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Scheduling Nonlinear Sensors for Stochastic Process Estimation

Vasileios Tzoumas⋆, Nikolay A. Atanasov⋆, Ali Jadbabaie†, George J. Pappas⋆

Abstract—In this paper, we focus on activating only a few sen-
sors, among many available, to estimate the state of a stochastic
process of interest. This problem is important in applications such
as target tracking and simultaneous localization and mapping
(SLAM). It is challenging since it involves stochastic systems
whose evolution is largely unknown, sensors with nonlinear
measurements, and limited operational resources that constrain
the number of active sensors at each measurement step. We
provide an algorithm applicable to general stochastic processes
and nonlinear measurements whose time complexity is linearin
the planning horizon and whose performance is a multiplicative
factor 1/2 away from the optimal performance. This is notable
because the algorithm offers a significant computational advan-
tage over the polynomial-time algorithm that achieves the best
approximation factor 1/e. In addition, for important classes of
Gaussian processes and nonlinear measurements corrupted with
Gaussian noise, our algorithm enjoys the same time complexity
as even the state-of-the-art algorithms for linear systemsand
measurements. We achieve our results by proving two properties
for the entropy of the batch state vector conditioned on the
measurements: a) it is supermodular in the choice of the sensors;
b) it has a sparsity pattern (involves block tri-diagonal matrices)
that facilitates its evaluation at each sensor set.

I. I NTRODUCTION

Adversarial target tracking and capturing [1], [2], robotic
navigation and autonomous construction [3], active perception
and simultaneous localization and mapping (SLAM) [4] are
only a few of the challenging information gathering problems
that benefit from the monitoring capabilities of sensor net-
works [5]. These problems are challenging because:

• they involve systems whose evolution is largely unknown,
modeled either as a stochastic process, such as a Gaussian
process [6], or as linear or nonlinear system corrupted
with process noise [1],

• they involve nonlinear sensors (e.g., cameras, radios)
corrupted with noise [7],

• they involve systems that change over time [8], and as a
result, necessitate both spatial and temporal deployment
of sensors in the environment, increasing the total number
of needed sensors, and at the same time,

• they involve operational constraints, such as limited com-
munication bandwidth and battery life, which limit the
number of sensors that can simultaneously be active in
the information gathering process [9].
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Due to these challenges, we focus on the following question:
“How do we select, at each time, only a few of the available
sensors so as to monitor effectively a system despite the above
challenges?” In particular, we focus on the following sensor
scheduling problem:

Problem 1. Consider a stochastic process, whose realization
at time t is denoted byx(t) and a set ofm sensors, whose
measurements are nonlinear functions ofx(t), evaluated at a
fixed set ofK measurement timest1, t2, . . . , tK . In addition,
suppose that at eachtk a set of at mostsk ≤ m sensors
can be used. Select the sensor sets so that the error of
the corresponding minimum mean square error estimator
of (x(t1), x(t2), . . . , x(tK)) is minimal among all possible
sensor sets.

There are two classes of sensor scheduling algorithms, that
trade-off between the estimation accuracy of the batch state
vector and their time complexity [10]: those used for Kalman
filtering, and those for batch state estimation. The most
relevant papers on batch state estimation are [10] and [11].
However, both of these papers focus on linear systems and
measurements. The most relevant papers for Kalman filtering
consider algorithms that use: myopic heuristics [12], tree
pruning [13], convex optimization [14]–[17], quadratic pro-
gramming [18], Monte Carlo methods [19], or submodular
function maximization [20], [21]. However, these papers focus
similarly on linear or nonlinear systems and measurements,
and do not consider unknown dynamics.

Main contributions:
1) We prove that Problem 1 is NP-hard.
2) We prove that the best approximation factor one can

achieve in polynomial time for Problem 1 is1/e.
3) We provide Algorithm1 for Problem 1 that:

• for all stochastic processes and nonlinear measurements,
achieves a solution that is up to a multiplicative factor
1/2 from the optimal solution with time complexity
that is only linear in the planning horizonK. This is
important, since it implies that Algorithm1 offers a
significant computational advantage with negligible loss
in performance over the polynomial-time algorithm that
achieves the best approximation factor of1/e,

• for important classes of Gaussian processes, and nonlin-
ear measurements corrupted with Gaussian noise, has the
same time complexity as even state-of-the-art algorithms
for linear systems and measurements. For example, for
Gaussian process such as those in target tracking, or
those generated by linear or nonlinear systems cor-
rupted with Gaussian noise, Algorithm1 has the same
time complexity as the batch state estimation algorithm
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in [10], and lower than the Kalman filter scheduling
algorithms in [14], [17].

Therefore, Algorithm1 can enjoy both the estimation accu-
racy of the batch state scheduling algorithms (compared to
the Kalman filtering approach, that only approximates the
batch state estimation error with an upper bound [10]) and,
surprisingly, even the low time complexity of the Kalman
filtering scheduling algorithms for linear systems.

