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Scheduling Nonlinear Sensors for Stochastic Process Estimatio
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Abstract—In this paper, we focus on activating only a few sen-
sors, among many available, to estimate the state of a stocétac
process of interest. This problem is important in applicatons such
as target tracking and simultaneous localization and mappig
(SLAM). 1t is challenging since it involves stochastic sysms
whose evolution is largely unknown, sensors with nonlinear
measurements, and limited operational resources that cotrain

Due to these challenges, we focus on the following question:
“How do we select, at each time, only a few of the available
sensors so as to monitor effectively a system despite theeabo
challenges?” In particular, we focus on the following senso
scheduling problem:

the number of active sensors at each measurement step. WeProbIem 1. Consider a stochastic process, whose realization

provide an algorithm applicable to general stochastic proesses
and nonlinear measurements whose time complexity is lineain

the planning horizon and whose performance is a multiplicaive

factor 1/2 away from the optimal performance. This is notable
because the algorithm offers a significant computational agan-

tage over the polynomial-time algorithm that achieves the bst
approximation factor 1/e. In addition, for important classes of

Gaussian processes and nonlinear measurements corruptedtiv

Gaussian noise, our algorithm enjoys the same time complexi

as even the state-of-the-art algorithms for linear systemsand

measurements. We achieve our results by proving two propeigs
for the entropy of the batch state vector conditioned on the
measurements: a) it is supermodular in the choice of the seass;

b) it has a sparsity pattern (involves block tri-diagonal marices)

that facilitates its evaluation at each sensor set.

I. INTRODUCTION

Adversarial target tracking and capturing],[[2], robotic
navigation and autonomous constructi@h fctive perception
and simultaneous localization and mapping (SLAM) &re

at time ¢ is denoted byz(t) and a set ofm sensors, whose
measurements are nonlinear functionswf), evaluated at a
fixed set ofK measurement times, to, ..., tx. In addition,
suppose that at eacly, a set of at most;, < m sensors
can be used. Select the sensor sets so that the error of
the corresponding minimum mean square error estimator
of (x(t1),z(t2),...,z(tx)) is minimal among all possible
sensor sets.

There are two classes of sensor scheduling algorithms, that
trade-off between the estimation accuracy of the batcle stat
vector and their time complexityl]: those used for Kalman
filtering, and those for batch state estimation. The most
relevant papers on batch state estimation a@ fnd [11].
However, both of these papers focus on linear systems and
measurements. The most relevant papers for Kalman filtering
consider algorithms that use: myopic heuristid®][ tree
pruning [L3], convex optimization 14]—[17], quadratic pro-

only a few of the challenging information gathering probfemgramming [L8], Monte Carlo methods1], or submodular
that benefit from the monitoring capabilities of sensor nefunction maximization20], [21]. However, these papers focus
works [B]. These problems are challenging because:
« they involve systems whose evolution is largely unknow@nd do not consider unknown dynamics.
modeled either as a stochastic process, such as a Gausgjal, contributions:

similarly on linear or nonlinear systems and measurements,

process §], or as linear or nonlinear system corrupte
with process noisel],

« they involve nonlinear sensors (e.g.,
corrupted with noiseT],

« they involve systems that change over tingg pnd as a

result, necessitate both spatial and temporal deployment
of sensors in the environment, increasing the total number

of needed sensors, and at the same time,

« they involve operational constraints, such as limited com-
munication bandwidth and battery life, which limit the

number of sensors that can simultaneously be active
the information gathering process][
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(1) We prove that Problem 1 is NP-hard.

We prove that the best approximation factor one can

achieve in polynomial time for Problem 1 ige.

