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H~o Control of Differential Linear
Repetitive Processes

Wojciech Paszke, Krzysztof Gatkowski, Eric Rogers, and David H. Owens

Abstract—Repetitive processes are a distinct class of two-di-
mensional (2-D) systems (i.e., information propagation in two
independent directions) of both systems theoretic and applications
interest. They cannot be controlled by direct extension of existing
techniques from either standard [termed one-dimensional (1-D)
here] or 2-D systems theory. Here, we give new results on the
relatively open problem of the design of control laws using an H .,
setting. These results are for the sub-class of so-called differential
linear repetitive processes which arise in applications.

Index Terms—Differential repetitive processes, H., control,
linear matrix inequalities.

1. INTRODUCTION

HE ESSENTIAL unique characteristic of a repetitive

process is a series of sweeps, termed passes, through a set
of dynamics defined over a fixed finite duration known as the
pass length. On each pass, an output, termed the pass profile,
is produced which acts as a forcing function on, and hence
contributes to, the dynamics of the next pass profile. This, in
turn, leads to the unique control problem for these processes
in that the output sequence of pass profiles generated can con-
tain oscillations that increase in amplitude in the pass-to-pass
direction.

Physical examples of repetitive processes include long-wall
coal cutting and metal rolling operations (see, for example,
[10]). Also in recent years applications have arisen where
adopting a repetitive process setting for analysis has distinct
advantages over alternatives. Examples of these so-called
algorithmic applications include classes of iterative learning
control (ILC) schemes [1] and iterative algorithms for solving
nonlinear dynamic optimal control problems based on the
maximum principle [9].

The H., setting for the control related analysis of one-di-
mensional (1-D) linear systems is now a very mature area and
it is natural question to ask if such an approach can be extended
to two-dimensional (2-D) linear systems/linear repetitive pro-
cesses. In the case of 2-D discrete linear systems, some work
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on an H, approach to analysis has been reported — see, for
example, [3]. The same approach to differential linear repetitive
processes has not yet been considered, but it is clear that work in
this area should be very profitable with (possible) onward trans-
lation to, for example, the ILC area where the problem of what
is meant by robustness of such schemes is still a largely open
question.

In this paper, we first give new results on the control of dif-
ferential linear repetitive processes which formulate and solve
the fundamental problem of finding an admissible control law,
or controller, such that stability holds together with a prescribed
bound on disturbance attenuation in an H., setting. Also it
is shown that the control problem here can, in computational
terms, be solved using linear matrix inequalities (LMIs) [2].
Finally, significant new results on the robust control of these
processes are developed from this setting.

Throughout this paper, the null matrix and the identity matrix
with the required dimensions are denoted by O and I, respec-
tively. Moreover, M > 0 (> 0) denotes a real symmetric pos-
itive definite (respectively positive semi-definite) matrix, and
M < 0 denotes a real symmetric negative definite matrix. We
also use (x) to denote the transpose of matrix blocks in some of
the LMIs employed (which are required to be symmetric).

The following results are required in the proofs of some of
the results developed here, as is the well known Schur’s com-
plement formula.

Lemma 1: [7] Let X1, X5 be real matrices of appropriate
dimensions. Then for any matrix F satisfying 7 F < I and
a scalar € > 0 the following inequality holds:

YW FYe + XEFIYT < ety nT 4+ 2Ty, (1)

Lemma 2: [5] Let F be a ¢ X ¢ symmetric matrix and let P
and (@) be real matrices of dimensions s X g and h X g, respec-
tively. Then, there exists an h X s matrix G such that

F+PTGTQ+ Q"GP <0 )
if, and only if, the inequalities
NFFN, <0and NFFN, <0 ©)

both hold, where NV, € ker(P) and N, € ker(Q).

Lemma 3: [4] Suppose that the n; X 7, matrices ¥ > 0 and
I' > 0 are given and n. is a positive integer. Then, there exists
ny X n. matrices Yo, I's and n. X n. symmetric matrices X,
and I'3, such that

1
N, S %] [T I,
[EZT 23]>°a“d[23 23} ‘[Pg rg] @
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if, and only if

¥ 1
[I P]ZO- ®)

The L norm of the 7 X 1 vector sequence {wy(t) } 1 defined over
[0, 00], [0, 00] is given by

lolla = (|3 / w ()T wi (1) dt ®)
k=0"0

and {wg(t) }x is said to be a member of L5{[0, oc], [0, o]}, or
L3 for short, if ||w||2 < oo.

