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Abstract-In this paper a family of trial-dependent update 
laws is studied and constrasted with a class of fixed update 
laws. In particular, it is investigated whether the principle nf 
equivalent feedback extends to trial-dependent update laws. It 
turns out that this is not the case. Nonetheless, it is shown that 
a well-known performance bound arising in feedback control 
architectures, Bye’s Sensitivity Integrat, also applies here. 

I. INTRODUCTION 
In two decades time, the field of Iterative Learning 

Control (ILC) has evolved from a simple idea into an 
advanced control methodology [141, [lo], [ill, [31, [121. 
Given its distinctive nature and specific application field, 
there is little reason to expect that ILC has much in common 
with mainstream control methods. However, looks can be 
deceiving. Recent publications show that at least causal 
ILC is in a very precise sense equivalent with conventional 
feedback control 171, 181, 1181, [19J 

Motivated by these results, the aim of this paper is to 
investigate some structural properties of certain types of ILC 
algorithms. The discussion includes both trjal-dependent 
and trial-independent update schemes. A recurring theme 
is that of the need for complexity. That is, given a certain 
update law, the key question is whether there exists a 
concurrent scheme of lower complexity generating the same 
control action. 

The outline of the paper is as follows. Section 2 serves 
as a general introduction to the problem of ILC. Section 3 
contains the main results. Conclusions and recommenda- 
tions are presented in Section 4, which is followed by an 
Appendix containing all the required background material 
as well as some new results that are not fit for inclusion in 
the main text. 

11. ITERATIVE LEARNING CONTROL 
A. Pmblem Statement 

Given a plant P : U 4 Y ,  y = Pu, together with some 
desired output Y d  E Y. The objective of ILC is to define 
an iteration 1201 on the space of control inputs U such that 
the corresponding sequence of outputs { Y k } k E N  converges 
to a limit value := Y k  that is close to Yd in some 
sense. 

We consider two families of iterations: trial-dependent- 
and trial-independent. The first is given in the update 
equation below. 

%k+l = @&+Lek (1) 
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Here e k  := y d  - y k  denotes the current tracking error. Q : 
U + U and L : Y + U are taken to be bounded linear 
operators acting on the current input, and current tracking 
error, respectively. 

The affine transition map F : U + U associated with 
the update law (1) is given by 

Uh+i = F ( U k )  

= (& - L P ) U k  + L y d  (2) 

Over the years, the update law (1) has received considerable 
attention [9], [IO], [161, [2], [5] .  Issues such as convergence, 
robustness and performance have been studied in detail. A 
well-known convergence result states that the sequence of 
inputs {UO,UI , .  . .) induced by the recurrence relation (2) 
converges to some 8 E U if F is contractive. The limit 
point ii being, of course, a fixed point of F .  

The second class of update laws is given as 

%k+l = Q k t i U k  + L k + l e k  (3) 
where Q k  and L k  are as above, except for the index 
“k” (indicating the trial number). For each k we define a 
transition map F k  : U 4 U 

U k + l  = F k + l ( U k )  

= ( & k t 1  - L k + I P ) % k  + L k t l Y d  (4) 

Hence, associated with every element in the class of update 
laws (3) there is an ordered set, or sequence of transition 
maps {Fi, F 2 , .  . .}. 

Under the heading of adaptive (iterative) learning control, 
trial-dependent update laws have received some attention 
[15], [13], [6], but not quite as much as their trial- 
independent counterparts. In order to establish a result on 
convergence, in the present paper the sequence { F I ,  F 2 , .  . .} 
is assumed to he (strongly) convergent. From an analysis 
perspective, this is a natural assumption, since there is little 
chance the input sequence would converge otherwise. From 
a synthesis point of view however, there is no particular 
reason why the F k ’ s  should even be treated as design 
parameters. In fact, it makes more sense to allow these 
“parameters” to be affected by the actual behaviour of the 
controlled system. That is to say, in general convergence 
cannot just be “assumes’; it needs to be proven. 