Technical contributions:

1) Supermodularity in Problem 1: We achieve the approxi-
mation performance of Algorithm1, and the linear dependence
of its time complexity on the planning horizon, by proving
that our estimation metric is a supermodular function in the
choice of the utilized sensors. This is important, since this is
in contrast to the case of multi-step Kalman filtering for linear
systems and measurements, where the corresponding estima-
tion metric is neither supermodular nor submodular [20] [21].
Moreover, our submodularity result cannot be reduced to
the batch estimation problems in [22], [23]. The reasons
are twofold: i) we consider sensors that measure nonlinear
combinations of the elements ofx(t), in contrast to [22], [23],
where each sensor measures directly only one element ofx(t);
ii) our estimation metric is relevant to monitoring dynamical
systems and different to the submodular entropy metric and
information gain considered in [22] and [23], respectively.

2) Sparsity in Problem 1: We achieve the reduced time com-
plexity of Algorithm 1 for Gaussian processes by identifying
a sparsity pattern in our estimation metric. Specifically, in this
case the time complexity of each evaluation of our metric
is decided by the sparsity pattern of either the covariance of
(x(t1), x(t2), . . . , x(tK)), or the inverse of this covariance.
This is important since the two matrices are not usually sparse
at the same time, even if one of them is [24]. E.g., for
Gaussian processes such as those in target tracking, the first
matrix is block tri-diagonal, whereas for those in SLAM, or
those generated by linear or nonlinear systems corrupted with
Gaussian noise, the second matrix is block tri-diagonal.

Notation: We denote the set of natural numbers{1, 2, . . .} by
N, the set of real numbers byR, and the set{1, 2, . . . , n}
by [n] (n ∈ N). The set of real numbers between0 and 1
is denoted by[0, 1], and the empty set by∅. Given a set
X , |X | is its cardinality. In addition, forn ∈ N, Xn is the
n-times Cartesian productX × X × · · · × X . Matrices are
represented by capital letters and vectors by lower-case letters.
We write A ∈ Xn1×n2 (n1, n2 ∈ N) to denote a matrix of
n1 rows andn2 columns whose elements take values inX ;
A⊤ is its transpose, and[A]ij is its element at thei-th row
and j-th column;det(A) is its determinant. Furthermore, if
A is positive definite, we writeA ≻ 0. In the latter case,
A−1 is its inverse.I is the identity matrix; its dimension
is inferred from the context. Similarly for the zero matrix
0. The ≡ denotes equivalence. Moreover, for a probability
space(Ω,F ,P), Ω is the sample space,F the σ-field, and
P : F 7→ [0, 1] the function that assigns probabilities to events
in F [25]. We write x ∼ F to denote a random variablex

with probability distributionF ; E(x) is its expected value, and
Σ(x) its covariance.x ∼ N (µ,Σ) denotes a Gaussian random
variablex with meanµ and covarianceΣ; we equivalently
write x ∼ N (E(x),Σ(x)). Finally, we writex|y ∼ G to denote
thatx’s probability distribution giveny is G.

II. PROBLEM FORMULATION

This section introduces the system, measurement, and
scheduling models and presents the sensor scheduling problem
formally.

System Model. We consider two cases:

• Continuous time model: Consider the stochastic process
(along with a probability space(Ω,F ,P)):

xω(t) : ω ∈ Ω, t ≥ t0 7→ R
n (1)

wheren ∈ N, t0 is the initial time, andxω(t) the state
vector given the sampleω.

• Discrete time model: Consider the nonlinear discrete-
time system:

xk+1 = lk(x1:k), lk ∼ Lk, k ∈ N (2)

wherexk ∈ R
n is the state vector,x1:k the batch vector

(x1, x2, . . . , xk), andLk a probability distribution over
functionslk : Rnk 7→ R

n.

Because the system models (1) and (2) assume no char-
acteristic structure, they are appropriate for modeling largely
unknown dynamics. For example, an instance of (1) is the
time-indexed Gaussian process system model:

x(t) ∼ GP(µ(t),Σ(t, t′)), t, t′ ≥ t0, (3)

whereµ(t) is the mean function andΣ(t, t′) is the covariance
function. Similarly, an instance of (2) is the state-indexed
Gaussian process system model:

xk+1 = l(xk), l ∼ GP(µ(x),Σ(x, x′)), x, x′ ∈ R
n. (4)

Measurement Model. Considerm nonlinear sensors that
operate in discrete time:

zi,k = gi(xk) + vi,k, i ∈ [m], k ∈ N (5)

where for the continuous-time system in(1) we letxk := x(tk)
at a pre-specified set of measurement timest1, t2, . . . andvi,k
is the measurement noise of sensori at timek.

Assumption 1. vi,k are independent acrossi and k. In
addition,gi is one-time differentiable.

Sensor Scheduling Model.The m sensors in(5) are used
at K scheduled measurement times{t1, t2, . . . , tK}. At each
k ∈ [K], onlysk of them sensors are used (sk ≤ m), resulting
in the batch measurement vectoryk:

yk = Skzk, k ∈ [K], (6)

where Sk is a sensor selection matrix, composed of sub-
matrices [Sk]ij (i ∈ [sk], j ∈ [m]) such that[Sk]ij = I if
sensorj is used at timek, and [Sk]ij = 0 otherwise. We



assume that a sensor can be used at most once at eachk,
and as a result, for eachi there is onej such that[Sk]ij = I
while for eachj there is at most onei such that[Sk]ij = I.

We now present the sensor scheduling problem formally:
Notation: For i, j ∈ N, φi:j ≡ (φi, φi+1, . . . , φj). In

addition,Sk ≡ {j : there existsi ∈ [sk], [Sk]ij = I}: Sk is
the set of indices that correspond to utilized sensors attk.

