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Abstraef-In this paper, we describe fast implementations 
of optical flow and geometric active contours to reliably track 
flying vehicles. Given the position of the vehicle at time t - 1, 
optical flow information is used to initially place an active 
contour in the basin of attraction of a region of interest in a 
given dynamical image at time t. For real-time tracking, fast 
convergence of the active contour as wen as rapid computation 
of the optical flow are crucial. In this note, we will describe 
algorithms that make fast tracking possible in this framework 
using only standard computing platforms. 

I. INTRODUCTION 
In this paper, we consider the use of geometric active 

contours in conjunction with a fast implementation of op- 
tical flow for the problem of tracking the position of flying 
vehicles in real-time. Tracking is a basic control problem 
in which we want the output to follow or track a reference 
signal, or equivalently we want to make the tracking e m r  as 
small as possible relative to some well-defined criterion (say 
energy, power, peak value, etc.). In OUI case this amounts 
to minimizing the difference between the position of an 
object calculated by means of the active contourloptical flow 
approach and its actual position. Even though tracking in 
the presence of a disturbance is a classical control issue, the 
problem at hand is very difficult and challenging because 
of the highly uncertain nature of the disturbance. 

The problem of visual tracking differs from standard 
tracking problems in the sense that the feedback signal is 
measured using imaging sensors. In particular, it has to be 
extracted via computer vision algorithms and interpreted by 
a reasoning scheme before being used in the control loop. 
Furthermore, the response speed is a critical aspect. Conse- 
quently, from the control point of view, we have a tracking 
problem in the presence of a highly uncertain disturbance 
which we want to attenuate. Note that the uncertainty is due 
to the sensor noise (classical), the algorithmic component 
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described above (uncertainty in extracted features, likeli- 
hood of various hypotheses, etc.), and modeling uncertainty. 

The capture range of active contours is limited. To 
assure convergence to the desired image features (the flying 
vehicles) in each frame, a reasonable initial estimate of 
the contour position is thus required. We focus on using 
optical flow information (i.e. the estimated velocity on the 
contour) to obtain this initial estimate for each frame, and 
to guarantee reliable tracking. The predicted position is then 
refined by evolving the predicted contour on each individual 
image. 

The computation of optical flow has proved to be an 
important tool for problems arising in active vision. The 
optical flow field is the velocity vector field of apparent 
motion of brighmess pattems in a sequence of images, 
assumed to be the result of relative motion, large enough 
to register a change in the spatial distribution of intensities 
on the images. Note that relative motion between an object 
and a camera as well as among objects in a scene being 
imaged by a static camera can give rise to optical flow. 

In previous implementations of optical flow ideas in this 
context, one could only compute the flow in a small region 
of interest if one wanted real-time tracking. Clearly, in 
uncertain adversarial environments, it would be desirable to 
have a more global optical flow computation in initializing 
the placement of the active contour in each frame. We now 
have sufficiently fast implementations of active contours 
(based on level sets) as well as optical flow (based on 
multigrid ideas) to precisely accomplish these goals. Full 
details about the L' optical flow will appear in Alvino 
ef al. [I] which also has a complete set of references for 
related multigrid work for the computation of optical flow. 
For other approaches for using optical flow in conjunction 
with deformable contours see [2] and the references therein. 

Finally we also refer the reader to recent work of Ni- 
ethammer ef al. [3], in which truly dynamic tracking is 
performed in a level set framework, leading to a codimen- 
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sion 3 flow. 
The paper is organized follows. Section I1 gives a back- 

ground on active contours. Section I11 describes the optical 
flow computation, including classical gradient descent and 
multigrid. Section IV shows simulation results. The paper 
ends with some conclusions and suggestions for future 
work. 

11. BACKGROUND ON ACTIVE CONTOURS 

We briefly review in this section some of our work on 
snakes or active contours based on ideas from curvature 
driven flows and the calculus of variations. Snakes are 
autonomous processes which employ image coherence in 
order to track various features of interest over time. They 
fit very naturally into a control framework and indeed have 
been employed in conjunction with Kalman filtering; see 
[4] and the references therein. In particular, deformahle 
contours have the ability to conform to various object shapes 
and motions. Snakes have been used for segmentation, edge 
detection, shape modeling, and visual tracking. 

In the classical theory of deformahle contours, energy 
minimization methods are used where controlled continuity 
splines are allowed to move under the influence of exter- 
nal image dependent forces, internal forces, and certain 
constraints set by the user. As is well-known there may 
he a number of problems associated with this approach 
such as initializations, existence of multiple minima, and 
the selection of the elasticity parameters. Moreover, natural 
criteria for the splitting and merging of contours (or for the 
treatment of multiple contours for the tracking of multiple 
objects) are not readily available in this framework. 

