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Abstract

The recent introduction of integrase inhibitors to the HIV antiviral repertoire permits us to create 

in vitro experiments that reliably terminate HIV infection at the point of chromosomal integration. 

This allows us to isolate the dynamics of a single round of infection, without needing to account 

for the influence of multiple overlapping rounds of infection. By measuring the various nucleic 

acid concentrations in a population of infected target cells at multiple time points, we can infer the 

rates of these molecular events with great accuracy, which allows us to compare the rates between 

target cells with different functional phenotypes. This information will help in understanding the 

behavior of the various populations of reservoir cells such as active and quiescent T-cells which 

maintain HIV infection in treated patients. In this paper, we introduce a family of models of the 

early molecular events in HIV infection, with either linear dynamics or age-structured delays at 

each step. We introduce an experimental design metric based on the delta AIC (Akaike 

Information Criteria) between a model fit for simulated data from a matching model vs a 

mismatched model, which allows us to determine a candidate experiment design's ability to 

discriminate between models. Using parameters values drawn from experimentally-derived priors 

corrupted with appropriate measurement noise, we confirm that a proposed sampling schedule at 

different time points allows us to consistently discriminate between candidate models.

I. Introduction

Human Immunodeficiency virus (HIV) affects specific cells of the immune system called 

CD4+ T cells. Uncontrolled replication of HIV will lead to Acquired Immunodeficiency 

Syndrome (AIDS). An estimated 36.7 million people are living with HIV as of 2015[1]. 

Advances in anti-retroviral therapy have dramatically improved our ability to control this 

infection. Several techniques are used to control viral replication by targeting different steps 

in the life cycle of the virus, using inhibitors that act either alone or in combinations. Even 

though treatment with antiretroviral therapy may reduce the plasma viral load to 

concentrations below the limit of detection, it cannot eliminate the virus completely. Rapid 

rebound of viremia is observed during treatment interruption. This may be due to activation 

of the stable viral reservoirs or ongoing rounds of successful infection of CD4+ T cells [2, 3, 

4, 5, 6]. These processes are not fully understood; investigating the kinetics and mechanisms 

of active versus latent infection is an important step in developing a cure for HIV.
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Several mechanisms have been proposed to explain the reasons behind viral rebound that 

takes place during the early stage of infection. Pre-integration factors such as incomplete 

reverse transcription reaction due to low levels of nucleotide concentrations in the 

cytoplasm, failure to import the ribosome-sized pre-integration complex into the nucleus, 

and rapid degradation of viral RNA and unintegrated DNA limit progression of viral 

replication [7, 8] Understanding dynamic rates of key intracellular molecular events during 

the life cycle of HIV will help us in identifying the rate limiting steps that are responsible for 

the differences in observed phenotypic behavior between quiescent and active T cells. 

Introduction of integrase inhibitor during the viral replication of HIV will assist in 

conducting reliable in-vitro experiments that will guide us in determining the rate 

parameters during the early HIV infection. Concentrations of various nucleic acids collected 

at different time points from integrase inhibitor cultured cell types of different activation 

levels, interpreted through dynamic models, will allow us to determine the rate constants of 

each major molecular step during early infection. This will provide us with data to narrow 

the viable hypotheses concerning the critical differences between quiescent and active T-

cells during early HIV infection, which may in turn suggest new molecular targets and 

therapeutic approaches to controlling the HIV reservoir. A family of mathematical models 

describing the early intracellular molecular events following viral entry into the host cell in 

the presence of integrase inhibitors have been developed in this study. An experimental 

design is introduced suggesting an appropriate sampling schedule for various nucleic acid 

concentrations that will give us sufficient information to estimate the parameters from the 

models. A metric is introduced to evaluate the ability of an experiment design to distinguish 

between candidate models of a family in our study. Several approaches have also been 

applied by others in order to study model distinguishability based on different metrics [21, 

22]. One study used maximizing distance (L-2 norm) between the outputs of rival models by 

varying initial conditions, external inputs and structural changes [23]. Experiment design for 

our problem is tested using simulated data to verify our ability to distinguish between source 

models. The overall goal of this study is to propose an experimental design that will help us 

in discriminating possible candidate models by selecting an appropriate model using 

experimental data.