Problem 1 (Sensor Scheduling in Stochastic Processes with
Nonlinear Observations). Select at each timek a subset ofsk
sensors, out of them sensors in(5), to use in order to minimize
the conditional entropy ofx1:K given the measurementsy1:K :

minimize
Sk⊆[m],k∈[K]

H(x1:K |S1:K)

subject to |Sk| ≤ sk, k ∈ [K],

where H(x1:K |S1:K) denotes the conditional entropy
H(x1:K |y1:K) of x1:K given the measurementsy1:K .

The conditional entropyH(x1:K |y1:K) captures the esti-
mation accuracy ofx1:K given y1:K , as we explain in the
following two propositions:

Proposition 1. H(x1:K |y1:K) is a constant factor away from
the mutual information ofx1:K and y1:K . In particular:

H(x1:K |y1:K) = −I(x1:K ; y1:K) +H(x1:K),

where I(x1:K ; y1:K) is the mutual information ofx1:K and
y1:K , andH(x1:K) is constant.

Proposition 2. Consider the Gaussian process(3) and sup-
pose that the measurement noise in(5) is Gaussian,vi,k ∼
N (0,Σ(vi,k)). H(x1:K |y1:K) is a constant factor away from
log det(Σ(x⋆

1:K)), whereΣ(x⋆
1:K) is the error covariance of

the minimum mean square estimatorx⋆
1:K of x1:K given the

measurementsy1:K . In particular:1

H(x1:K |y1:K) =
log det(Σ(x⋆

1:K))

2
+

nK log(2πe)

2
.

III. M AIN RESULTS

We first prove that Problem 1 is NP-hard, and then derive
for it a provably near-optimal approximation algorithm:

Theorem 1. The problem of sensor scheduling in stochastic
processes with nonlinear observations (Problem 1) is NP hard.

Proof. See AppendixIV. Our approach is to find an instance
of Problem 1 that is equivalent to the NP-hard minimal
observability problem introduced in [26], [27].

Due to Theorem1, we need to appeal to approximation al-
gorithms to obtain a solution to Problem 1 in polynomial-time.
To this end, we propose an efficient near-optimal algorithm

1We explainx⋆

1:K
and log det(Σ(x⋆

1:K
)): x⋆

1:K
is the optimal estimator

for x1:K , since it minimizes amongall estimators ofx1:K the mean square
errorE(‖x1:K−x⋆

1:K
‖2
2
) (‖·‖2 is the euclidean norm), where the expectation

is taken with respect toy1:K [7]. log det(Σ(x⋆

1:K
)) is an estimation error

metric related to‖x1:K−x⋆

1:K
‖2
2
, since when it is minimized, the probability

that the estimation error‖x1:K − x⋆

1:K
‖2
2

is small is maximized [10].

Algorithm 1 Approximation algorithm for Problem 1.
Input: HorizonK, scheduling constraintss1, s2, . . . , sK , er-

ror metricH(x1:K |S1:K) : Sk ⊆ [m], k ∈ [K] 7→ R

Output: Sensor sets(S1,S2, . . . ,SK) that approximate the
solution to Problem 1, as quantified in Theorem2
k ← 1, S1:0 ← ∅
while k ≤ K do
1. Apply Algorithm 2 to

min
S⊆[m]

{H(x1:K |S1:k−1,S) : |S| ≤ sk} (7)

2. Denote bySk the solution Algorithm2 returns
3. S1:k ← (S1:k−1,Sk)
4. k ← k + 1
end while

(Algorithm 1 with a subroutine in Algorithm2) and quantify
its performance and time complexity in the following theorem.

Theorem 2. The theorem has two parts:
1) Approximation performance of Algorithm1: Algorithm1

returns sensors setsS1,S2, . . . ,SK that:

i. satisfy all the feasibility constraints of Problem 1:
|Sk| ≤ sk, k ∈ [K]

ii. achieve an errorH(x1:K |S1:K) such that:

H(x1:K |S1:K)−OPT

MAX −OPT
≤

1

2
, (8)

where OPT is the optimal cost of Problem 1, and
MAX ≡ maxS′

1:K
H(x1:K |S ′1:K) is the maximum

(worst) cost in Problem 1.
2) Time complexity of Algorithm1: Algorithm 1 has time

complexityO(
∑K

k=1 s
2
kT ), whereT is the time complex-

ity of evaluatingH(x1:K |S ′1:K) : S ′k ⊆ [m], k ∈ [K] 7→
R at anS ′1:K .

In the following paragraphs, we discuss Algorithm1’s ap-
proximation quality and time complexity and fully characterize
the latter in Theorem3 and Corollary1 for Gaussian processes
and Gaussian measurement noise.

Supermodularity and monotonicity ofH(x1:K |y1:K):
We state two properties ofH(x1:K |y1:K) that are used to
prove Theorem2. In particular, we show thatH(x1:K |y1:K)
is a non-increasing and supermodular function with respectto
the sequence of selected sensors. Then, Theorem2 follows
by combining these two results with results on submodular
functions maximization over matroid constraints [28]. These
derivations are presented in AppendixIV.