3) We provide Algorithml for Problem 1 that:

« for all stochastic processes and nonlinear measurements,
achieves a solution that is up to a multiplicative factor
1/2 from the optimal solution with time complexity
that is only linear in the planning horizoA. This is
important, since it implies that Algorithni offers a
significant computational advantage with negligible loss
in performance over the polynomial-time algorithm that
achieves the best approximation factorigt,

« for important classes of Gaussian processes, and nonlin-
ear measurements corrupted with Gaussian noise, has the
same time complexity as even state-of-the-art algorithms
for linear systems and measurements. For example, for
Gaussian process such as those in target tracking, or
those generated by linear or nonlinear systems cor-
rupted with Gaussian noise, Algorithinhas the same
time complexity as the batch state estimation algorithm

in
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in [10], and lower than the Kalman filter schedulingwith probability distributionF; E(x) is its expected value, and
algorithms in [L4], [17]. Y (z) its covariancez ~ N'(u,Y) denotes a Gaussian random
Therefore, Algorithml can enjoy both the estimation accuvariable z with meanu and covariance:; we equivalently
racy of the batch state scheduling algorithms (comparedwaite z ~ A (E(z), X(z)). Finally, we writez|y ~ G to denote
the Kalman filtering approach, that only approximates ththat z’s probability distribution givery is G.
batch state estimation error with an upper boutd)[and,

surprisingly, even the low time complexity of the Kalman Il. PROBLEM FORMULATION

filtering scheduling algorithms for linear systems. This section introduces the system, measurement, and
Technical contributions: scheduling models and presents the sensor schedulingeprobl
' formally.

1) Supermodularity in Problem:MWe achieve the approxi-
mation performance of Algorithr, and the linear dependenceSystem Model. We consider two cases:
of its time complexity on the planning horizon, by proving « Continuous time modelConsider the stochastic process
that our estimation metric is a supermodular function in the (along with a probability spacé, 7, P)):
choice of the utilized sensors. This is important, since ki
in contrast to the case of multi-step Kalman filtering foetm To(t) 1w € Q> 1o = R” 1)

systems and measurements, where the corresponding estima-wheren, € N, ¢, is the initial time, andz,(t) the state

tion metric is neither supermodular nor submodud [ 21]. vector given the sample.

Moreover, our submodularity result cannot be reduced to, piscrete time modelConsider the nonlinear discrete-
the batch estimation problems 27, [23]. The reasons time system:

are twofold: i) we consider sensors that measure nonlinear

combinations of the elements oft), in contrast to 22], [23), Tpt1 = le(@1k), b ~ Li, b €N (2)

where each sensor measures directly only one elemerit pf wherez;, € R™ is the state vector;.;, the batch vector
i) our estimation metric is relevant to monitoring dynaalic (21,22, ..,2), and £y, a probability distribution over

_systems_ and (jifferent_ to the_ submodular entropy_metric and functionsl, : R™ — R™.
information gain considered ir2P] and [23], respectively.

2) Sparsity in Problem AWe achieve the reduced time com- Because the system modelf) @nd @) assume no char-
plexity of Algorithm 1 for Gaussian processes by identifyingicteristic structure, they are appropriate for modelingegy
a sparsity pattern in our estimation metric. Specificatiyjthis unknown dynamics. For example, an instance Hf i¢ the
case the time complexity of each evaluation of our metrfime-indexed Gaussian process system model:
is decided by the sparsity pattern of either the covariarice o / /
(z(t1),z(t2), ..., z(tx)), or the inverse of this covariance. 2() ~ GPult), 2 1)), 4t = to, 3
This is important since the two matrices are not usuallysmamwhere(t) is the mean function ant(¢, ¢’) is the covariance
at the same time, even if one of them i84]. E.g., for function. Similarly, an instance of2] is the state-indexed
Gaussian processes such as those in target tracking, the @aussian process system model:
matrix is block tri-diagonal, whereas for those in SLAM, or
those generated by Iigear or nonlinear systems corruptéd wi i = Uax), L~ GP(u(e), B(w, o), 2,2’ €R™. (4)
Gaussian noise, the second matrix is block tri-diagonal. ~ Measurement Model. Consider m nonlinear sensors that

Notation: We denote the set of natural numbéis2,...} by ©OPerate in discrete time:

N, the set of real numbers b, and the sef{1,2,...,n} ik = gi(xk) +vig, i€[m)keN (5)
by [n] (n € N). The set of real numbers betweénand 1

is denoted by|0,1], and the empty set by. Given a set where for the continuous-time systen(Ipwe letzy, := z(tx)
X, |X| is its cardinality. In addition, fom € N, A" is the at a pre-specified set of measurement times,, ... andv; x
n-times Cartesian product x X x --- x X. Matrices are is the measurement noise of sensat time k.