The analysis of trial-dependent update laws is subtle. 
Since F k  is not constant over trials, it does not immediately 
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make sense to reason about tixed points. It turns out, how- 
ever, that the notion of a fixed point and the corresponding 
fixed point theory can be extended to strongly converging 
sequences of operators. Details can be found in Appendix C. 

B. On complexity and equivalent feedback 
This section deals with complexity in ILC update rules. 

Now what are the compexity issues in ILC? To give an 
example, consider once more the class of trial-independent 
update laws that was previously introduced in equation (1). 
Suppose the iteration converges to some fixed point (ti, E )  E 
U x Y. It is not hard to see that the pair ( & E )  is necessarily 
a solution of the “equilibrium equation” 

( I - Q ) u  = Le (5)  

In fact, under some well-posedness conditions, it is the 
only solution. Note that the solution contains information 
about both the asymptotic performance and the control 
effort required to obtain it. Clearly, a solution cannot be 
determined a priori, since the equation contains terms 
involving the unknown plant. Now there are several ways 
to determine a solution. One is to just run the given scheme 
until it converges. Another way is to implement a feedback 
law 

U = ( I - Q ) - ’ L e  (6) 
which will yield the exact same solution without the need 
to engage in a process of iteration. In other words, the 
update law ( 1 )  allows for a direct feedback implementa- 
tion-provided all operators are causal. On top of that, it 
shows that whether the operators are causal or not, different 
operator pairs ( Q , L )  can induce the same solution pair 
(%,e). Taking the feedback control point of view, these 
correspond to different left-coprime factorizations of the 
same controller. These, and other structural properties are 
discussed in [19]. 

The bottomline is that the feedback implementation is 
much more efficient in terms of computational complexity. 
It is not hard to see that this conclusion generalizes to the 
class of trial-dependent update laws. In this case the result 
is even more striking. Having in fact an infinite number of 
design parameters, all the relevant information can still be 
condensed into essentially the same simple equation. The 
implication is clear: there is no point in exploiting update 
laws as exotic as (3) or even (1) unless it is shown that 
the complexity one resorts to is strictly necessary. That is 
to say. if the resulting control effort cannot be generated 
in another, more simple way. The moral of the story is 
twofold. First of all, it is interesting to note that despite 
the apparent differences in evolution and appearance, ILC 
and conventional feedback control have more in common 
than one used to think. Second, if ILC is to be recognized 
as a serious candidate for specific control applications, 
future research should emphasize and exploit its distinctive 
properties. It is hard to think of anything more lethal to 
ILC‘s subsistence than to prove that the same performance 

can be obtained through simpler means that obviously do 
not make use of the problem’s intrinsic repetitiveness. 

As a first step towards the goal outlined above, the next 
section introduces a class of update rules whose complexity 
appears to be irreducible. 

111. A CLASS OF NON-CONTRACTIVE, 
TRIAL-DEPENDENT UPDATE LAWS 

This section is concerned with the analysis of a subset 
of the class of trial-dependent update rules previously 
introduced in Section 11-A. The particular class of interest 
is given as 

uk+l = Uk+Lk+lek (7) 
The operators Lk : Y --* U, k = 1,2,. . . are assumed to be 
causal, bounded and linear. It is furthermore assumed that 
Lk strongly converges to zero (0“-y). 

A. Motivaiion 
Why would this specific class be potentially interesting? 

Mainly because the update rule does not suggest a direct 
feedback implementation. The question whether or not such 
a feedback implementation exists needs futher investigation, 
but in any case it is not immediate from the update d e  
itself. 