Approximation quality of Algorithm1: Theorem2 quan-
tifies the worst-case performance of Algorithm1 across all
values of Problem 1’s parameters. The reason is that the
right-hand side of (8) is constant. In particular, (8) guarantees
that for any instance of Problem 1, the distance of the
approximate costH(x1:K |S1:K) from OPT is at most1/2 the
distance of the worst (maximum) costMAX fromOPT . This
approximation factor is close to the optimal approximation
factor 1/e ∼= .38 one can achieve in the worst-case for



Algorithm 2 Single step greedy algorithm (subroutine in
Algorithm 1).

Input: Current iterationk, selected sensor sets(S1,S2, . . . ,
Sk−1) up to the current iteration, constraintsk, error metric
H(x1:K |S1:K) : Sk ⊆ [m], k ∈ [K] 7→ R

Output: Sensor setSk that approximates the solution to
Problem 1 at timek
S0 ← ∅, X 0 ← [m], andt← 1
Iteration t:
1. If X t−1 = ∅, return St−1

2. Select i(t) ∈ X t−1 for which ρi(t)(S
t−1) =

maxi∈X t−1 ρi(St−1), with ties settled arbitrarily, where:

ρi(S
t−1) ≡ H(x1:K |S1:k−1,S

t−1)−

H(x1:K |S1:k−1,S
t−1 ∪ {i})

3.a. If |St−1 ∪ {i(t)}| > sk, X t−1 ← X t−1 \ {i(t)}, and go
to Step 1

3.b. If |St−1 ∪ {i(t)}| ≤ sk, St ← St−1 ∪ {i(t)} andX t ←
X t−1 \ {i(t)}

4. t← t+ 1 and continue

Problem 1 in polynomial time [29]; the reason is twofold:
first, Problem 1 involves the minimization of a non-increasing
and supermodular function [30], and second, as we proved
in Theorem1, Problem 1 is in the worst-case equivalent to
the minimal observability problem introduced in [26], which
cannot be approximated in polynomial time with a better factor
than the1/e [31].

Remark 1. We can improve the1/2 approximation fac-
tor of Algorithm 1 to 1/e by utilizing the algorithm intro-
duced in [32]. However, this algorithm has time complexity
O((nK)11T ), whereT is the time complexity of evaluating
H(x1:K |S ′1:K) : S ′k ⊆ [m], k ∈ [K] 7→ R at anS ′1:K .

Time complexity of Algorithm1: Algorithm 1’s time
complexity is broken down into two parts: a) the number of
evaluations ofH(x1:K |y1:K) required by the algorithm; b) the
time complexity of each such evaluation. In more detail:

a) Number of evaluations ofH(x1:K |y1:K) required by
Algorithm 1: Algorithm 1 requires at mosts2k evaluations
of H(x1:K |y1:K) at eachk ∈ [K]. Therefore, Algorithm1
achieves a time complexity that is only linear inK with respect
to the number of evaluations ofH(x1:K |y1:K); the reason is
that

∑K
k=1 s

2
k ≤ maxk∈[K](s

2
k)K. This is in contrast to the

algorithm in Remark1, that obtains the best approximation
factor1/e, whose time complexity is of the orderO((nK)11)
with respect to the number of evaluations ofH(x1:K |y1:K).2

b) Time complexity of each evaluation ofH(x1:K |y1:K):
This time complexity depends on the properties of both the
stochastic process (1) (similarly, (2)) and the measurement

2We can also speed up Algorithm1 by implementing in Algorithm2 the
method of lazy evaluations [33]: this method avoids in Step 2 of Algorithm2
the computation ofρi(St−1) for unnecessary choices ofi.

noisevi,k in (5). For the case of Gaussian stochastic processes
and measurement noises:

Theorem 3. Consider the Gaussian process model(3) and
suppose that the measurement noise is Guassian:vi,k ∼
N (0,Σ(vi,k)) such thatΣ(vi,k) ≻ 0. The time complexity of
evaluatingH(x1:K |y1:K) depends on the sparsity pattern of
Σ(x1:K) andΣ(x1:K)−1 as follows.

• Each evaluation ofH(x1:K |y1:K) has time complexity
O(n2.4K), wheneitherΣ(x1:K) or Σ(x1:K)−1 is exactly
sparse (that is, block tri-diagonal).

• Each evaluation ofH(x1:K |y1:K) has time complexity
O(n2.4K2.4), when both Σ(x1:K) and Σ(x1:K)−1 are
dense.

Theorem3 implies that whenΣ(x1:K) or Σ(x1:K)−1 is
exactly sparse, the time complexity of each evaluation of
H(x1:K |y1:K) is only linear inK. This is important because
Σ(x1:K) or Σ(x1:K)−1 is exactly sparse for several appli-
cations and system models [34]. For example, in adversarial
target tracking applications, where the target wants to avoid
capture and randomizes its motion in the environment (by un-
correlating its movements),Σ(x1:K) can be considered tri-
diagonal (since this impliesx(tk) andx(tk′ ) are uncorrelated
for |k − k′| > 2). Similarly, in SLAM, or in system models
where the Gaussian process in (3) is generated by a linear or
nonlinear system corrupted with Gaussian noise,Σ(x1:K)−1

is block tri-diagonal [24]. In particular, for linear systems,
Σ(x1:K)−1 is block tri-diagonal [24, Section 3.1], and for
nonlinear systems,Σ(x1:K)−1 is efficiently approximated by
a block tri-diagonal matrix as follows: for eachk, before the
k-th iteration of Step 1 in Algorithm1, we first computẽµ1:K

given y1:(k−1) up to k. This step has complexityO(n2.4K)
whenΣ(x1:K)−1 is sparse [24, Eq. (5)] [35, Section 3.8], and
it does not increase the total time complexity of Algorithm1.
Then, we continue as in [24, Section 3.2].