represented by capital letters and vectors by lower-catsade
We write A € X"1*"2 (ny,ny € N) to denote a matrix of
ny1 rows andny columns whose elements take valuesiin

AT is its transpose, anfi];; is its element at theé-th row Sensor Scheduling Model.The m sensors in(5) are used
and j-th column;det(A) is its determinant. Furthermore, ifat K scheduled measurement timgs, to, ..., tx }. At each
A is positive definite, we writed = 0. In the latter case, k € [K], onlys, of them sensors are used{ < m), resulting
A~ is its inverse.] is the identity matrix; its dimension in the batch measurement vectgr:

is inferred from the context. Similarly for the zero matrix

0. The = denotes equivalence. More)é)ver, for a probability yr = Sk, k€ (K], ©)
space(Q2, F,P), Q is the sample spacer the o-field, and where S;; is a sensor selection matrix, composed of sub-
P: F — [0, 1] the function that assigns probabilities to eventatrices[S];; (i € [sk], 7 € [m]) such that[S];; = I if

in F [25]. We write z ~ F to denote a random variable sensorj is used at timek, and [Si];; = 0 otherwise. We

Assumption 1. v;; are independent across and k. In
addition, g; is one-time differentiable.



assume that a sensor can be used at most once at keactflgorithm 1 Approximation algorithm for Problem 1.
and as a result, for eachthere is onej such that[S;];; = I Input: Horizon K, scheduling constraints, sz, ..., sk, er-
while for eachj there is at most oné such that[Sy];; = I. ror metricH(z1.x|S1:x) : Sk € [m], k € [K] = R

. Output: Sensor setgS;,So,...,Sk) that approximate the
We now present the sensor scheduling problem formally: solution to Problem 1, as quantified in Theorém

Notation: For ¢,j € N, ¢;; = (@i, Pit1,...,0;). In k1, Sy < 0
addition, S, = {j : there exists € [sy], [Sk]i; = I}: Sk is while k < K do
the set of indices that correspond to utilized sensotsg .at )

1. Apply Algorithm 2 to
Problem 1 (Sensor Scheduling in Stochastic Processes with min {H(z1.x|Sue1,8) : 18] < 51} @
[m] N K= 1 . p—

Nonlinear Observations)Select at each timé a subset ofy, SC
sensors, out of the: sensors in(5), to use in order to minimize 5 panote byS: the solution Algorithm2 returns
the conditional entropy af;.x given the measuremenys 3. St < (St_1,Sk)
minimize H(z1.x|S1:x) 4. k+—k+1
S Clm],ke[K] end while

subject to |Sk| < sk, k € [K],

where H(z1.x|S1:x) denotes the conditional entropy(algorithm 1 with a subroutine in Algorithn®) and quantify
H(z1.x[y1:x) Of 1.5 given the measuremenys. k. its performance and time complexity in the following theore

The conditional entropy(z1.x[y1:x) captures the esti- Theorem 2. The theorem has two parts:

mation accuracy Ofr1.x given yi.x, as we explain in the 1y aporoximation performance of Algorithrix Algorithm 1
following two propositions:

returns sensors setS;, S, ..., Sk that:
Proposition 1. H(z1.x|y1.x) iS a constant factor away from i. satisfy all the feasibility constraints of Problem 1:
the mutual information of;.x and y;.x. In particular: [Sk| < sk, k € [K]

ii. achieve an errorH(z1.x|S1.x) such that:

. . . H(x1.x|S1.x) — OPT 1
where I(z1.x; y1.5x) iS the mutual information of:1.x and VAX —OPT =73 (8)
y1.x, andH(z1.x) is constant.