II. Model

A. Life Cycle of HIV and the role of Integrase Inhibitor

HIV attacks CD4 T cells and attaches itself to the surface receptors CD4 and CCR5 or 

CXCR4 co-receptor. After fusion with the host cytoplasm the viral core has the capability of 

converting its RNA genome into unintegrated DNA in the cytoplasm (DNAu) using reverse 

transcriptase [9, 10]. The resulting unintegrated DNA is transported to the nucleus, where it 

integrates with the host genome [11].Transcription of the integrated viral genome produces 

full length mRNA that are further spliced into singly and doubly mRNA transcripts [12]. 

Translation of full length mRNA produces necessary structural and enzymatic proteins that 

will help in the development of the progeny of the virus [13]. When sufficient quantities of 

viral material accumulate these proteins are transported to the plasma membrane and start 

budding. Integrase inhibitors prevent the integration of the linear viral DNA virus into the 

host genome. As result 2-LTR (Long terminal repeats) circles are formed from the un-
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integrated nuclear DNA, which will be used as markers for cellular replication [14]. A 

compartment model for the life cycle of HIV is shown in Figure 1 indicating different stages 

in a host cells such as viral entry, reverse transcription (RNA to DNA), integration (nuclear 

DNA to integrated DNA), translation (DNA to mRNA) and other nuclear transport steps 

such as transfer of DNA from cytoplasm to nucleus, release of viral particles.

Three different deterministic models; linear, single delay and double delay dynamics; are 

considered to model these intracellular molecular events. These models track the populations 

of HIV RNA, linear unintegrated DNA and 2-LTR episomes with respect to time. 

Measurement units of each state are in copies/cell.

B. Linear Model (M1)

Our first model assumes linear transition rates between each of the reverse transcription and 

integration steps. Viral RNA (R) is converted to linear unintegrated DNA (DNAu) at a linear 

rate k1 (days-1) and decays at linear rate k3 (days-1). Similarly linear unintegrated DNA is 

converted into 2-LTR (L) circles at a linear rate k2 (days-1) and decays at a linear rate k4 

(days-1). Solid lines indicate the transition rates and the dashed lines indicate the degradation 

rates in figures 2, 3, and 4.

The model equations for the linear kinetic model M1 are

(1)

(2)

(3)

C. Single Delay Model (M2)

The second model assumes a time delay that dominates the conversion of the single stranded 

RNA into unintegrated double stranded DNA, which will be a substrate for the integration 

step. Reverse Transcription involves the creation of a DNA complementary copy of the 

parent RNA strand, through the sequential aggregation of nucleotides. The DNA copy is 

9748 nucleotides long, which are added sequentially [10]. Queued processes of this type 

result in approximate delay kinetics. The single delay model is similar to the linear kinetic 

model as discussed above with the exception that the viral RNA (R) is converted to linear 

unintegrated DNA (DNAu) at a constant rate delayed by time τ1 (days). We introduce this 

delay using age structured time delay compartment model by introducing 10 (n) stages 
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between RNA and unintegrated DNA compartments. Each stage representing the addition of 

certain number of nucleotides to the RNA genome.

(4)

(5)

(6)

(7)

D. Double Delay Model (M3)

In addition to the delay described during reverse transcription in the previous model we also 

assume a delay in the integration step of unintegrated DNA into host genome. After reverse 

transcription the unintegrated DNA is transported into the nucleus, its terminal ends are 

cleaved, and the linear viral DNA is inserted into a chromosome, resulting in pro-viral DNA. 

Transport within cells is accomplished by actin-myosin motion along cytoskeletal filaments, 

which may be well modeled as a queueing process that introduces a delay; we model the 

transport kinetics of DNAu into the nucleus with a delay (τ2, days) using similar age 

structured modeling with 10 stages (n) as mentioned previously.

(8)

(9)

(10)
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(11)

(12)

III. Preliminary Data

With all the three models in place we examined the model fit with experimental data 

obtained from Pace et al. [15]. Infecting CD4+ T cells with HIV in the presence of integrase 

inhibitor raltegravir generated the experimental data. Measurements for total HIV DNA (un-

integrated DNA and 2-LTR) and 2-LTR circles were made between 0 and 10 days post 

infection as shown in figure 5.