In [ 5 ] ,  we propose an active contour model to help treat 
such problems. The underlying mathematics is based on 
the Euclidean curve shortening evolution, which defines the 
gradient direction in which a given curve is shrinking as 
fast as possible relative to Euclidean arc-length, and on the 
theory of conformal metrics. We multiply the Euclidean 
arc-length by a conformal factor defined by the features 
of interest which we want to extract, and then we compute 
the corresponding gradient evolution equations. The features 
which we want to capture therefore lie at the hottom of 
a potential well to which the initial contour will flow. 
Moreover, our model may be easily extended to extract 3D 
contours based on motion by mean curvature [5], [6]. 

The starting point of this work is [7], [8] in which an 
active contour model founded on the level set formulation of 
the Euclidean curve shortening equation is proposed. More 
precisely, the model is 

Here the function d(z, y) depends on the given image and 
is used as a "stopping term." For example, typically the 
term +(x, y) is chosen to he small near an intensity-based 
edge, and so acts to stop the evolution when the contour 

gets close to an edge. One may take [7], [8] 
1 

1 + I/VG, * Ill2' 
4 := 

where I is the (grey-scale) image and G, is a Gaussian 
(smoothing filter) filter. The function Q(z,y, t )  evolves in 
(I)  according to the associated level set flow for planar 
curve evolution in the normal direction with speed a func- 
tion of curvature which was introduced in [9] ,  [lo]. 

Our approach to active contours begins by noting that the 
curve shortening part of this evolution, namely 

is derived as a gradient flow for shrinking the perimeter 
as quickly as possible. As is explained in [7], the constant 
inflation term Y is added in (1) in order to keep the evolution 
moving in the proper direction. This part corresponds to an 
area-minimizing flow [ 111. 

Thus we will modify the model (1) in a precise manner 
dictated by lengthfarea minimizing ideas. We change the or- 
dinary arc-length function along a curve C = (z@), y@))= 
with parameter p given by 

ds = (x: + y:)'f2dp, 
to 

dsg = (x: + yi)'f2ddp, 
where $(z, y) is a positive differentiable function. Then 
we want to compute the corresponding gradient flow for 
shortening length relative to the new metric dsg. 

Hence, by introducing an artificial time parameter t for 
the curve evolution, C = (z@, t ) ,  y(p, t ) )T ,  we define 

Taking the first variation of the modified length function 
Lg, and using integration by parts (see [5 ] ) ,  we get that 

where K = IlCJl is the curvature, and 3 = :Cas denotes 
the unit normal to the curve C. The direction in which the 
Lg perimeter is shrinking as fast as possible is then given 

(4) 

This is precisely the gradient flow corresponding to the 
minimization of the length functional L+. The level set 
version of this is 

ac by 
- = ( $ K - ( v $ ' f l ) f l .  at 

One expects that this evolution should amact the contour 
very quickly to the feature which lies at the honom of the 
potential well described by the gradient flow (5). As in [7], 

3442 

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on November 17, 2009 at 12:49 from IEEE Xplore.  Restrictions apply. 



[SI, we may also add a constant inflation term, and so derive 
a modified model of (1) given by 

(This is referred to a /ength/area minimizingflow in [Ill.) 
Notice that for 4 as in (Z), V d  will look like a doublet near 
an edge. Of course, one may choose other candidates for 4 
in order to pick out other features. 

We now have very fast implementations of these snake 
algorithms based on a conjugate gradient approach applied 
to an appropriate energy functional [12]. One may also use 
level set ideas [9], [lo]. Clearly, the ability of the snakes to 
change topology, and quickly capture the desired features 
makes them a powerful tool for visual tracking algorithms. 
See [13] for more details about this. 

For multiple objects in an uncertain dynamic environ- 
ment, the problem is of course how to initially place each 
contour in a given frame at time t to make sure that it will 
flow to the desired object@). Clearly, one may need some 
other information to do this. Optical flow which provides 
an approximation of the velocity vector field is therefore a 
natural tool to include in such a scenario. The next part of 
the note is thus devoted to a very fast implementation of 
this methodology which can be used in real-time tracking. 

111. OPTICAL FLOW COMPUTATION 

We summarize here some of the key points about our new 
work on the computation of optical flow using multigrid 
ideas. In Alvino et a/. [I], we describe this in the more 
powerful context of L' based optical flow [14] which can 
track edges much better than the more classical Lz methods. 
Moreover, we also give a fully Euclidean invariant version 
of L' optical flow in this work. In this note, however, 
we suffice to describe multigrid in the classical setting. 
Multigrid methods [15], [16] have been successfully applied 
to various elliptic PDE problems including those related to 
optical flow. See [l] for a detailed set of references. Here 
we are only interested in using this tool in conjunction with 
active contours for fast tracking. 