H(zix|y1:x) = —I(z1x; y1:x) + H(z1:1),

where OPT is the optimal cost of Problem 1, and

Proposition 2. Consider the Gaussian proceé3) and sup- MAX = maxs H(71.x[S].x) is the maximum
pose that the measurement noise(#) is Gaussiany; ; ~ (worst) cost in Problem 1.
N(0,%2(vi ). H(z1.x|y1:x) iS @ constant factor away from 2) Time complexity of Algorithm1: Algorithm 1 has time
log det(3(x7. 5 )), WhereX(z7. ) is the error covariance of complexityO(ZkK:1 s3T), whereT is the time complex-
the minimum mean square estimatey, ;. of z1.x given the ity of evaluatingH(z1.x|S7.x) : S, C [m], k € [K] =
measurements;.x. In particular:* R at anS; .

H(z1.x|yx) = log det(X(27,x)) n nk 10g(27T6)' In the following paragraphs, we discuss Algorithis ap-

' ' 2 2 proximation quality and time complexity and fully charaize
1. M AIN RESULTS the latter in Theorer and Corollaryl for Gaussian processes

. . .and Gaussian measurement noise.
We first prove that Problem 1 is NP-hard, and then derive Supermodularity and monotonicity & (z 1. |yr.x):

for it a provably near-optimal approximation algorithm: We state two properties of(z1.x|y1.x) that are used to

Theorem 1. The problem of sensor scheduling in stochastigrove Theoren?. In particular, we show thal(z1.x [y1:x)
processes with nonlinear observations (Problem 1) is NRihaiis a non-increasing and supermodular function with resfeect
the sequence of selected sensors. Then, Thea@rdallows

Proof. See AppendixV. Our approach is to find an instanceoy combining these two results with results on submodular

of Problgm 1 that is. equivalent. to the NP-hard minimg{,,c(ions maximization over matroid constrain®g]. These
observability problem introduced ir2], [27]. derivations are presented in Appendix.

Due to Theorent, we need to appeal to approximation al- APProximation quality of Algorithni: Theorem2 quan-
gorithms to obtain a solution to Problem 1 in polynomialim tifies the worst-case performance of Algorithimacross all

To this end, we propose an efficient near-optimal algorithﬁ_?lues of P_roblem _115 parameters. T_he reason is that the
right-hand side of &) is constant. In particular8f guarantees

We explaina* . andlogdet(X(z*, . )): @, is the optimal estimator that for any instance of Problem 1, the distance of the
for 1., since it minimizes amongll estimators ofry.x the mean square approximate cosH(z1.x|S1.x) from OPT is at mostl /2 the
2 ; : . : .
errorE(||z1.c — 27, ¢ [[3) (||-[|2 is the euclidean norm), where the expectatioryistance of the worst (maximum) cafAX from OPT. This
is taken with respect tg.x [7]. logdet(X(z7,)) iS an estimation error . . . . . .
metric related td|z1. x — 2, ||3, since when it is minimized, the probability approximation factor is close to the optimal approximation

that the estimation errofz . — @3, |2 is small is maximized 10]. factor 1/e = .38 one can achieve in the worst-case for



Algorithm 2 Single step greedy algorithm (subroutine imoiseu; ; in (5). For the case of Gaussian stochastic processes
Algorithm 1). and measurement noises:
Input: Current iterationk, selected sensor sefs;, Ss,. ..,

. . , ! Theorem 3. Consider the Gaussian process mod&l and
Sk—1) up to the current iteration, constraisy, error metric L 7
suppose that the measurement noise is Guassiap: ~
H($1;K|81;K) : S, C [m],k S [K] — R . o
. ; : N (0, X(v;,%)) such thatX(v; ;) > 0. The time complexity of
Output: Sensor setS, that approximates the solution to L : .
Problem 1 at timek evaluatingH(z1.x |y1.x) depends on the sparsity pattern of
Y(21.x) and X(z1.x) ! as follows.

8%+ 0, X% « [m], andt + 1 ) ) )

lteration t: « Each evaluation ofH(z1.x|y1.) has time complexity
_ _ O(n**K), wheneitherX(z1.x) or X(z1.x) ! is exactly
t—1 __ t—1 ’ : :

LAf X0 =0, rewm S sparse (that is, block tri-diagonal).