II. BACKGROUND

The differential linear repetitive processes considered here
are described by a state space model of the following form over
0<t<a,k>0

Epy1(t) = Azpy1(t) + Bugya(t) + Boyr(t) + Briwp1(t)
Yr+1(t) = Cxpp1(t) + Dugy1(t)+ Doy (t) + Dirwp1 ().
(7

Here on pass k, 2 (t) is the n X 1 state vector, yx(t) is the mx 1
pass profile vector, ug(t) is the [ x 1 vector of control inputs and
wy(t) is an rx 1 disturbance vector which belongs to L5.

To complete the process description, it is necessary to specify
the boundary conditions i.e., the state initial vector on each pass
and the initial pass profile (i.e., on pass 0). The simplest possible
choice for these is

Zp41(0) = dit1, k>0
Yo(t) = f(?) (8)

where the nx 1 vector dj1 has known constant entries and f(¢)
is an mx 1 vector whose entries are known functions of ¢ over
[0, a]. (For ease of presentation, we will make no further explicit
reference to the boundary conditions in this paper and assume
that in all cases dg+1 = 0 and f(¢) = 0).

The stability theory [10] for linear repetitive processes con-
sists of two distinct concepts but here it is the stronger of these
which is required. This is termed stability along the pass and (re-
call the unique control problems for these processes) is a form
of bounded-input bounded-output stability independent of the
pass length. Moreover, several equivalent sets of necessary and
sufficient conditions for processes described by (7) with no dis-
turbance terms present to have this property are known [10]. All
of these, however, have not proved to be a suitable basis for con-
trol law design to ensure stability along the pass or this property
plus a guaranteed level of performance (under some appropriate
measure). This has recently led to the development of sufficient
but not necessary design algorithms based on the use of LMIs,
see, for example, [6] where an LMI based sufficient condition
for stability along the pass of processes described by (7) with
no disturbance terms present has been developed.

Since the dynamics along the pass of the processes consid-
ered here are defined by a matrix differential equation, an H
based approach to the control of these processes cannot be ob-
tained by any existing theory for 2-D discrete linear systems,

such as in [3]. Moreover, it is routine to argue that the signals
involved in the study of these processes can be extended from
[0, a] to the infinite interval in such a way that projection of the
infinite interval solution is possible. This has been exploited in
the stability along the pass theory and here we also invoke this
property (where required).

III. H,, NORM BOUND

It is easy to see that stability along the pass of a process de-
scribed by (7) is independent of the disturbance terms. We will
also require a Lyapunov function interpretation of this property,
where the candidate function is taken to be

V(k,t) =Vi(k,t) + Va(k,t)
= w1 (D Prawea (1) + yi () Payi(t) (9
where P; > 0 and P, > 0. The associated increment is
AV (k,t) = Vi(k, t) + AVy(k, t) (10)
where
Vi(k,t) = iy (8) Prvkga (8) + @4 (8) P (t)
AVa(k, 1) = yiry1 (1) Poyr1 (t) — yi (8) Payi (t)-

Hence, (by substitution from (7) with wg41(¢) = 0) we can
write

AV (k1) =¢F (1) (EITP + PA, + AT P, A, — R) 0
=: ¢} (£)SanCi(t) (1D

where P = diag{P,0}, R = diag{0, P2}, (x(t) =
T
[2T41(t) oF(6)]" and

o)

_|A B 1, = 0 0
"Ylo o] P |C Do

It is now routine to conclude (see [6]) that stability along the
pass holds if AV (k,t) < 0. (This is based on the fact that the
matrix Sop in (11) is the so-called 2-D Lyapunov equation for
these processes and stability along the pass holds if Sop < 0.)

Definition 1: A differential linear repetitive process de-
scribed by (7) is said to have H., disturbance attenuation (or

norm) bound v > 0 if it is stable along the pass and the induced
norm between w and y is bounded by 7 i.e.,

o lle
up
0£wEL} [|w||2

12)

Theorem 1: A differential linear repetitive process described
by (7) is stable along the pass and has H, disturbance attenu-
ation bound ~ if 3 matrices P; > 0 and P> > 0 such that the
following LMI holds:

—P2 PQC P2D0 P2D11
CTP2 ATP1 + PlA PlBO P1B11

T T <0. (13)
DIP, BT P, —Py+1 0
D,ITIPQ Bﬂpl 0 —’)/2[

Proof: Introduce the associated Hamiltonian as

H(kst) = AV (k1) + 57 (Oisa () — V0l (e (1)
(14)
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and it is easily shown that H ., disturbance attenuation is equiv-
alent to
H(k,t) <O. (15)

