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Vision as a Compensatory Mechanism for Disturbance Rejection in Upwind Flight 

Michael B. Reiser', J. Sean Humbert2, Mary J. Dunlop, Domitilla Del Vecchio, 
Richard M .  Murray, and Michael H. Dickinson 

Abstract-Recent experimental results demonstrate that 
Bies posses a robust tendency to orient towards the frontally- 
centered focus of the visual motion field that typically occurs 
during upwind flight. In  this paper we present a closed loop 
Right model, with a control algorithm based on feedback of 
the location of the visual focus of contraction, which is affected 
by changes in wind direction. The feasibility of visually guided 
upwind orientation is demonstrated with a model derived from 
current understanding of the biomechanics and sensorimotor 
computation of insects. The matched filter approach used to 
model the visual system computations compares extremely well 
with open-loop experimental data. 

I. INTRODUCTION 
Flies have served as a model system for neurobiological 

studies of vision and flight [l], [2], and therefore detailed 
information is immediately available for biomimetic appli- 
cations. In this paper we investigate the possibility of using 
the fly's vision system as the means of counteracting the 
effect of wind disturbances during upwind flight. To estab- 
lish the feasibility of visually-guided upwind orientation we 
have constructed a detailed closed-loop flight simulation, 
making use of current research in insect biomechanics and 
neurophysiology. 

There have been many efforts in the past to apply 
mathematical models to the flight behavior of insects. Much 
of the earlier work modeled the tracking behavior of flies 
[3], [4], [ 5 ] .  The most significant of these is the effort 
by Reichardt and Poggio [6] to rigourously model the 
orientation behavior of flies with a closed loop model. All 
of these earlier models lumped the entire sensory-input 
(visual) to motor-output (torque produced by the wings) 
pathway of the fly in a single black box. In recent years 
studies have focused on the visual processing of insects, 
revealing simple algorithms for collision avoidance based 
on estimating optic flow, a local measurement of intensity 
motion across the retina [7], [SI. This has inspired several 
robotic implementations of insect-based control systems [9],  

The work we present here is very much in the tradition of 
these earlier efforts to model tracking behavior in insects. 
We have used the improved understanding of the aerody- 
namics of insect flight [13], the force production of realistic 
wing kinematics [14], and the higher-level processing in 
the insect visual system, to 'shrink' the black boxes in 
earlier models. We seek to demonstrate that through a 
faithful model of the fly's behavior, it is possible to provide 
some context within which controlled behavioral assays can 
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be interpreted. The results presented here demonstrate the 
feasibility of visually-guided upwind orientation, and have 
yielded strong agreement with experimental results. 
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Fig. 1 shows the results of recent work [15]. In these 
experiments large-field motion stimuli were presented in 
open loop to tethered flies. Fig. 1 A-D shows the averaged 
tuming response of the flies measured from an optical 
sensor that records wing activity. Fig. 1A corresponds 
to the classic optomator response [16], in which the fly 
responds to coherent full field rotatory motion by turning 
to minimize retinal slip. The plots in B and C show the 
mean response of the fly to front and rear field rotatory 
motion. The response in A is shown to be the sum of the 
responses in B and C (red line). However, the response 
in C, clearly contradicts the predictions of the optomotor 
response, since the attempted tum is not in the direction 
that would minimize the rotatory stimuli. The response in 
D shows that the strongest response is obtained when the 
fly attempts to orient towards a contracting focus of the 
motion stimulus. This shows that the fly can detect the 
location of the visual focus of contraction (or is doing 
something functionally equivalent). The focus of contraction 
(expansion) is the point of no motion in a velocity field 
induced by pure translation, that all motion vectors point 
towards (away from). These data suggest that a control 
algorithm based on feedback of the movement of the visual 
focus of contraction could be used to detect wind direction, 
since upwind flight induces a frontally-centered focus of the 
visual motion field. 
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the weight of the insect. The translational position, T ,  and 
rotational position, 9, are defined by T = x&, + y$ and 
9 = $ E z ,  where 6, = &. x E,. The map from inertial 
coordinates, T ,  to body fixed coordinates, ~ b ,  is given by: 

) T .  

cos4 sin4 
Tb = ( -sin$ cos$ 

We assume the the insect has mass, m, rotational inertia 
about the 4 axis, J ,  and experiences applied force F= 

equations of motion under these assumptions are given by 
Fig. 2. Closed loop model used for study of upwind flight. V, is the Fz, ( t )  gccb + Fyb(t) %IS, and torque %(t )  6 .b .  The 
wind disturbance, a vector quantity. 