A.  Op&/ F/OW 

Visual motion in an image sequence provides crucial 
information for object tracking. The computational aspects 
of visual motion are well understood [17]. Optical flow 
of a time-varying image sequence is the vector-valued 
function that describes the spatial direction in which image 
intensities are moving as time progresses. Beauchemin and 
Barron survey a number of ways to compute optical flow 
of a changing image [18]. Horn and Schunck described a 
cost functional that ensures the resulting vector field simul- 
taneously captures image intensity motion and is smooth 
I191. 

We recall that this functional is constructed by combining 
an optical flow constraint term, e,, with a smoothness term, 

e,. These terms are defined as 

and 

where I(x,  y, t) is the image intensity function, U and U 

are the velocity components in the x and the y directions 
respectively, and subscripts denote partial derivative with 
respect to the subscripted variable. The solution to Hom and 
Schunck's optical flow is a vector-valued function whose 
components, U(X, y) and ~ ( 2 ,  y), minimize the functional, 

(9) J(u, U )  = Xe, + e , .  

The parameter X controls tradeoff between the optical flow 
constraint and the smoothness of the vector field; lower 
values of X result in a smoother vector field. 

B. Partid Differential Equations and Gradient Descent 

The calculus of variations allows us to obtain partial dif- 
ferential equations whose solution minimizes the functional 
in equation (9). Indeed, these Euler Lagrange equations may 
be computed to be 

o = x ( i Z U  + Q + rtpZ - au (10) 
0 = X(IZu + IYv + It)I ,  - A V ,  (11) 

where A is the Laplacian operator. 
In addition to being the partial differential equations 

whose solution minimizes equation (9), a result from 
calculus of variations ensures that the right hand sides 
of equations (IO) and (11) are also infinite dimensional 
gradients which tell us the direction to perturb U and 
U respectively to most quickly maximize the functional. 
Therefore, by perturbing U and U in the direction opposite 
to this, we guarantee local decrease in the cost functional. 
Since equations (10) and (11) are elliptic second-order 
partial differential equations, we can use gradient descent 
to minimize equation (9). 

Although the previous discussion is continuous in time 
and spatial variables, this can be applied to discretely- 
sampled sequences of images, both in spatial and temporal 
variables. The spatially sampled points form a grid. This 
is convenient for implementation. To represent all spatial 
derivatives in the image interior, we use central difference 
approximations. To represent temporal derivatives, we use 
one-sided difference approximations between image frames. 
We use Neumann conditions on the boundaries of the 
images. 

The gradient descent algorithm yields new estimates 6' 
and .ir' from the old estimates, ti and .ir, by the equations, 

6' = G - 7 (X(Izu + I y U  +&)I,  - V*U) (12) 

6' = i, - (x(rZU + ryU + QI,  ~ vzU) , (13) 
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where 7 is the gradient descent perturbation parameter. For 
more details on computing optimal values for 7 based on 
the image sequence, we refer the reader to [I]. 

C. Multigrid Computation 

Gradient descent methods are inefficient at determining 
the solution to a partial differential equation when the 
discrete grid samples are fine as compared to the coarse 
scale structure of the solution. Multigrid methods are well 
known in the numerical analysis literature as being efficient 
at solving partial differential equations whose solutions have 
such smooth structure [16], [15]. Multigrid methods exploit 
the coarse scale structure of the solution by computing the 
solution on a coarser grid, where the number of computa- 
tions is smaller. 

We implemented multigrid by restructuring equa- 
tions (IO) and (11) in the form of a linear operator on U 

and U, defined by, 

cl(U, U) = x(rzU + I,V)L - AU 

cz(U, U) = x(iZU + I u V ) r u  - A ~ .  

(14) 

(15) 

Now, it is easily seen that Eqs. (10) and (11) can be 
rewritten as the vector equation, 

The multigrid algorithm is then described as follows. 
Starting out with a guess solution (6, e) ,  we use the gradient 
descent equations as described in Eqs. (12) and (13) for 
u1 iterations to refine this guess to be closer to the actual 
solution. 

We then compute the residual on the refined guess, 

Note that T is a pair of images, which are stored as values 
on an original grid. We then smooth and downsample the 
residual, P, tn obtain T,, the residual on a coarser grid. Next, 
we solve for the functions on the coarse grid, fc and gc, 
which satisfy the equation, 

where Cl, and Cz. are the coarse scale versions of the 
operators C1 and El. We then obtain corrected guesses by 
adding the refined guess solution to f and g, the interpolated 
original grid versions of fc and gc. This gives us corrected 
guesses, 

0 = S + f  (19) 
t = c + g .  (20) 

Finally, we refine (a, 6)  a final time with gradient descenl 
for U:! iterations to obtain the output of a two grid correction 
method. 

Fig. 1. 
corresponding optical flow computed with multigrid (righl). 