Hence, we require that AV (k,¢) < 0 and therefore stability
along the pass must hold. Also we can write

Hk) = [0 wfaole | 91 as

where
@Z[ﬁfl’—l—l’gl—l—ZQTAREQi—LTL—R ® }
BY, P+ DT, RA, DL RDy —~21

and

§11:|:B011:|, 1311:|:D011:|7 L=[0 I]. (18

Hence, (15) can be replaced by ® < 0, and an obvious appli-
cation of the Schur’s complement formula to this last condition
gives (13) and the proof is complete. ]

IV. StaTIiC H,, CONTROL

For differential linear repetitive processes of the form consid-
ered here, one possible control law has the structure [6]

wrn(t) = K1 Ko)] ["’”f“(ﬂ (19)

yr(1)

where K and K> are appropriately dimensioned matrices to be
designed. In effect, this control law uses feedback of the cur-
rent state vector (which is assumed to be available for use) and
"feedforward’ of the previous pass profile vector. Note that in
repetitive processes the term “feedforward’ is used to describe
the case where state or pass profile information from the pre-
vious pass (or passes) is used as (part of) the input to a control
law applied on the current pass, i.e., to information which is
propagated in the pass-to-pass (k) direction.

The following result shows that the LMI setting extends to
allow the design of a control law of the form (19) to result in
stability along the pass with a prescribed H,, disturbance at-
tenuation bound.

Theorem 2: Suppose that a control law of the form (19) is
applied to a differential linear repetitive process described by
(7). Then the resulting process is stable along the pass and has
prescribed H, disturbance attenuation bound v > 0 if 3 ma-
trices W7 > 0, Wy > 0, N7 and N such that the following
LMI holds:

~W, (%) (*x) () (%)
w,CT + NI DT 921 x)  (*x) (%
WoDI+ NI DT WoBI+NIBT W, (x) (x)|<0
Di Bl 0 =T ()
0 0 Wy 0 -1
(20)

where
Q0 = Wi AT 4+ NI BT + AW, + BN;.

Also if this condition holds, the control law matrices K; and K>
are given by V; Wl_1 and NoWy~ ! respectively.

Proof: Interpreting Theorem 1 in terms of the state space
model resulting from applying (19) to (7) gives that it is stable
along the pass with prescribed H., disturbance attenuation
bound v if

-8 SA, SDyy
A,8 A P+PA, +LTL—-R PB;| <0 @)
DTS BT P —2T
where
—  [A+BK, Bo+ BK,
e

1 — 0 0
27 |C+ DK, Dy+ DK,|"

Here, S = diag{Ps, P>}, and P3 > 0 is any given matrix with
the required dimensions. Now make an obvious application of
the Schur’s complement formula to yield

-5 SA, $Dy; 0
4,8 A, P+PA, —R PB, LT
22 £ | <0. (22
DTS BLP —72I 0
0 L 0 I

Next, substitute the formulas given previously for A; and A,
into this last expression, pre- and post-multiply the result by
diag{P; ', Py Y, Pt Pyt I T} and then set Wy = Pyt
Wy = P, L, Ws = PyY, Ny = KiPPY Ny = KoPyt
Finally, noting that the result does not depend on matrix W,
leads to (20) and the proof is complete. ]

V. H,, CONTROL OF UNCERTAIN DIFFERENTIAL LINEAR
REPETITIVE PROCESSES

In this section we extend the results given in the previous sec-
tion of this paper to the case where there is uncertainty associ-
ated with the process state space model. The presence of these
uncertainties can arise from a number of sources, e.g., variation
of physical parameters over time and/or imperfect knowledge
of the process dynamics, leading to only an approximate model.
Here we aim to design the control law of the previous section
to ensure stability along the pass with a prescribed H, distur-
bance attenuation level for all admissible uncertainties.

As afirst attempt at this task, we assume that the uncertainty is
norm bounded in both the state and pass profile updating equa-
tions. This form corresponds to the case of processes where un-
certainty is modeled as an additive perturbation to the nominal
model state space matrices and can be written as

)= (16 2]+ (38 am)) )]
+ (5] *|ap))

By ADB1y
(B s o
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where the admissible uncertainties are assumed to be of the form

AA AB,

AB ABy| [H
AC AD,

AD ADy| Hz] FIE By By Ei

(24)
and Hq, Ho, Fq, 5, E3, E4 are known constant matrices of
compatible dimensions. The matrix F is unknown with constant

entries and satisfies

FTF<I. (25)

The following result gives a solution to the problem of de-
signing the control law (19) to solve the problem considered
here.