11. CLOSED LOOP MODEL OF UPWIND FLIGHT 
A closed loop representation of the fly’s control system 

(Fig. 2) is divided into several blocks including body 
dynamics and body aerodynamics (plant), the wing aero- 
dynamics (actuator), the vision system (sensor) and the 
sensorimotor system (controller). The function of the body 
dynamics block is to take as inputs the forces and torques 
from the wing and body aerodynamics blocks and produce 
the resultant translational and rotational motion of the insect 
body. In the body aerodynamics block the inputs are the 
wind velocity magnitude and direction, the body velocity 
and the body rotational position, and the outputs are the 
resultant aerodynamic forces on the body. The left and right 
wing kinematics are the inputs to the wing aerodynamics 
block, which outputs the resultant aerodynamic forces on 
the body due to wing motion. The function of the vision 
system block is to take as inputs the inertial translational and 
rotational velocity and output an estimate of the visual focus 
of contraction location (error). The loop is closed through 
the sensorimotor block, which generates parameterized val- 
ues for controlled wing kinematics from the estimate of the 
visual focus of contraction location. 

111. BODY DYNAMICS 
We close the loop in our model around a single axis of 

rotation. Therefore, we have restricted the dynamics of the 
insect body to planar translatory motion along a single axis 
of rotary motion (Fig. 3A). In our simulation we ignore 
out-of-plane forces, however the forces generated from our 
wing kinematic model are of the order required to balance 

A B / T i  

Newton’s second law: 

Fz6 sin 4 + Fvb cos 4 
Fzb cos Q - F,, sin $ 

. 1 [;I = [ T4 

The resultant applied force F and torque T are due to 
the aerodynamic forces on the wings and body (Section 
V). Wing motion generates unsteady lift and drag, which 
is well-approximated with a quasi-steady model. The body 
aerodynamic forces result from the relative velocity of the 
body with respect to the free stream (wind), and the drag 
associated with rotation of the body about the 2 axis: 

Fz, ( t )  = FAeYe,..,(t) + Fwind.za(t) 
Fyb(t) = FAem,yb(t) + FWind,ya(t) 
T$(t) = TAero(t) - c$(t). 

Fry and coworkers (2003) measured the rotational inertia, 
J ,  and damping, C, about the morphological yaw axis 
(normal to the insect body). As we intend to use the 
functional axis of rotation (Fig. 3A) for this simulation, 
we assume that the differences in these constants about the 
two axes are negligible. 

In order to characterize the aerodynamic forces on the 
insect body during flight, we analyzed data from experi- 
ments performed with Robofly, a dynamically-scaled phys- 
ical model of a flapping insect. An insect-shaped body was 
subjected to a range of forward velocities in an oil tank at 
various angles of attack, with the resultant forces recorded 
and reduced to parallel and n o m 1  force coefficients (Fig. 
3C). The size of the body was scaled so that the Reynolds 

C 

Fig. 3. (A) Insect coordinate M e s  showing body forces and torques: (E) Force directions acting an the insect body; (C) Force coefficients for parallel 
and normal aerodynamic forces. 
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Fig. 4. Two representations of the visual system modeling. Fig. (A) shows a schematic diagram of the retina and the motion proeessing and matched 
filter circuitry A typical EMD response is also shown. Fig. (B) shows the operations of the matched filter on the velocity field ve~tor. The filter is 
minimally responsive to the upwind flight profile of local velocities. The filtering process is a projection (dot product). The data superimposed on !he 
filter result is excerpted fmm Tammero el 01, [IS], showing the open loop turning response of Dmsophilo to the location of the focus of expansion. 
This simple model of open-loop visual response agrees well with data from tethered Dmsophilo. 

number (Re  % 200) matches what a typical insect sees 
during nominal flight (0.1 - 0.3 m/s) .  