Sparsity inH(x1:K |y1:K): We state the two properties
of H(x1:K |y1:K) that result to Theorem3. In particular, we
prove thatH(x1:K |y1:K) is expressed in closed form with
two different formulas such that the time complexity for the
evaluation ofH(x1:K |y1:K) using the first formula is decided
by the sparsity pattern ofΣ(x1:K), whereas using the second
formula is decided by the sparsity pattern ofΣ(x1:K)−1. The
reason for this dependence is that the rest of the matrices in
these formulas are sparser thanΣ(x1:K) or Σ(x1:K)−1; in
particular, they are block diagonal.

The full characterization of Algorithm1’s time complexity
for Gaussian processes and Gaussian measurement noises
follows.

Corollary 1. Consider the Gaussian process model(3) and
suppose that the measurement noise is Gaussian:vi,k ∼
N (0,Σ(vi,k)) such thatΣ(vi,k) ≻ 0. The time complexity of
Algorithm 1 depends on the sparsity pattern ofΣ(x1:K) and
Σ(x1:K)−1 as follows.

• Algorithm 1 has time complexityO(n2.4K
∑K

k=1 s
2
k),

wheneitherΣ(x1:K) orΣ(x1:K)−1 is exactly sparse (that



is, block tri-diagonal).
• Algorithm 1 has time complexityO(n2.4K2.4

∑K
k=1 s

2
k),

whenbothΣ(x1:K) andΣ(x1:K)−1 are dense.

Comparison of Algorithm1’s time complexity for Gaus-
sian processes and Gaussian measurement noises, per Corol-
lary 1, to that of existing scheduling algorithms:The most
relevant algorithm to Algorithm1 is the one provided in [10],
where linear systems with additive process noise and measure-
ment noises withany distribution are assumed. Algorithm1
generalizes [10] from linear systems and measurements to
Gaussian processes and nonlinear measurements. At the same
time, it achieves the same time complexity as the algorithm
in [10] when Σ(x1:K) or Σ(x1:K)−1 is exactly sparse. This
is important since the algorithm in [10] has time complexity
lower than the-state-of-the-art batch estimation sensor schedul-
ing algorithms, such as the algorithm proposed in [11], and
similar to that of the state of the art Kalman filter scheduling
algorithms, such as those proposed in [14], [17], [21] (in
particular, lower for largeK).

IV. CONCLUSION

In this paper, we proposed Algorithm1 for the NP-
hard problem of sensor scheduling for stochastic process
estimation. Exploiting the supermodularity and monotonicity
of conditional entropy, we proved that the algorithm has
an approximation factor1/2 and linear complexity in the
scheduling horizon. It achieves both the accuracy of batch
estimation scheduling algorithms and, surprisingly, whenthe
information structure of the problem is sparse, the low time
complexity of Kalman filter scheduling algorithms for linear
systems. This is the case, for example, in applications such
as SLAM and target tracking, and for processes generated
by linear or nonlinear systems corrupted with Gaussian noise.
Future work will focus on an event-triggered version of the
scheduling problem, in which the measurement times are
decided online based on the available measurements, and on a
decentralized version, in which information is exchanged only
among neighboring sensors.

APPENDIX A: PROOF OFPROPOSITION2

Proof. We first show that the conditional probability distribu-
tion of x1:K giveny1:K is Gaussian with covarianceΣ(x⋆

1:K),
and then apply the following lemma:

Lemma 1 (Ref. [36]). Let x ∼ N (µ,Σ) andx ∈ R
m:

H(x) =
1

2
log[(2πe)m det(Σ)].

Specifically, due to Assumption1, (x1:K , y1:K) are jointly
Gaussian. This has a twofold implication: first, the minimum
mean square estimator ofx1:K giveny1:K is linear iny1:K [37,
Proposition E.2]; second, the conditional probability distribu-
tion of x1:K given y1:K is Gaussian [38], with covariance
Σ(x⋆

1:K). Therefore, due to [37, Proposition E.3], this is also

the covariance of the minimum mean square estimator ofx1:K

given y1:K . As a result, due to Lemma1:

H(x1:K |y1:K) = Ey1:K=y′

1:K
(H(x1:K |y1:K = y′1:K))

= Ey1:K=y′

1:K

(

1

2
log[(2πe)nK det(Σ(x⋆

1:K))

)

=
nK log(2πe) + log det(Σ(x⋆

1:K))

2
. (9)

We derive a formula forΣ(x⋆
1:K) in the proof of Lemma4.

APPENDIX B: PROOF OFTHEOREM 1

Proof. We present for the discrete time case (2) an instance
of Problem 1 that is equivalent to the NP-hard minimal
observability problem introduced in [26], [27], that is defined
as follows (the proof for the continuous time case is similar):

Definition (Minimal Observability Problem): Consider
the linear time-invariant system:

ẋ(t) = Ax(t),

yi(t) = rie
⊤
i x(t), i ∈ [n]

(10)

whereei is the vector with thei-th entry equal to1 and the
rest equal to0, and ri is either zero or one; theminimal
observability problemfollows:

select r1, r2, . . . , rn

such that r1 + r2 + . . .+ rn ≤ r,

(10) is observable.