Theorem 3: Suppose that a control law of the form (19) is
applied to a differential linear repetitive process described by
(23), with uncertainty structure modeled by (24) and (25). Then,
the resulting process is stable along the pass for all admissible
uncertainties and has prescribed H, disturbance attenuation
bound v > 0 if 3 matrices W7 > 0, W5 > 0, N1 and N> and a
scalar ¢ > 0 such that the LMI shown in (26) at the bottom of
the page, holds, where

Qy = W1 AT + N'BT + AW, + BN, + 3eH H.

If (26) holds, the control law matrices K1 and K5 are given by
NW ! and NoWy 1, respectively.

Proof: First interpret (20) in terms of the state space
model resulting from application of the control law to obtain
(27) shown at the bottom of the page, where

Q3 =W AAT + NYABT + AAW, + ABN,
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where
0 Hy, Hy Hy, O
0 H Hy H;y O
H=1]0 0 0 0 O
0 0 0 0 0
0 0 0 0 0

F =diag{F,F,F,F,F}
E :diag{07E1W1 + B3Ny, EoWs + E3N27E470}.

An obvious application of (1) (Lemma 1) followed by appli-
cation of the Schur’s complement formula yields (26) and the
proof is complete. ]

VI. H,, CONTROL WITH DYNAMIC (OR PASS PROFILE)
CONTROLLER

In the control law used in the previous two sections, full ac-
cess to the current state vector has been assumed. Here, we con-
sider the application of a controller which is activated only by
the previous pass profile vector. (Note again that the pass pro-
file is the output vector of these processes and hence on any pass
the previous pass profile, unlike the current pass state vector, is
always available for use.)

The controller used in this section has the following state
space model, were due to space limitations we do not consider
the case when the process model has uncertainty in its state
space model (this follows by a routine extension of the anal-
ysis below)

Q4 :WlAT‘f'N{FBT‘l'AWl +BN1 |:$i+1(t):| _ |:Ac11 012:| |:5C o+1 (t):| |: :| yk(f)
e @) || Ae A °(t B, '
The first term in the above inequality can be rewritten as Y (V) 2 2 ?z’; ) 2
¢
Hf'E + ETf'THT (28) uk-l—l(t) = [CCI 02] |: k+1 ) :| cUk t (29)
f W 3cHoHY (%) (%) CHCHCEONCE
WiCT + NIDT + 3¢H, HY 92 (%) (x)  (x) ) ) )
W,oDT +TN2T DT WoBT +TN2T BT —W, (*2 x) (%) () (%)
Diy By 0 =L (%) () () )
0 0 Wa 0 T () (0 (|0 @9
0 E{Wi + E3Nq 0 0 0 —el (*) (*)
0 0 EosWy + E3No 0 0 0 —el (*)
L 0 0 0 E, 0 0 0 —el |
0 (%) () () ()
WiACT + NFADT Qs (x) (x) (%)
WoADI + NTADT WLoABT + NTABT 0 (») (%)
ADT ABL 0 0 (%
0 0 0o 0 0
~Ws (x) () ) &
wiCcT + NE'DT Oy (%) (x) (%)
+ | WoDT + NIDT W,oBT + NFBT —-W, () (%)| <0 27)
Di BY, 0 =T (%)
0 0 Wa 0 -1
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NT 00 —Tyu + DOTvlng CUhu + DOTUnt D1y DOTUH N. 0 0
¢ Uh11CT + Bojvvul)(]]1 UhnAT + AUhll + BOTUllBg Bll BOTDH ’
0 I 0 T T 2 0 I 0| <0 (39
0 0 I Dy By -l 0 0 0 I
Tqug Tvnt 0 I+ Ty,
{ATP;LH + Py, A+CTS,, O () ] <0 (%)
BL P, + D%S,,.C DTSy, D1y —+*
Phll 1 Svll 1 :|
> 0, >0 (36
|: 1 Uh11:| - |: 1 Tvll - ( )

where the controller state vectors x7,_; (t) and yj(t) are of di-
mensions 11 X 1 and mj X 1 respectively. Also introduce