The parameters for all the three models were extracted from the five experimental data 

points using Bayesian Markov Chain Monte Carlo (MCMC) methods with Gibbs sampling 

[16-18] using non-informative priors. Posterior distributions were generated using likelihood 

function for qPCR measurement assay with 50 copies as the censoring limit and lognormal 

noise with a density-dependent standard deviation, σ(c):

(13)

where ‘c’ is the expected number of copies in the sample predicted by the model. Given the 

model limit of detection and log normal standard deviation, the likelihood function for a 

measurement ‘m’ given a model concentration ‘c’ as follows:

(14)

Where, fLN is the lognormal probability distribution and FLN is the lognormal cumulative 

distribution function [19]. Figure 5 shows model fit with experimental data using parameter 

values obtained from maximum likelihood estimates.

All the three models fit the experimental data with similar likelihood values as shown in 

table 1 and cannot be distinguished from one another with the limited set of experimental 

data available. In order to identify the true biological phenomena we need to have a better 

experimental design which will help us in distinguishing between the above mathematical 

models and also help in furnishing better parameter estimates.
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IV. Experimental Design

Failure to identify the appropriate model given limited experimental data from Pace et al. 

forces us to come up with an experimental design that can distinguish all the three models. 

Based on input from our experimental collaborator, we propose in-vitro experiments on 

CD4+ T cells from a normal donor inoculated with HIV and cultured in IL-7 (Interleukin) 

and raltegravir. RNA should be harvested from the cells every two hours for the first 12 

hours; DNA should be harvested from the cells every two hours for two days and then every 

8 hours till four days post infection. At each time point, approximately 3 million cells will 

be harvested. The RNA, 2-LTR and total HIV DNA levels should be measured at each time 

point using qPCR techniques.

In order to verify whether our experimental design can help us in distinguishing models, we 

generated simulated data from each of the three models M1 (Linear), M2 (Single Delay) and 

M3 (Double Delay). Simulated data for all the time points were generated according to the 

sampling schedule as mentioned above. However the simulated data is noiseless and the 

process of measurement using qPCR technique produces some noise. Noise resulting from 

the Polymerase Chain Reaction (PCR) is lognormal with a standard deviation given by 

equation 13 and was applied to the noise free simulated data, c, generated from the model. 

Each set of simulated data is tested against all three models in order to identify whether the 

model that generated the data can be determined from the data.

In order to test the model compatibility we use MCMC analysis to compute the maximum 

likelihood for each of the models against the simulated data. Later using this maximum 

likelihood value, we calculated Akaike Information Criteria (AIC) for each of the model. 

The AIC, represented in equation 15 estimates the relative goodness-of-fit of a model by 

approximating how much information is lost when a given model is used to represent a 

process [20]. Table II lists all the maximum likelihood values generated from each model 

(rows) with simulated data from a specific model (columns).

With the AIC values in place for each model (AICM), we compare it with the best AIC (i.e. 

AICmin) for the respective simulated data set in order to establish whether a given model 

matched with the same model from which the data is generated. The difference between the 

best and a particular model AIC values is termed as ΔAIC according to equation 16. Table 

III lists AIC values for all the models with respect to the simulated data,

(15)

(16)

Where, ‘k’ is the number of free parameters in the model and ‘L’ is the maximum likelihood 

value.
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Table IV displays ΔAIC values across all the models generated from equation 16. Our results 

show that each model matches to the simulated data generated from the same model (i.e. 

ΔAIC = 0) and hence distinguishability between models with respect to data has been 

attained.

Table V displays the range obtained for all the parameters obtained from simulated data of 

M1 (1), M2 (2), M3 (3) compared against parameters obtained from experimental data Pace 

et al. (P) [15]. Simulated data from the suggested experimental design gave us parameters 

with much tighter estimates when compared to the parameters obtained from Pace et al.

A. Simulated Data generated from Model 1 (Linear Dynamics) vs Simulation results from all 
Models

Figure 6 shows simulation results across all the models with maximum likelihood parameter 

estimates obtained from MCMC techniques with simulated data from Model 1. It is shown 

that model 1 (M1) ideally fits the simulated data while other models fail reproducing them. 

This also matches with ΔAIC values as we can see from table IV that the corresponding 

value for simulated data from M1 and model simulation from M1 is 0.

B. Simulated Data generated from Model 2 (Single Delay Dynamics) vs Simulation results 
from all models

Figure 7 shows simulation results across all the models with maximum likelihood parameter 

estimates obtained from MCMC techniques with simulated data from Model 2. It is also 

shown that model 2 (M2) ideally fits the simulated data while other models fail reproducing 

them. This also matches with ΔAIC values as we can see from table IV that the 

corresponding value for simulated data from M2 and model simulation from M2 is 0.