(11)

The minimal observability problem is NP-hard whenA is
chosen as in the proof of Theorem 1 of [26], and r ≤ n. We
denote thisA by ANP−h.

Problem 1 is equivalent to the NP-hard minimal observ-
ability problem for the following instance:K = 1, x(t0) ∼
N (c, 0), where c ∈ R

n is an unknown constant,µ(t) =
eANP−h(t−t0)x(t0), Σ(t, t′) = 0, m = n, gi(x(t)) = e⊤i x(t),
zero measurement noise, ands1 = r. This observation con-
cludes the proof.

APPENDIX C: PROOF OFTHEOREM 2

Proof. We first prove thatH(x1:K |S1:K) is a non-increasing
and supermodular function in the choice of the sensors. Then,
we prove Theorem2 by combining these two results and
results on the maximization of submodular functions over
matroid constraints [28].

Notation: GivenK disjoint finite setsE1, E2, . . . , EK and
Ai, Bi ∈ Ei, we write A1:K � B1:K to denote that for all
i ∈ [K], Ai ⊆ Bi (Ai is a subset ofBi). Moreover, we denote
that Ai ∈ Ei for all i ∈ [K] by A1:K ∈ E1:K . In addition,
given A1:K , B1:K ∈ E1:K , we write A1:K ⊎ B1:K to denote
that for all i ∈ [K], Ai ∪Bi (Ai unionBi).

Definition 1. ConsiderK disjoint finite setsE1, E2, . . . , EK . A
functionh : E1:K 7→ R is non-decreasingif and only if for all
A,B ∈ E1:K such thatA � B, h(A) ≤ h(B); h : E1:K 7→ R

is non-increasingif −h is non-decreasing.



Proposition 3. For any finiteK ∈ N, considerK distinct
copies of[m], denoted byR1,R2, . . . ,RK . The estimation
error metric H(x1:K |S1:K) : R1:K 7→ R is a non-increasing
function in the choice of the sensorsS1:K .

Proof. ConsiderA,B ∈ R1:K such thatA � B, and denote
by B \ A ≡ {i|i ∈ B, i /∈ A}: H(x1:K |B) = H(x1:K |A,B \
A) ≤ H(x1:K |A) since conditioning can either keep constant
or decrease the entropy [36].

Definition 2. ConsiderK disjoint finite setsE1, E2, . . . , EK .
A functionh : E1:K 7→ R is submodularif and only if for
all A,B,C ∈ E1:K such thatA � B, h(A ⊎ C) − h(A) ≥
h(B ⊎ C) − h(B); h : E1:K 7→ R is supermodularif −h is
submodular.

Proposition 4. For any finiteK ∈ N, considerK distinct
copies of [m], denoted byR1,R2, . . . ,RK ; the estimation
error metricH(x1:K |S1:K) : R1:K 7→ R is a set supermodular
function in the choice of the sensorsS1:K .

Proof. Let A,B,C ∈ E1:K such thatA � B:

H(x1:K |A)−H(x1:K |A ⊎ C) (12)

= H(x1:K |A)−H(x1:K |A,C)

= I(x1:K ;C|A) (13)

= H(C|A)−H(C|x1:K , A) (14)

≥ H(C|B)−H(C|x1:K , B) (15)

= I(x1:K ;C|B) (16)

= H(x1:K |B)−H(x1:K |B,C) (17)

= H(x1:K |B)−H(x1:K |B ⊎ C). (18)

Eq. (12) and (18) follow from our definition of ⊎. (13)
and (14), (15) and (16), and (16) and (17) hold due to the
definition of mutual information [36]. (15) follows from (14)
due to two reasons: first,H(C|A) ≥ H(C|B), sinceA � B
and conditioning can either keep constant or decrease the
entropy [36]; second,H(C|x1:K , A) = H(C|x1:K , B) due
to the independence of the measurements givenx1:K , per
Assumption1.

Proof of Part 1 of Theorem2. We use the next result from
the literature of maximization of submodular functions over
matroid constraints:

Definition 3. Consider a finite setE and a collectionC of
subsets ofE . (E , C) is:

• an independent systemif and only if:

– ∅ ∈ C, where∅ denotes the empty set
– for all X ′ ⊆ X ⊆ E , if X ∈ C, X ′ ∈ C.

• a matroid if and only if in addition to the previous two
properties:

– for all X ′, X ∈ C where |X ′| < |X |, there existsx /∈
X ′ andx ∈ X such thatX ′ ∪ {x} ∈ C.

Lemma 2 (Ref. [28]). ConsiderK independence systems
{(Ek, Ck)}k∈[K], each the intersection of at mostP matroids,
and a submodular and non-decreasing functionh : E1:K 7→ R.

There exist a polynomial time greedy algorithm that returns
an (approximate) solutionS1:K to:

maximize
S1:K�E1:K

h(S1:K)

subject to Sk ∩ Ek ∈ Ck, k ∈ [K],
(19)

that satisfies:

h(O)− h(S1:K)

h(O)− h(∅)
≤

P

1 + P
, (20)

whereO is an (optimal) solution to(19).

Lemma 3. Problem 1 is an instance of(19) with P = 1.