: t—1 i , t—1y
. iifd " *(gt‘lfwith ];?ers ;vemfehd g;gi)tgril )where' « Each evaluation offl(z1.x |y1.x) has time complexity
iext=1 pi ' Y ’ O(n?*K?%), whenboth X(z1.x) and X(z1.x)~ ! are

pi(S™Y) = H(z1.x|S1k-1,871) — dense.
H(z1:x|S1r-1, 871 U {i}) Theorem3 implies that whenX(z1.x) or X(z1.x)" is
3.a. IF[ST=1 U {i(t)}| > sp, X1« X1\ {i(t)}, and go exactly sparse, the time complexity of each evaluation of
to Step 1 H(x1.x|y1.5) is only Im_ear in K. This is important because_z
3.b. 1F|SLU{i(t)}] < sy SP - SLU () and Xt Z(:;LK) or X(z1.x)" " is exactly sparse for _several apph-
X1 {i(t)} cations and system model34]. For example, in adversarial

target tracking applications, where the target wants tddavo
capture and randomizes its motion in the environment (by un-
correlating its movements).(x1.x) can be considered tri-

. o ) . ~ diagonal (since this implies(¢) andz(¢x ) are uncorrelated
Problem 1 in polynomial time29]; the reason is twofold: for |k — K| > 2). Similarly, in SLAM, or in system models

fws(;, Problemdl |Invoflvesch§3m|n|m(ljzatlon o;a non"ncrﬂ@s'dwhere the Gaussian process 8) (s generated by a linear or
and supermodular functior8], and second, as we prove nonlinear system corrupted with Gaussian noséy;.x)~*

n Thgo.reml, P“’b'e”.". Lis in the_worst—case_equwa!ent %5 block tri-diagonal 24]. In particular, for linear systems,
the minimal obse_rvab|l|ty problem |_ntrqducet_d iaqg], which S(z1.)~" is block tri-diagonal 24, Section 3.1], and for
cannot be approximated in polynomial time with abettero‘zalctnonli'near systemsS(z1.c)~ is efficiently approximated by

than thel/e [31]. a block tri-diagonal matrix as follows: for eadh before the

Remark 1. We can improve thel/2 approximation fac- k-thiteration of Step 1 in Algorithni, we first computei;. x
tor of Algorithm 1 to 1/e by utilizing the algorithm intro- 9iven yi.;.—1y up to k. This step has complexit)(n**K)
duced in B2]. However, this algorithm has time complexitpvhenXi(z1.x)~" is sparse24, Eq. (5)] [35, Section 3.8], and
O((nK)MT), whereT is the time complexity of evaluatingit does not increase the total time complexity of Algoritim
H(z1.x|S].5) : Sy C [m], k € [K] — R at an S} . Then, we continue as irRfl, Section 3.2].
_ _ ) ) _ Sparsity inH(z1.x|y1.x): We state the two properties

Time complexity of Algorithmi: Algorithm 1's time  of H(x,x|y1.) that result to Theorens. In particular, we
comple_xity is broken down into. two parts: a) th_e number Cﬁrove thatH(z1.x |y1.x) is expressed in closed form with
evaluations off (1. x[y1.x) required by the algorithm; b) the yyo different formulas such that the time complexity for the
time complexity of each such evaluation. In more detail:  gyajuation ofH (1. x |y1.x ) Using the first formula is decided

a) Number of evaluations dfl(z1.x |y1.x) required by by the sparsity pattern of (z,.x ), whereas using the second
Algorithm 1. Algorithm 1 requires at most; evaluations formula is decided by the sparsity patternXfz;.)~'. The
of H(x1.x|y1.x) at eachk € [K]. Therefore, Algorithml reason for this dependence is that the rest of the matrices in
achieves a time complexity that is only linear/inwith respect these formulas are sparser th&zy.x) or X(x1.x)"'; in
to the number of evaluations @f(z1.x|y1.x); the reason is particular, they are block diagonal.
that Y1, 57 < maxye(x)(s7)K. This is in contrast to the  The full characterization of Algorithm’s time complexity
algorithm in Remarkl, that obtains the best approximatiorfor Gaussian processes and Gaussian measurement noises
factor 1/e, whose time complexity is of the ordér((nK)'') follows.
with respect to the number of evaluationsifz1.x |y1.x).2

b) Time complexity of each evaluationlfifx1.x |y1.x):