Why does this subclass need special treatment? Can it 
not he included in a general discussion on the bigger class? 
It could be, but then it would loose all its interesting 
properties. For in order to establish a result on convergence 
for the general class, it seems there is little to resort to 
other than Banach’s tixed point theorem, which requires the 
transition map, or rather: the sequence of transition maps, 
to he contractive. Fact is that this condition is not likely to 
be met in case &k = I for all k, or even if &k is merely 
assumed to converge to I. To illustrate this, rewrite (7) to 
get 

Uk+l - - Fk+l(%k) 
= (1 - Lk+Ip) %k + Lk+lYd ( 8 )  

III-Lk+lPII < 1 (9) 

Now {Fk, k 2 1) is contractive if and only if the condition 

is satisfied for (almost) all k. That is to say, only if L P  
is invertible over U ,  where L is defined as the limit L := 
linik,, Lk. There is no reason to assume that this holds for 
general L or that there even exists L for which it does. Now 
why should one care about this seemingly special case? The 
answer is that this is really the only case of interest because 
it is exactly in this case that the equivalent controller is not 
defined. This is readily observed from (6). 

By considering special subclasses, such as the one in- 
troduced in (7), specialized techniques can be deployed in 
order to establish results on convergence that do not rely 
on the contractivity of the transition map. However, this 
comes at a price. In the case of the update rule (7) with 
the conditions as stated, one readily observes that as Lk 
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tends to zero, F k  will tend to identity (1v-u). Since every 
point in the domain of an identity map is a fixed point, it 
is immediate that the fixed point is no longer unique and 
will thus depend on the initial conditions. 

E .  Convergence analysis 

Next a theorem is presented that gives conditions under 
which the class of update rules (7) converges to a bounded 
solution. It requires the notion of summable sequences. 

Definition 1; Let {Lk}  be a sequence of bounded linear 
operators. The sequence is said to be summable-in-norm if 

N 

lim X l l L k l l  < 00 (10) N-m 
k=l 

Theorem 2 (Convergence on U): Let {Lk}  be a se- 
quence of causal bounded linear operators from Y to U. 
Suppose {Lk}  is summable-in-norm. Then the sequence 
of control inputs {uk}  converges to some bounded input 
72 E U. 

Note that the assumption that L k  strongly converges to 
zero is implicit in the condition that {Lk} is summable. In 
order to prove Theorem 2, we need the following lemma. 
Lemma 3 (Convergence of an infinite product): If ai 2 

0 for all values of i, the product ng, (1 + ai) and the 
series E:=, ai converge or diverge together. 

Pmofi See [17] w 
We prove the main theorem. 

Proofi [of Theorem 21 Using induction it can be shown 
that for k 2 0  

Uk = 

Boundedness is proved term by term. Taking the first term 
out, note that 

k 

k 

Boundedness follows from the summability assumption and 
Lemma 3. The same argument applies for second term, 

k k  n (I-Li+lP)Lj+lYd 
j=O i=j+1 

where both the sum and the product converge by the 

The next example shows how the result of Theorem 2 
can be applied. Let P E R'& be a stable plant. Fork 2 1 
we define L k  := L/k*. Assume L E R?&. It is easy to 
see that { L k }  is summable 

assumption of summability (and Lemma 3). 

k=l  k=l  

= (~2/6) l lL l l  (13) 

Now Theorem 2 says that, no matter what L or P is, 
the sequence of inputs {Uk} will always converge to a 
bounded solution in 'H2. Thus, convergence does not depend 
on detailed knowledge of the plant. In fact, assuming mere 
boundedness is enough. The error ek satisfies e k  = &eo. 
where z k  is defined as z k  := &: (I - L,+~P) .  This 
tells us that the ultimate performance depends on the initial 
error eo which, in turn, depends on the initial input UO. To 
remove ambiguity, it is henceforth assumed that the initial 
input is set to zero, i.e. uo = 0. Under this assumption eo 
equals yd. The transformation 

Z := lim z k  (14) k-m 

which maps yd  onto 5 can be interpreted as an (output) 
sensitivity function. In some cases a closed form expression 
for Z can be found. As it turns out in our example 

A plot Of z ( j W )  for P = 1 / ( s T  + 1) and L = 1 is given 
in Figure 1. 

1.4 
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Fig. 1 .  
P = l/(s.r + 1) and L = 1. 