The relative velocity of the insect with respect to the air 
(Fig. 3B) is determined by the wind direction and magni- 
tude, the body velocity, and the orientation (all specified 
in inertial coordinates): V,,! = Vwuind - i.. Since the 
aerodynamic forces will be computed in the body frame, 
we need the relative velocity in body coordinates: 

( z:::;: ) = ( -sin$ 2; ) ( vTel,u ) ' cos 4 K d , Z  

The magnitude and phase in body coordinates is then 

I K=l* I = dV&, + vA.sb 
LV,,t, = atan2 (v,,~,,,, Ke~,zb) .  

Now we can compute the resultant aerodynamic forces: 
1 

1 
FWind,za = 2PA I Vet, I* C P ( L K d b )  

FWind,yb = 5PA 1 Vretb 1' C N ( L & ~ ) ,  

where p is the density of air, A is the projected cross- 
sectional area of the insect, I V,.,, I and LV,.t, are 
the magnitude and phase of the relative velocity in body 
coordinates, and C,, C, are the normal and parallel force 
coefficients that have been reduced from the experimental 
force data. 

IV. VISION SYSTEM 

Each compound eye of the Drosophila melanogaster con- 
sists of approximately 700 units, called ommatidia, arranged 
in a hexagonal array. Each ommatidium samples a round 
patch of about 5" of the visual world. The 1400 ommatidia 
can sample roughly 85% of the visual space [17]. To 
account for the experimentally observed optomotor response 
in insects, Hassenstein and Reichardt proposed a model of 
visual motion detection based on arrays of spatiotemporal 
correlation elements [18]. A local motion detector must 

theoretically consist of at least two inputs passing through 
asymmetrical channels and combined via a nonlinear el- 
ement [19]. Two of these half-detectors are combined 
(with mirror-symmetry) to form a directionally-selective 
Elementary Motion Detector (EMD). In the Hassenstein- 
Reichardt model, a temporal delay provides the asymmetry 
and multiplication is the nonlinear interaction. In the sim- 
ulation presented, the fly's retina is modeled as a circular 
array of 90 receptorIEMD units, with 4 O  spacing between 
receptors. In general, the response of an EMD is dependent 
on the visual system structure, i.e. the time delay and the 
spacing of the receptors in the retina, and also on properties 
of the visual input, such as image contrast and spatial 
frequency content. Fig. 4A shows an EMD array, as well 
as a typical response curve for an EMD corresponding to 
the environment statistics used in the presented simulations. 
It is important to note the distinction between the velocity 
field, a purely geometric object, and the optic flow field, 
which is the estimate of the velocity field experienced by a 
moving fly, as computed by the E m s .  

Krapp and Hengstenberg [20] show that the tangential 
neurons of the lobula plate in the blowfly, Calliphora, 
show strong preference to certain directions of local motion. 
Individual tangential cells receive inputs from many EMDs 
and output signals that appear tuned to estimate a particular 
feature of the optic flow field that the fly would experience 
by self-motion during flight [21], [20]. This observation 
has given rise to the idea that certain cells function as 
'matched filters' to pattems of optic flow that could di- 
rectly drive the flight control muscles. Applying these 
ideas to our simulated planar world, the optic flow field 
is a vector spanning the field of view. For flight oriented 
in the direction of the wind, there cannot be a sideslip 
component to the local velocities measured by the EMDs. 
Flies exhibit a preference for orienting towards the focus 
of contraction of the velocity field, which means they can 
only orient upwind if they are flying slower than the wind. 
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Fig. 5. The sensorimotor control system interpolates between captured wing kinematics to generate yaw torques. (A) Wing angle pameterizations far 
the robotic apparatus used 10 measure aerodynamic forces. (B) Two wing strokes captured from Drosophila in free flight and the corresponding flight 
farces measured on the robot and computed via a quasi-steady model. (C) Torque about the fly's yaw axis produced by one wing as a function of the 
control parameter. 