4. t + t+ 1 and continue

Corollary 1. Consider the Gaussian process mog¢&l and

I . . suppose that the measurement noise is Gaussiap: ~
This time complexity depends on the properties of both th PP 3R

. T (0,%(v; k) such thatX(v; ) > 0. The time complexity of
stochastic processl) (similarly, (2)) and the measurementAlgorithm 1 depends on the sparsity pattern Bfzy. ) and

Y (z1.) "t as follows.

2We can also speed up Algorithtnby implementing in Algorithm2 the . . . 2.4 K 9
method of lazy evaluations3§]: this method avoids in Step 2 of Algorithi . Algor'thm 1 has time complexn_)O(n HK Y 1 Sh)
the computation ofp; (S*~1) for unnecessary choices af wheneitherX(z1.x) or (1. ) ! is exactly sparse (that



is, block tri-diagonal). the covariance of the minimum mean square estimatay gf
« Algorithm 1 has time complexity)(n?4 K24 Zszl s2), givenyi.k. As a result, due to Lemma

whenboth ¥(z1.x) and (z1.5 )~ ! are dense.
(@1:5c) and B(wc) H( 1 ly1) = Bypmy . (Hlanslyng = vio)

Comparison of Algorithnl’s time complexity for Gaus- 1 i .
sian processes and Gaussian measurement noises, per Corol- =Eyin=vi (5 log[(2me) det(z(%x)))
lary 1, to that of existing scheduling algorithm&he most K loo(2 loe det (3 (2*
relevant algorithm to Algorithni is the one provided in1[0], == og(2me) + 2Og et (ZLK)). (9)

where linear systems with additive process noise and measur ) ]

ment noises withany distribution are assumed. Algorithm Ve derive a formula foE(z7, ) in the proof of Lemmat. [
generalizes 10] from linear systems and measurements to
Gaussian processes and nonlinear measurements. At the same
time, it achieves the same time complexity as the algorithRfoof. We present for the discrete time cas® &n instance
in [10] when S(z1.x) or S(z1.x )" is exactly sparse. This of Problem 1 that is equivalent to the NP-hard minimal
is important since the algorithm irL{] has time complexity observability problem introduced ir2§], [27], that is defined
lower than the-state-of-the-art batch estimation sersuedul- as follows (the proof for the continuous time case is sinilar

APPENDIXB: PROOF OFTHEOREM 1

ing algorithms, such as the algorithm proposed ia][ and Definition (Minimal Observability Problem): Consider
similar to that of the state of the art Kalman filter schedylinthe linear time-invariant system:

algorithms, such as those proposed If][ [17], [21] (in @(t) = Ax(t),

particular, lower for largex). (10)

yi(t) = rie;rx(t),i € [n]

IV. CONCLUSION wheree; is the vector with the-th entry equal tol and the
rest equal to0, and r; is either zero or one; theminimal

In this paper, we proposed Algorithm for the NP- observability problenfollows:
hard problem of sensor scheduling for stochastic process

estimation. Exploiting the supermodularity and monotiyic select 71,727
of conditional entropy, we proved that the algorithm has such that 71 + 7o+ ...+ 7, <, (11)
an approximation factofl/2 and linear complexity in the (10) is observable

scheduling horizon. It achieves both the accuracy of batch

estimation scheduling algorithms and, surprisingly, wilem  The minimal observability problem is NP-hard whehis

information structure of the problem is sparse, the low timghosen as in the proof of Theorem 1 @6], andr < n. We

complexity of Kalman filter scheduling algorithms for limeadenote thisA by Ayp_,.

systems. This is the case, for example, in applications suctProblem 1 is equivalent to the NP-hard minimal observ-

as SLAM and target tracking, and for processes generatsuility problem for the following instancel’ = 1, z(tg) ~

by linear or nonlinear systems corrupted with Gaussianenois\/(c,0), wherec € R™ is an unknown constanty(t) =