The "sensitivity function" I Z ( j w ) (  as in (15) far 

Tracking is particularly good in the low-frequency range 
(up till WT sz 1). We also observe that IZ( jw) l  < 1 for all 
W. This suggests that the intial error is never amplified. One 
may wonder whether this property is intrinsic to the class of 
update rules. But this is not so as can be seen for the case 
P = l / ( sr+ depicted in Figure 2. More generally, the 
following proposition shows that Z(s) is constrained by an 
integral relation. 

Proposition 4 (Sensitiviry integral): Assume that P E 
R'H, has a pole-zero excess greater than one and let {Lk) 
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be a summable sequence in RX,. Then Z ( 8 )  as defined 
in (14) satisfies the following integral relation 

W 

J_mloglz(jw)ldw 2 0 (16) 
Pmof: The key to the proof is Poisson’s integral 

formula 
1 rm 

where 8 = x + jy. This formula holds for all complex 
functions that are analytic in the closed right half plane and 
satisfy 

= o  IF(Rej”)l 
lim 

R-m R 
The idea is to apply this identity to the complex function 
log IZ(8)l. However, since Z(s) is allowed to bave zeroes 
in the closed right half plane (CRHP), the condition on ana- 
lyticity may not be satis&% This problem is circumvented 
by considering instead Z = B-’Z, where B is a Blaschke 
product containing all the CRHP zeroes { t i }  of 2, counted 
according to their multiplicity 

The function log(.fl is analytic in the CRHP. Applying 
Poisson’s integral formula gives 

Note that since B is inner, /ZI equals 121 along the 
imaginary axis. Hence, as 2 tends to infinity, the left hand 
side tends to the sensitivity integral. The right hand side 
can be split into two parts 

*x log I~(z ) l  = nzloglZ(x)I +nxlogJB-’(x)l 

Taking the limit, the first term on the right hand side 
vanishes under the assumption that P has pole excess 
greater than one. The second term tends to 

= 2 x R e y  
i 

2 0  

This concludes the proof. m 
The result in Theorem 4 is sometimes referred to as the 

waterbed eflecr. What it says is that if the (initial) error is 
attenuated in one region, it is amplified in another. It also 
shows that under the present conditions the error can never 
be zero over a whole frequency range, because in order to 
satisfy the sensitivity integral, it would mean that the error 
would grow unbounded in another region. 

1.41 

:i// 0.2 

I 
-10 -6 -2 2 6 10 

WT’ 

Fig. 2. 
P = l / ( s r  + 1)’ and L = 1.  

The “rensitiviry function” IZ( jw) l  as in (15) for 

C. Equivalent Feedback 
Does the update scheme (7) allow for a direct feed- 

back implementation or not? And if so, what can be said 
about the corresponding controller structure? Suppose an 
equivalent feedback controller exists and call it K .  The 
corresponding closed-loop sensitivity function is given as 
S := 1/ (1+ P K ) .  Setting S = Z and solving for K gives 

1-z K = -  
ZP 

To get an idea of what this amounts to, consider the next 
example. Take L1 = L for k = 1 and Lk = 0 for all 
other k. It is easy to verify that Z = (1 - LP). The 
equivalent controller K is given as K = L/1- LP. Using 
the theory of Youla parameterization, it can be verified that 
K is stablilizing for all L E R7-1,. It is also clear that 
in order to implement K ,  exact knowledge of the plant 
is required. It appears that this is a general property. For 
suppose that the equivalent controller would be determined 
by the design parameters Ln: only. Now let Ln: be fixed 
and v“y P over the space of all bounded linear operators. 
By Theorem 2 the input .ii and hence the error e‘ would be 
bounded for all P. But this implies that the same equivalent 
controller would have to he stabilizing for all P. There is 
but one controller for which this is true and that is the zero 
controller. From (17) it is clear that K = 0 if and only 
if Z = 1. It is also not hard to see that Z = 1 if and 
only if Ln: = 0 for all k. The conclusion is thus that the 
computational scheme (7) has irreducible complexity for all 
but one set of admissable parameter values. 