This suggests a simple strategy for visual wind detection- 
fly slowly and seek out foci of contraction. We designed a 
filter that is minimally responsive to the desired profile of 
local velocities (the equilibrium condition). Because these 
responses are (roughly) sinusoids, the reasonable filter is 
simply the profile itself but phase shifted by go", and 
the filtering process is the dot product of the two curves. 
This interpretation of matched filters agrees with some of 
the Lobula Plate Tangential Cells, which give cosine-like 
response to stimulation in various directions (with a peak 
in the so-called locally-preferred direction). An example of 
the filtering process and some typical velocity field vectors 
are shown in Fig. 4B. Since the EMD array produces an 
estimate of the velocity field, it is instructive to analyze the 
filtering process on the velocity field (hue optic flow): 

where w, is the instantaneous rotation, Vb is the instan- 
taneous absolute velocity in body coordinates, 0 is the 
angular coordinate in the body frame, and R is an arbitrary 
fixed distance to the environment. The matched filter is 
wfirt = cos0, and the filtering operation is a dot product, 

fields, which does not alter the fundamental shape of this 
response curve, but is not amenable to simple analysis. 

v. WING AERODYNAMICS AND SENSORIMOTOR 
CONTROL 

The flight forces generated by the simulated fly's wings 
are implemented as a quasi-steady, semi-empirical model 
(details of this model are given in Sane and Dickinson [14]). 
In general, the instantaneous force produced by a wing is the 
sum of several effects: translation, rotation, added mass, and 
other unsteady effects. All of these forces act normal to the 
wing, which rotates, translates, and deviates continuously 
throughout a single wing stroke (the parameterization of 
the wing kinematics is shown in Fig. 5A). The translational 
force is the dominant term, accounting for roughly 90% of 
the force generated by the wing. In our simulations, we 
only use the translational component of the aerodynamic 
forces. To further simplify matters, the fly is assumed to 
hover, thus operating at an advance ratio of zero. Although 
not strictly valid, the hovering model provides a reasonable 
force estimate for a fly moving slowly (advance ratios under 
0.3). Fig. 5B shows the performance of this simplified 
model in comparison to the forces measured when the 
same wing kinematics are run on the robotic model. The 
torque produced by each wing about the fly's yaw axis is 
determined directly from the force vector predicted by the 
aerodynamic model. The right and left wings often take on 
distinct wing kinematics. The net force and torque generated 
by the wings combines the contributions from right and 
left wings appropriately:  FA.^..,^, = F,,l.ft + Fz,r;ght; 

 FA.^..,^, = Fy,r.ft - Fy.right; T A . ~ ~  = Tyaw, le f t  - - 
3 yaw,right. 

where K, is the gain used in the visual system. As we 
can see in Fig. 4B, this open loop result agrees well with 
the experimental data from Tammero et al. [15]. In our 
simulation we use the EMD array's estimate of the velocity 

Wing kinematics were selected from an existing database 
of wing stroke pattems that correspond to actual insect 
kinematics (the collection of these data is detailed in Fry et 
al. [13]). We choose wing kinematics using two selection 
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Fig. b. Two equivalent representations or responses to slep changes in wind direclion are shown: [A) simulated 20 second Right lmjeclories, with fly 
positions plotted every 1.5 seconds. All trajectories stan at the origin, and the wind direction is shown in the compass. (8) Step responses in wind 
direction, showing zero steady-state error. The high frequency oscillations shown correspond to the subtle perturbations On the Ay’s instantaneous velocity 
induced by the wing stroke cycle. All measurements ace in radians. 

criteria: the force in the z direction should result in forward 
flight not exceeding velocities of 30 cmls (advance ratio 
of approximately 0.3) and yaw torques must correspond 
to realistic angular rotations. Since the model uses only 
the relatively slow visual system, it is necessary to limit 
torque about the yaw axis, effectively limiting the rate of 
angular rotation the insect experiences. The yaw torque 
requirement stipulates that the difference in torque between 
the right and left wing should be on the order of lo-” 
Nm. Two sets of wing kinematics were selected that met the 
criteria discussed above, one corresponding to low torque 
kinematics and the second to kinematics generating higher 
torque. We define a parameter, A, to span the range of wing 
stroke kinematics between the low and high torque patterns. 
The parameter X ranges smoothy between 0 and 1, defining 
a linear weighting between the two endpoint kinematics. 
Fig. 5C shows the torque about the fly’s yaw axis produced 
by one wing as a function of A. We have found that 
linearly interpolating between two sets of kinematics gives 
a smooth transition between the forces produced by these 
endpoint kinematics. In our simulation we refer to the 
sensorimotor block as thc control system that couples the 
sensory information from the visual system to the flight 
muscles. This system takes the error from the visual system 
as an input and generates the control values for each wing: 