C. Simulated Data generated from Model 3 (Double Delay Dynamics)

Figure 8 shows simulation results across all the models with maximum likelihood parameter 

estimates obtained from MCMC techniques with simulated data from Model 3. It is also 

shown that model 3 (M3) ideally fits the simulated data while other models fail reproducing 

them. This also matches with ΔAIC values as we can see from table IV that the 

corresponding value for simulated data from M3 and model simulation from M3 is 0.

V. Conclusion

Three different models viz. linear dynamics, single delay and double delay dynamics have 

been proposed to understand intracellular molecular events of HIV in the presence of 

integrase inhibitors. Distinguishability between models with respect to experimental data has 

also been demonstrated with simulated data from the proposed experimental design. Our 

results illustrate that the proposed experimental design will help in understanding the 

biological phenomena underlying during viral replication between quiescent and active T 

cells.

The proposed experiment design was suggested by our collaborators, and represents perhaps 

the highest possible acheivable sampling. Now that feasibility of the approach is shown, 
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future work will focus on optimizing the trade-off between model fit accuracy and 

experimental costs, including the total number of samples, the cells used per sample, and the 

frequency of sampling.
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Figure 1. Compartmental Model: Life Cycle of HIV (Highlighted area in the red box indicate the 
different stages that occur in the presence of Integrase Inhibitor)
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Figure 2. Compartmental Model of Linear Dynamics
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Figure 3. Compartmental Model of Single Delay Dynamics

Jagarapu et al. Page 12

Proc Am Control Conf. Author manuscript; available in PMC 2018 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. Compartmental Model of Double Delay Dynamics
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Figure 5. Model Fit with Experimental Data obtained from Pace et. al.[15]
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Figure 6. 
Model Fit across all the models with simulated data generated from Model 1. Model 

distinguishability can be observed as Model 1 fits the simulated data from Model 1 while 

Model 2 and 3 do not fit properly.
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Figure 7. 
Model Fit across all the models with simulated data generated from Model 2. Model 

distinguishability can be observed as Model 2 fits the simulated data from Model 2 while 

Model 1 and 3 do not fit properly.
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Figure 8. 
Model Fit across all the models with simulated data generated from Model 3. Model 

distinguishability can be observed as Model 3 fits the simulated data while Model 1 and 2 do 

not fit properly.
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Table I
Maximum likelihood values for the three models with experimental data (Log-Likelihood)

MODEL M1 M2 M3

Max Likelihood Value -95.9446 -95.9209 -96.9999
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Table II
Maximum Likelihood Values Across Different models vs Simulated Data Across different 
Models

Maximum Likelihood
Simulated Data

M1 M2 M3

Model

M1 -926.1 -1735.1 -3390.1

M2 -1458.9 -921.31 -3964.8

M3 -2167.7 -1729.1 -649.0
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Table III
AIC Values Across Different Models vs Simulated Data Across Different Models

AIC
Simulated Data

M1 M2 M3

Models

M1 1862.2 3480.2 6790.2

M2 2927.8 1852.6 7939.6

M3 4345.4 3468.2 1308.0
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Table IV
ΔAIC Values Across Different Models vs Simulated Data Across Different Models

ΔAIC
Simulated Data

M1 M2 M3

Model

M1 0 -1627.5764 -5482.19

M2 -1065.572 0 -6631.59

M3 -2483.172 -1615.5764 0
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Table V

Range For The Values of Parameters Obtained From Simulated Data In Comparison To Data Obtained From 

Pace et al.

Range
MODEL

M1 M2 M3

PARAMETERS

K1 (days-1)
0.2048(1) - -

2.5140 (P) - -

K2 (days-1)
0.0855 (1) 0.0142 (2) -

0.0961 (P) 0.1288(P) -

K3 (days-1)
0.2393 (1) 1.5002(2) 0.2351(3)

0.6847 (P) 5.5817(P) 1.1270(P)

K4 (days-1)
0.8424 (1) 0.1565(2) 0.3071(3)

1.8134 (P) 1.3016(P) 2.1868(P)

τ1 (days)
- 0.0167(2) 0.0330(3)

- 1.2381(P) 0.7175(P)

τ2 (days)
- - 0.1965(3)

- - 0.7588(P)
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