Future work will focus on an event-triggered version of theA~r-r(t=to)z(ty), B(t,t') = 0, m = n, g;(x(t)) = ¢, x(t),

scheduling problem, in which the measurement times arero measurement noise, and = r. This observation con-

decided online based on the available measurements, and @tudes the proof. O

decentralized version, in which information is exchangely o

among neighboring sensors. APPENDIXC: PROOF OFTHEOREM 2

Proof. We first prove thatH(x1.x|S1.x) IS @ non-increasing
APPENDIXA: PROOF OFPROPOSITION2 and supermodular function in the choice of the sensors. ,Then

] N ___ we prove Theoren? by combining these two results and
Proof. We first show that the conditional probability distribuyesyits on the maximization of submodular functions over
tion of 1.k giveny.x is Gaussian with covariane&(z7.. ), matroid constraints2g].

and then apply the following lemma: Notation: Given K disjoint finite setsS;, &, ..., Ex and
. A;, B; € &;, we write A1.x < Bi.x to denote that for all
Lemma 1 (Ref. [3€]). Letx ~ N (u, %) andz € R™: i € [K], A; C B; (4; is a subset o3;). Moreover, we denote

that A; € &; for all i € [K] by A1.x € &1.x. In addition,
given Ay.x, B1.x € &1.x, We write A1.x W By.x to denote

Specifically, due to Assumptioh, (z1.x,y1.x) are jointly that for all € [K], 4; U B; (4; union B;).
Gaussian. This has a twofold implication: first, the minimumefinition 1. Considerk disjoint finite sets;, &, ..., Ex. A
mean square estimator of . givenyy.x is lineariny:.x [37, functionh : &£.x — R is non-decreasing and only if for all
Proposition E.2]; second, the conditional probabilitytdisl- A B < &, such thatA < B, h(A) < h(B); h: E1.x — R
tion of z1.x given y1.x is Gaussian 38|, with covariance g non-increasingf —h is non-decreasing.
Y (27, ). Therefore, due toJ7, Proposition E.3], this is also

H(z) = % log[(2me)™ det ()]



Proposition 3. For any finite K € N, consider K distinct There exist a polynomial time greedy algorithm that returns

copies of[m], denoted byR;, Ro,..., Rk. The estimation an (approximate) solutios;.x to:
error_mefmc H(x1:K|81:K) : R1.x — R is a non-increasing maximize A(S1.x)
function in the choice of the sensafs.x . Suk=3E1:k (19)

Proof. ConsiderA, B € Ri.x such thatd < B, and denote subject to Sy N & € Ck, k € [K],
by B\ A= {i|li € B,i ¢ A}: H(z1.x|B) = H(z1.x|A, B\ that satisfies:
A) < H(z1.x]A) since conditioning can either keep constant

or decrease the entrop$d. 0 hO) —WSuk) . P

h(O)—h(®) ~ 14+ P’
where© is an (optimal) solution tq19).

(20)

Definition 2. ConsiderK disjoint finite setsfy, &s, ..., Ek.
A functionh : &£.x — R is submodularif and only if for
all A,B,C € &g such thatA < B, h(AwWC) — h(A) > Lemma 3. Problem 1 is an instance ofL9) with P = 1.
h(BWC) — h(B); h: &.x — R is supermodulaif —h is

submodular. Proof. We identify the instance ofE&x,Cy}reix) andh, re-

spectively, that translatel ) to Problem 1:
Proposition 4. For any finite K € N, consider K distinct Given K distinct copies of [m], denoted by