Proof. We identify the instance of{Ek, Ck}k∈[K] and h, re-
spectively, that translate (19) to Problem 1:

Given K distinct copies of [m], denoted by
R1,R2, . . . ,RK , first consider Ek = Rk and Ck =
{S|S ⊆ Rk, |S| ≤ sk}: (Ek, Ck) satisfies the first two points
in part 1 of Definition3, and as a result is an independent
system. Moreover, by its definition,Sk ∩ Ek ∈ Ck if and only
if |Sk| ≤ sk.

Second, for allS1:K � E1:K , consider:

h(S1:K) = −H(x1:K |S1:K).

From Propositions3 and 4, h(S1:K) is set submodular and
non-decreasing. In addition to Lemma3, the independence
system(Ek, Ck), whereEk = Rk andCk = {S|S ⊆ Rk, |S| ≤
sk}, satisfies also the point in part 2 of Definition3; thereby,
it is also a matroid and as a resultP , as in Lemma2, is 1.

This observation, along with Lemmas2 and3 complete the
proof of (8), since the adaptation to Problem 1 of the greedy
algorithm in [28, Theorem 4.1] results to Algorithm1.

Proof of Part 2 of Theorem2. Algorithm 1 requires for each
k ∈ [K] the application of Algorithm2 to (7). In addition,
each such application requires at mosts2k evaluations of
H(x1:K |y1:K). Therefore, Algorithm1 has time complexity
O(

∑K

k=1 s
2
kT ).

The proof of Theorem2 is complete.

APPENDIX D: PROOF OFTHEOREM 3

Notations: We introduce five notations: first,S1:K is the
block diagonal matrix with diagonal elements the sensor se-
lection matricesS1, S2, . . . , SK ; second,c(x1:K) is the batch
vector [(S1g(x1))

⊤, (S2g(x2))
⊤, . . . , (SKg(xK))⊤]⊤, where

g(xk) ≡ (g1(xk), g2(xk), . . . , gm(xk))
⊤; third, C(x1:K) is

the block diagonal matrix with diagonal elements the ma-
trices S1C1, S2C2, . . . , SKCK , where Ck ≡ G(xk) and
G(x(t)) ≡ ∂g(x(t))/∂x(t); fourth, vk is the batch mea-
surement noise vector(v⊤1,k, v

⊤
2,k, . . . , v

⊤
m,k)

⊤; fifth, µ1:K ≡
(µ(t1)

⊤, µ(t2)
⊤, . . . , µ(tK)⊤)⊤.

Proof. We first derive the two formulas forH(x1:K |y1:K):
the first formula is expressed in terms ofΣ(x1:K)−1, and the
second formula is expressed in terms ofΣ(x1:K).



Lemma 4 (Formula ofH(x1:K |y1:K) in terms ofΣ(x1:K)−1).
Consider the start of thek-th iteration in Algorithm1. Given
the measurementsy1:(k−1) up to k, H(x1:K |y1:K) is given by
−T ′

1 + nK log(2πe)/2, where:

T ′
1 ≡

1

2
log det(Ξ + Σ(x1:K)−1)

Ξ ≡ C(µ̃1:K)⊤S1:KΣ(v1:K)−1S⊤
1:KC(µ̃1:K)

and µ̃1:K is the maximum a posteriori (MAP) estimate ofx1:K

given the measurementsy1:(k−1) up to k.

Proof. Before thek-th iteration of Step 1 in Algorithm1,
we first computeµ̃1:K given y1:(k−1) up to k. This step
has complexityO(n2.4K) when Σ(x1:K)−1 is sparse [24,
Eq. (5)] [35, Section 3.8], and it does not increase the
total time complexity of Algorithm1. Next, givenµ̃1:K , we
linearise our measurement model overµ̃1:K , and compute
C(µ̃1:K). Then, we continue as follows:x1:K and y1:K are
jointly Gaussian:

(x1:K , y1:K) ∼ N (E(x1:K , y1:K),Σ(x1:K , y1:K)) ,

E(x1:K , y1:K) = (µ1:K , c(µ1:K))

Σ(x1:K , y1:K) =

[

Σ(x1:K) Σ(x1:K)C(µ̃1:K)⊤

C(µ̃1:K)Σ(x1:K) Σ(y1:K)

]

,

where:

Σ(y1:K) = S1:KΣ(v1:K)S⊤
1:K + C(µ̃1:K)Σ(x1:K)C(µ̃1:K)⊤.

Therefore, the conditional probability distribution ofx1:K

given y1:K has covarianceΣ(x⋆
1:K) (using our notation in

Proposition2) such that:

Σ(x⋆
1:K) = Σ(x1:K)−Σ(x1:K)C(µ̃1:K)⊤ΦC(µ̃1:K)Σ(x1:K),

where:

Φ ≡ C(µ̃1:K)Σ(x1:K)C(µ̃1:K)⊤ + S1:KΣ(v1:K)S⊤
1:K)−1.

Using the Woodbury matrix identity [39, Corollary 2.8.8]:

Σ(x⋆
1:K) = (Ξ + Σ(x1:K)−1)−1,

where we also used the(S1:KΣ(v1:K)S⊤
1:K)−1 = S1:K

Σ(v1:K)−1S⊤
1:K , which holds sinceS1:K and Σ(v1:K) are

block diagonal. Using (9) the proof is complete.