IV. CONCLUSIONS 

In this paper, a class of trial-dependent update laws 
was studied and contrasted with the more familiar class 
of fixed update rules. We argued that since ILC’s raison 
d’Btre originates from the idea of exploiting repetitiveness, 
one should look for classes of algorithms that do just that. 
That is to say, we should constrain attention to those that 
are not (obviously) equivalent with conventional feedback 
or feedfonvard architectures. One such class of algorithms 
was introduced in this paper. It was shown that for this 
class an equivalent feedback controller could not be defined 
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independent of any plant knowledge. Nonetheless, the corre- 
sponding sensitivity function was still shown to be subject to 
performance constraints similar to those arising in feedback 
architectures. 

APPENDIX 

The majority of the material in this section was taken 
from refereces [l]  and [41. 

A. Contractions and fued point theory 
Let ( X ,  d )  be a metric space. A map F : X -+ X is said 

to be Lipschirzian if there exists a constant a t 0 such that 

d(F(z) ,  F(z’)) I x’) (18) 

for all z,z’ E X. The smallest a for which (18) holds is 
said to be the Lipschitz constant for F. If L < 1 we say 
that F is a contraction, whereas if L = 1, we say that F is 
nonexpansive. 

Definition 5 (Fixed point): Given a map F : X -t X. A 
point x E X is a b e d  point of F if it satisfies F ( z )  = I .  

A map F : X + X may have more than one fixed point, 
or none at all. The following theorem gives a sufficient 
condition for F to have a unique fixed point in X, along 
with an iterative procedure to compute it. 

Theorem 6 (Banach’s Fixed Point Theorem): Let ( X ,  d )  
be a complete metric space and let F : X -+ X be a 
contraction. Then F has a unique fixed point Z E X. 
Moreover, for any x E X we have 

lim F”(x) = Z (19) n-m 

B. Operator Theory 
Henceforth it is assumed that X is a complete normed 

vector space. In addition, only mappings from X into itself 
are considered. 

Definition 7 (Linear operator): An operator F is linear 
if, for all I,Z‘ E X and all scalars a it holds that F(x + 
z‘) = F x  + Fz’, and F ( a x )  = aFz. 

Definition 8 (Afine operator): An operator F is afine if 
the associated operator Fl(z)  := F ( z )  - F(O), is linear. 

Definition 9 (Bounded linear operator): F is a bounded 
linear operator if it is linear and there exists a real number 
c such that for all I E X, JIFz1J _< cJIzJI. 
Note that every bounded linear operator is Lipschitzian. 

Definition I O  (Bounded &ne operator): Let F be an 
affine operator. F is a bounded afine operator if the 
associated linear operator Fl is bounded in the sense of 
Definition 9. 

Definition I 1  (Strong convergence): Let {F,,,n 2 1) be 
a sequence of bounded affine operators. If 

I(F,z-Fxll + 0 (20) 

as n -+ 03 for all 2 E X then we say that F,, converges 
stmngiy to F. 

In a complete vector space X, a necessary and sufficient 
condition for a sequence {F,x,n 2 l} to converge to a 

limit point in X is that the sequence is Cauchy, i.e. for any 
E > 0 there exists N E N such that for all m, n > N 

(21) 

From this it is clear that a necessary condition for the 
sequence {F,,,n > l} to converge strongly to a limit F 
is that the sequence {F,x,n 2 1) is Cauchy for every 
z E X. This fact will prove useful later on. 

C. Fixed point theory: extensions 
We present some extensions to the classical fixed point 

theory. For notational convenience we adopt the shorthand 
notation 

IlFnx - Fm~ll < E 

Definition 12 (Fixed point): Let {F,,, n 2 1) be a se- 
quence of bounded affine operators that strongly converges 
to a limit F := limn,, F, (see Definition 11). We say 
that a point x E X is a fixed point of the sequence 
of operators {F,,} if it is a fixed point of F ,  i.e. if 
limndm llF,,(x) - xJI = 0. 