where k is the control system gain, and Ic-,,ol(e,) is an 
indicator function whose value is 1 when e, E (-m,O], 
and 0 otherwise. Furthermore, e ,  is restricted to the range 
[-I , 11 to ensure that XR and XL are in the ‘iange [a , I]. 

A R  = 1 - klevl~~o,m)(eu) ,  and X L  = 1 - ~ l ~ u l ~ ( - m , a ~ ( e u ) ,  

VI. RESULTS 

The stated goal of the project is to modulate upwind 
flight, and so our controller sets the torque about the fly’s 
yaw axis, To test the ability of the closed loop system to 
orient the fly in the upwind direction, we presented ‘step 
inputs’ to the control system, where the fly was given an 
initial velocity and orientation and the wind was set at a 
fixed magnitude and direction. In the experiments presented, 
the fly’s initial orientation is set in the positive z (forward) 
direction, with some small (0.1 mls) velocity in the same 
direction. The wind magnimde is set at 0.4 mls, which 
is always faster than anything the fly could achieve. Five 
different wind directions are then introduced. 

Two equivalent ways of displaying the results are shown 
in Fig. 6. In each plot ofFig. 6B, the dashed horizontal line 
shows the wind direction set point; the solid horizontal line 
shows the desired body orientation angle for upwind flight; 
the solid trace corresponds to the orientation of the inertial 
reference frame velocity; the dashed trace corresponds to 
the body orientation angle. The numbered markers on the 
right side of each response plot correspond to the numbered 
trajectories and wind directions in Fig. 6A. It is clear from 
both representations of the step responses that the tracking 
works, in the sense that the steady state error is driven to 
zero, resulting in upwind orientation. 

From the step response and frequency response data (Fig. 
7) it is clear that the closed loop system is stable. Stability 
of this system corresponds to orientation upwind, evidenced 
by the zero steady state error in the step response plots. Cast 
as a tracking problem, the tracking error is the amount of 
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Fig. 7. Closed Imp frequency response. (A) Time domain response to a small signal disturbance of fixed frequency. (B) Small signal frequency response 
to disturbances in wind heading for several wind magnitudes. 

sideslip the fly experiences, which is the difference between 
the inertial velocity orientation and the orientation of the 
fly’s body (these are the two step responses plotted in Fig. 
6) .  For (backwards) upwind flight this difference should be 
T, which is achieved at steady state, so the tracking error 
is zero. Interpreting the frequency response data shown in 
Fig. 7 in terms of tracking the mean wind direction, we 
can see the system is insensitive to disturbances, except at 
very low (less than 0.01 Hz) frequencies. Furthermore, the 
frequency response is not significantly affected by changing 
wind speeds. 

VII. CONCLUSIONS 
In this project we have investigated the use of the fly’s 

vision system as a sensory modality to counteract the effect 
of wind disturbances during upwind flight. A closed loop 
insect flight simulation was conshucted based on realistic 
models of the physics and biology, demonstrating the fea- 
sibility of visually guided upwind orientation. 

Closed loop simulations show stable upwind orienta- 
tion behavior over the range of behaviorally-relevant wind 
speeds (0.4 to 1.2 d s )  and sensitivity only to very low 
frequency disturbances (0.01 Hz). The resulting open loop 
response of the visual sensory system, based on a matched 
filter approach used to model the computations performed in 
insects, agrees extremely well with open loop experimental 
data gathered from real animals [IS]. 

In future work we expect to extend this simulation to 
three dimensions and six degrees of freedom, and in- 
vestigate vision algorithms that take advantage of global 
optic flow cues. Also of immediate interest is the velocity 
control problem associated with transition from backwards 
to forward flight in the upwind direction. 
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