Remark 2. The time complexity for the evaluation of
H(x1:K |y1:K) using Lemma4 is decided by the sparsity of
Σ(x1:K)−1 since the rest of the matrices are block diagonal.

Lemma 5 (Formula ofH(x1:K |y1:K) in terms ofΣ(x1:K)).
Consider the start of thek-th iteration in Algorithm1. Given
the measurementsy1:(k−1) up to k, H(x1:K |y1:K) is given by
H(x1:K |y1:K) = T1 − T2 +H(x1:K), where:

T1 ≡
1

2

K
∑

k=1

log[(2πe)sk det(SkΣ(vk)S
⊤
k )] (21)

T2 ≡
1

2
log[(2πe)

∑
K

k=1
sk det(Σ(y1:K))] (22)

Σ(y1:K) = S1:KΣ(v1:K)S⊤
1:K + C(µ̃1:K)Σ(x1:K)C(µ̃1:K)⊤,

and µ̃1:K is the maximum a posteriori (MAP) estimate ofx1:K

given the measurementsy1:(k−1) up to k.

Proof. Before thek-th iteration of Step 1 in Algorithm1,
we first computẽµ1:K given y1:(k−1) up to k. This step has
complexityO(n2.4K) when: a)Σ(x1:K) is sparse [24, Eq. (5)
after multiplying its both sides withΣ(x1:K)]; b) certain
invertibility conditions apply [35, Section 3.8]. In this case,
this step does not increase the total time complexity of Algo-
rithm 1. If the invertibility conditions in [35, Section 3.8] do
not apply, the complexity of this computation isO(n2.4K2.4).
In this case, we can useµ1:K , instead ofµ̃1:K , to evaluate
H(x1:K |y1:K), and keep the overall complexity of Algorithm1
to O(n2.4K). Next, givenµ̃1:K , we linearise our measurement
model over̃µ1:K , and computeC(µ̃1:K). Then, we continue as
follows: the chain rule for conditional entropies implies [36]:
H(x1:K |y1:K) = H(y1:K |x1:K) − H(y1:K) + H(x1:K). Thus,
we derive a closed formula forH(y1:K |x1:K) andH(y1:K):

Closed form ofH(y1:K |x1:K): The chain rule for condi-
tional entropies implies [36]:

H(y1:K |x1:K) =

K
∑

k=1

H(y(tk)|x1:K , y1:k−1) (23)

=

K
∑

k=1

Ex(t
k′ )(H(y(tk)|x(tk) = x(tk′ ))). (24)

Eq. (24) follows from (23) because givenx(tk) y(tk)
is independent ofy1:k−1, x1:(k−1) and x(k+1):K . In ad-
dition, (21) follows from (24) because y(tk)|x(tk) ∼
N (Skg(x(tk)), SkΣ(vk)S

⊤
k )) and, thus, Lemma1 applies.

Closed form ofH(y1:K): To this end, we derive the
marginal distribution ofy1:K , denoted byf(y1:K):

f(y1:K) =

∫

f(y1:K , x1:K)dx1:K

=

∫

f(y1:K |x1:K)f(x1:K)dx1:K ,

wheref(x1:K) denotes the probability distribution ofx1:K .
In particular:

y1:K |x1:K ∼ N (c(x1:K), S1:KΣ(v1:K)S⊤
1:K)

x1:K ∼ N (µ1:K ,Σ(x1:K)).

Therefore, the best Gaussian approximation to the marginal
distribution ofy1:K is:

y1:K ∼ N (E(y1:K),Σ(y1:K))

E(y1:K) = c(µ1:K)

Σ(y1:K) = S1:KΣ(v1:K)S⊤
1:K + C(µ̃1:K)Σ(x1:K)C(µ̃1:K)⊤.

Thus, from Lemma1, (22) follows.

Remark 3. The time complexity for the evaluation of
H(x1:K |y1:K) using Lemma5 is decided by the sparsity of
Σ(x1:K) since the rest of the matrices are block diagonal.

We complete the proof for each case of Theorem3:



• Time complexity of each evaluation ofH(x1:K |y1:K)
when eitherΣ(x1:K) or Σ(x1:K)−1 is exactly sparse (that
is, block tri-diagonal): We present the proof only for the
case whereΣ(x1:K)−1 is exactly sparse since the proof
for the case whereΣ(x1:K) is exactly sparse is similar.
In particular, consider the formula ofH(x1:K |y1:K) in
Lemma4: T ′

1 involves the log determinant of a matrix
that is the sum of twonK × nK sparse matrices: the
first matrix is block diagonal, and the second one is
block tri-diagonal. The block diagonal matrix is eval-
uated inO(n2.4K) time, since the determinant of an
n × n matrix is computed inO(n2.4) time using the
Coppersmith-Winograd algorithm [40]. Then,T ′

1 is eval-
uated inO(n2.4K) [41, Theorem 2].

• Time complexity of each evaluation ofH(x1:K |y1:K)
when bothΣ(x1:K) and Σ(x1:K)−1 are dense: In this
case, T ′

1 (and similarly T2 in Lemma 5) is the log
determinant of a densenK×nK matrix. Therefore, it is
evaluated inO((nK)2.4) time, since the determinant of
an n× n matrix is computed inO(n2.4) time using the
Coppersmith-Winograd algorithm [40].
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