Definition 13 (Contraction): Let {F,,,n 2 l} be a 
strongly converging sequence of bounded affine operators, 
and let L,  denote the Lipschitz constant of the associated 
linear operator F,(z) - F,,(O). We say that {F,,} is con- 
tractive if supn L,  < 1. 

We have the following result. 
Theorem 14: Let X be a Banach space and let {F,,, n 2 

1) be a strongly converging sequence of bounded affine 
operators on X .  Define F := limn-m F,,. Suppose IF,} 
is contractive. Then there exists a unique fixed point E E X 
such that F(3)  = Z. Furthermore, for any x E X .  we have 
that 

/ N  \ 

E = N-m lim (U F.) ( x )  (22) 

Proof: Let us prove uniqueness first. Suppose by 
n=1 

contradiction that F has two fixed points x,z’ E X and 
x # x’. Let L,, denote the Lipschitz constant of the linear 
operator ( F n ) ~ .  Observe that 

1IF.z - Fdll 5 L,  11% - 2’1) (23) 

Hence 

lim 1IF.x - F,x’ll 5 L 112 - z’11 (24) 
n-m 

where L := sup, L, < 1. On the other hand 

lIFnz - F,z’ - (Z - E ‘ ) / /  _< llF,z - 211 + IIFnz’ - ~ ’ 1 1  (25) 

implies that 

Equations (24) and (26) cannot both hold true, unless x = 
x’. But this contradicts our starting assumption. Hence we 
conclude that F has only one fixed point. 
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Next we verify that Z as defined by (22) is a fixed point 
of F.To that end, let us assume that the right hand side of 
(22) converges. Then, by definition 

N 

N-CO lim (n Fn) = N-CO lim FN ( z F n )  (27) 
,=l 

By assumption, the left hand side of (27), acting on z, 
converges to Z. The claim is that the right hand side, acting 
on 2, converges to F ( 5 ) .  This can be shown as follows. 
Take any z E X, define z, := (n:=, F,) (z), and observe 
that IIFN(~N-~) - F(3ll 

= I / F N ( ~ N - ~ )  - FN(Z)  + F N ( ~ )  - F(*)ll 
i ~ F N ( ~ N - I )  - FN(*)/I + IIFN(Z) - F(Z)l/ 
= IIFN(~N-I - %)I1 + IIFN(Z) - F(Z)11 
5 L N  112N-1 - z + /IFN(z) - F(Z)ll (28) 

Here we used the fact that FN is bounded and affine over its 
domain. Recall that LN is uniformly bounded by some L < 
1 because IFn} is contractive. As N tends to infinity both 
terms on the right hand side of (28) vanish. The first because 
by assumption Z N - ~  converges to Z and the second because 
{F,) is strongly converging. This shows that FN(ZN..I) 
tends to FZ. We conclude that Z is indeed a fixed point of 
F .  

Next we show that the sequence (n:=, F N )  (z) con- 
verges for all z E X .  To that end, take any z E X and 
define 2,  as before. Decompose the affine operator F, into 
a an affine part (F,,)a, and a linear part (Fa)( as follows: 

(29) E&) := (F,)cz + ( m a  

We arrive at the following expression for 2, 
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llznil 5 L"lizol/ + CL' A (;:: ) 
I - L "  

= L"llzoll+ (E) A (30) 

{zn} is bounded. What remains is to show that ~~zn-zn - l [~  
will tend to zero as n + 00. We have that llzn - zn-1ll 

Clearly the right hand side of (30) is bounded and hence 

= 

5 
5 

IIFn(zn-1) - Fn(zn-2) +Fn(zn-~) - Fn-12,-211 

IIFn(zn-1) - Fn(zn-z)Il+ IlFn(zn-2) - Fn-l(zn-z)ll 
L llzn-1 - zn-zIl+ l lFn(zn-~)  - Pn-1(zn-2)ll 

The second term on the right hand side vanishes as n tends 
lo infinity. This is because {F,z,n 2 I} is Cauchy for 
all z E X .  Consequently, since L < 1. )lzn - zn-l/l will 
converge zero. This compleks the proof. m 
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