pursuing a PhD program
jointly between the ULB and the Vrije Universiteit Brussel (VUB).
He works on realtime free-viewpoint rendering of natural scenery
with sparse multicamera acquisition setups. Jointly with the Mov-
ing Picture Experts Group (MPEG), Bonatto developed the refer-
ence view synthesis software (2018) and two high-density static
and dynamic natural scene datasets.

Sarah Fachada graduated from Ecole polytechnique
(France) and Trinity College of Dublin (Ireland) in 2017, major-
ing in computer science. She is now a PhD student at Université
Libre de Bruxelles (Belgium), working on acquisition and ren-
dering in light fields and DIBR. Her work explores fields such as
rendering with non-pinhole cameras, geometric algebra applica-
tions and rendering non-lambertian objects. Jointly with MPEG,
Fachada developed the reference view synthesis software (2018)
and dynamic natural scene datasets.

Gauthier Lafruit received his Master of Engineering degree
in Electromechanics at the Free University of Brussels, Belgium,
in 1989, and his PhD in 1995 in the field of wavelet imaging.
In 1996, he joined IMEC, specializing in compression and image
analysis for space applications and broadcasting. This gradually
led him to follow standardization committees of ESA (CCSDS), as
well as audiovisual and multimedia standards in general (JPEG,

https://www.nozon.com/
https://developer.nvidia.com/nvidia-video-codec-sdk
https://developer.nvidia.com/nvidia-video-codec-sdk
https://github.com/opencv/opencv
https://quixel.com/
https://raytrix.de/
http://www.osvr.org/
http://www.osvr.org/
https://www.capturingreality.com/
https://www.capturingreality.com/
https://github.com/ValveSoftware/openvr
https://github.com/ValveSoftware/openvr
https://unity.com/


MPEG). After a year at the University of Hasselt, Belgium, he
joined in 2014 the Université Libre de Bruxelles, Belgium, where
he is currently professor in 3D imaging in all its forms: stere-
oscopy, multi-camera acquisitions, 3D video games, virtual real-
ity and digital holography.


	Abstract
	Introduction
	Related Work
	Methodology
	Depth Maps
	Results and Discussion
	Technicalities
	Software
	File compression
	Conclusion
	Annexes
	Calibration
	File Formats
	Acknowledgements
	Authors Biography