_ [4 B
== |c¢ Dy
_Bll
0=
o)
[ B
B, = _D}
Co=[0 TI]
_Acll Ach
A, =
_Ac21 Ac22:|
_ _Bcl
BC_ _B62:|
Cvc = [Ccl Cc?] (30)

and define the so-called augmented state and pass profile vectors
for the process resulting from application of this controller to (7)
as
- j7k+1(t):| _ [yk+1(t)]
Tr+1(t) = | .o , t)=17, (31)
+(®) |:$k+1(t) Tra () Yies1(t)
together with the matrices

I 0 0 0
00 I 0
I=10 7 0 OJ
L0 0 0 [
I 0 0 07
0 0 I 0
=10 00 0
L0 0 0 0
0 0 0 07
00 00
=107 0 0
Lo 0 0 I
to obtain
¢k+1(t)} Z_fk+1(t)} -

— = i + Bw t
[ka(t) A 1(f)
—-_fk+1@)]

yp(t)=C | 75 32
Jk() I yk(t) ( )
where

— 9] QO] = =

B=1L | |+1| | =Bi+B:, C=[C; 0]II

— _ [E4ByD.Cy BsC.

A_Hl{ B.C AC}H
E+ ByD.Cy; ByC.l, — —

+H2[ B.C, A }H—z‘h + As.

Theorem 1 interpreted in terms of the state space model (32)
now gives the following result which serves as an existence con-
dition for the controller considered in this section.

Theorem 4: Suppose that a controller of the form (29) is ap-
plied to a differential linear differential repetitive process de-
scribed by (7). Then, the resulting process is stable along the
pass and has prescribed H ., disturbance attenuation bound y >
0 if there exist matrices S, > 0 and P}, > 0 such that the fol-
lowing inequality holds:

-5 SA, SBs 0
4.8 A, P+PA, -R PB, C
_T T <0 (33)
B, S B P 21
0 C 0 I
where here S = diag{S,,S,} P = diag{P,0},

R = diag{0, S, }.

The following result extends this last theorem to give a con-
troller design algorithm.

Theorem 5: A differential linear repetitive process described
by (32) is stable along the pass and has prescribed H, distur-
bance attenuation bound y > 0 if there exist matrices P, >0,
Un,, > 0,8, >0,T,,, > 0 such that the LMIs defined by
(34)—(36) at the top of the page hold, where N, is a full column
rank matrix whose image satisfies

T
ImAN, = ker [gT} .
Proof: Omitted due to space limitations, the details can be
found in [8]. In summary, use is made of the Schur’s comple-
ment formula, congruence transforms and the results of all the
Lemmas given in the background section of this paper. [ |

Suppose now that this last result holds. Then the following is a
systematic procedure for obtaining the corresponding controller
state space matrices.

(37)

1) Compute the matrices Ppia, P,12 using

the following formulas:

S 71=g, ST

vt ~ Lo v12Pv1,

-1 _ T
Phu - Uhn _Phlzphlz

where Ph22 =] and SUQQ =1.
2) Construct the matrices P, >0 and S, > 0
as

_ Phn P}ZQ _ Svu 53112
Ph_[th " =g I

v12
and then we have S = diag{I,S,} P =
diag{Py,I}, R = diag{0,S,}.
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3) Compute the matrices M, N and ¥ de- processes which are a distinct class of 2-D linear systems of both
fined as systems theoretic and applications interest. The result is phys-
-S S A SB, 0 ically based control laws in an H, setting where the required
i ATS ATP+PA - R PB ﬁT computations are LMI based. Also it has been shown that these
- EZ S E’f P 2T 0 results can be extended to the case of uncertainty in the model
0 C 0 I where here this is assumed to be norm bounded in both the state
M=[TTS TTP 0 0],N=[0 Co 0 0] and pass profile updating equations of the defining state space
model. Extensions to other uncertainty representations are also
where 0 possible and will be reported elsewhere.
A =11 6 0} II

Ay =11, O}H

_q. | B2 O (1]
=I I}
:B 0 [2]
_ 2
=1y I}
- (3]
C — Cy 0
2 =10 7l (4]
4) Solve the following LMI: [5]

U+ MTON+NTOIM <0 6]

7
o= [2 ] ”

to obtain

BC AC

i.e., the matrices which define the con-
troller state space model (29).

[8]
[9]
VII. CONCLUSION

This paper has developed substantial new results on the rela- [10]
tively open problem of the control of differential linear repetitive
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