Image from 200 by 200 pixel rotating sphere sequence (left) and 

Since equation (18) is of the same form as equation (16), 
it should he solved with similar difficulty. However, equa- 
tion (18) exists on a coarser grid where there are less grid 
points, allowing us to solve it more efficiently with gradient 
descent. Since using gradient descent alone on the original 
grid level takes the most time to obtain the coarse scale part 
of the solution, we gain efficiency by obtaining the coarse 
scale part of the solution on the coarser grid, where there 
are less computations to be done. Optical flow using Horn 
and Schunk’s method has adequate coarse scale structure 
due to its smoothing term. 

We will now explain the logical connection of this two 
grid correction method tn multigrid correction. Note that 
since equation (18) is ofthe same form as equation (16), we 
can choose to solve equation (18) by coarsifying its residual 
and making a coarse scale correction in the same way we 
solved for the solution to the original equation. Since, this 
will result in yet another equation of the same form to 
be solved, we can implement this algorithm recursively, 
making as many coarse grid correction steps as necessary, 
until the resulting linear equation becomes easy to solve 
exactly. This, in essence, is the multigrid correction method 
as applied to optical flow. 

The values of vl and uz control how accurate the solu- 
tions will be. By virtue of uz corresponding to the final gra- 
dient descent iterations, it is generally more important than 
V I ,  as it is responsible for all of the fine scale information 
obtained after the coarse scale correction. Finally, in our 
experiments we downsampled by factors of 2 in each spatial 
dimension. For more details of the described methods, see 
[I]. 

Figure 1 shows a single image from the rotating sphere 
sequence obtained from the Computer Vision Research 
Group at the Department of Computer Science at the 
University of Otago, New Zealand. It also shows the corre- 
sponding optical flow vector field for a moderate value of 
the smoothness constant, A. The image sequence consists 
of 200 by 200 pixel images. 

Figure 2 shows a computational comparison on the ro- 
tating sphere sequence. Multigrid increased the efficiency 
significantly and in fact in our preliminary code converges 
about an order of magnitude faster than conventional gradi- 
ent descent. We believe that for larger image sequences, 
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3” L 
I”* (,amnd.l Fig. 3. 

slice temporal sequence. 
Four slices of aircrafl captured by tracking algorithm from 250 

Fig. 2. Error far gradient descent and multigrid calculation of optical 
flow on two images of the rotating sphere sequence as a function of time. 
The horizontal line signifies minimum error values. 

the savings can be greater. In this experiment, for the 
multgrid error curve, we enforced the condition ul = uz 
for simplicity although this is not necessary and slightly 
faster computation times might be reached by adjusting VI 
and vz appropriately. 

IV. SIMULATIONS 

We have tested our algorithms on some simulated aircraft 
data. We give one such example here. In Figure 3, we show 
an example of our algorithm capturing an aircraft on four 
representative slices of a 250 time-point temporal sequence 
of a “fly-by” data. We should note that the aircraft was 
automatically captured in all 250 frames. In Figure 4, we 
render the entire trajectory (time being represented as a third 
“spatial” dimension in the rendering). The flat plane-like 
structure is the rendering of the horizon (boundary of earth 
of sky.) 

v. CONCLUSIONS AND FUTURE RESEARCH 

In this note, we proposed a straightforward combination 
of active contours and optical flow for fast visual tracking. 
With fast conjugate-gradient based implementations for 
active contours and multi-grid optical flow, we have reached 
tracking speeds of ahout 30 128 x 128 frames per second 
on a standard PC. 

There are a number of other paradigms that we plan to 
test related to active contour tracking. Indeed, snakes may 
he naturally combined with Bayesian estimation in which 
the active contour serves as a prior model of the possible 
shapes and motions of the features of interest which we 
want to track 1201. Filtering then comes in by adding a 
dynamic system model to the prior and sensor models in 
this Bayesian framework. 

Fig. 4. 
flow. 

Trajectory of airplane as captured by active contours and optical 

Upon assumption of Gaussian distributions, one may ap- 
ply the Kalman filter. For multi-modal distributions, particle 
filters emerge (these are called CONDENSATlONj/fers in 
the computer vision literature; see [4] and the references 
therein). Particle filtering is a Monte Carlo methodology 
that is used for nonlinear and non-Gaussian sequential 
signal processing. These filters are based on the notion of 
factored sampling which generates a random variable from 
a distribution which approximates the posterior. This is used 
to search for objects in the image. However, this approach is 
problematic because it is still too computationally expensive 
for real-time tracking, which our flying-vehicle applications 
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demand. 1211 N. Paragios and R. Deriehe, “Geodesic active regions: a new frame- 

approach for vehicle tracking in some future work. [22] S. Haker, G. Sapiro, and A. Tannenbaum, “Knowledge-based seg- 
mentation of SAR images,” IEEE Tramactions on Image Processing, 
“01. 9, pp. 298-302, 2000. 
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