copies of_[m], denoted byR;, R, ... ,_RK; the estimation R, R,,..., Rk, first consider&, = R, and C, =
error metricH(z1.x|S1:x) : Ri:x = Ris aset supermodular {S|S C Ry, [S| < sk} (€, Cy) satisfies the first two points
function in the choice of the sensafs k. in part 1 of Definition3, and as a result is an independent
Proof. Let A, B,C € &,.x such thatd < B: iy|s;e|m% Moreover, by its definitiol, N & € Cy, if and only
| El < Sk
H(z1.x|A)—H(z1.x|A W C) (12)  Second, for allS;.x < &.x, consider:
= H(@yc|4) = H(wr:x]A4,C) W(Srrc) = —H(r1.x| S
= Honx: Ol4) (13) From Propositions3 and 4, h(S1.x) is set submodular and
. _ 1 1K
= H(C|4) - H(Clerk, 4) (14) non-decreasing. In addition to Lemn%a the independence
= H(C|B) — H(C|z1.x, B) (15)  system(&x,Cr), wheresy, = Ry andCy = {S|S C Ry, |S| <
=I(x1.x;C|B) (16) si}, satisfies also the point in part 2 of Definiti@nthereby,
= H(z1.x|B) — H(z1.x|B, C) (17) it is also a matroid and as a res#lt as in Lemma&,is1. O

= H(z1.x|B) — H(z1.x|B W C). (18) This observation, along with Lemmasand3 complete the
proof of (8), since the adaptation to Problem 1 of the greedy

Eq. (129 and (8) follow from our definition of . (13) algorithm in P8, Theorem 4.1] results to Algorithrh. O

and (14), (15) and (16), and (6) and (L7) hold due to the
definition of mutual information3g]. (15) follows from (14)  Proof of Part 2 of Theorem. Algorithm 1 requires for each
due to two reasons: firsil(C|A) > H(C|B), sinceA < Bk ¢ [K] the application of Algorithm2 to (7). In addition,
and conditioning can either keep constant or decrease #h such application requires at most evaluations of
entropy B6]; second,H(C|z1.k,A) = H(C|z1.x, B) due H(xy.k|y1.5). Therefore, Algorithml has time complexity

to the independence of the measurements givenr, per O(Zszl s%T). O
Assumptionl. ]

The proof of Theoren? is complete. O
Proof of Part 1 of Theoren2. We use the next result from
the literature of maximization of submodular functions ove APPENDIXD: PROOF OFTHEOREM 3
matroid constraints: Notations: We introduce five notations: firsg;.x is the
Definition 3. Consider a finite se€ and a collectionC of Plock diagonal matrix with diagonal elements the sensor se-
subsets of. (£,C) is: lection matricesSy, Ss, ..., Sk; seconde(xs.x) is the batch

vector [(S1g(x1)) T, (S2g(z2)) T, ..., (Skg(zk))T]", where

g(zr) = (91(xr), g2(xk), - -+, gm(zx)) 5 third, Claix) is
the block diagonal matrix with diagonal elements the ma-

« anindependent systetifi and only if:
— () € C, where( denotes the empty set

— for aII. )_(I cXxXc 5'_if_X € C.’_XI ecC. _ trices 5104, 5:Cs,...,SkCk, where C, = G(x) and
e a matr9|d|f and only if in addition to the previous tWo G(z(t)) = dg(x(t))/0xz(t); fourth, v is the batch mea-
properties: surement noise vectdw, ,, vy ., ..., v, ;) " fifth, pix =

— for all X', X € C where|X'| < |X]|, there existst ¢  (pu(t,) 7, pu(ta)7,... ultx) ") 7.

X" andz € X such thatX’ U {z} € C. i )
Proof. We first derive the two formulas foH(x1.x|y1.x):

Lemma 2 (Ref. [28]). Consider K independence systemshe first formula is expressed in terms %fz1.x )%, and the

{(&k,Ck)}re(x), €ach the intersection of at moBt matroids, second formula is expressed in termsSife. x ).
and a submodular and non-decreasing functtonf;.x — R.



Lemma 4 (Formula ofH(z1.x|y1.5) in terms ofY(z1.)~1).  and/ii.x is the maximum a posteriori (MAP) estimateqfx
Consider the start of thé-th iteration in Algorithm1. Given given the measuremens.,_) up to k.
the measurements. ;1) up to k, H(z1.x|y1.x) is given by

—T} + nK log(2me) /2, where: Proof. Before thek-th iteration of Step 1 in Algorithm,
1 we first computeris.x given yy.,—1) up to k. This step has
T, = 3 logdet(Z + X(z1.x) ") complexityO(n?*K) when: a)¥(z1.x) is sparse?4, Eq. (5)
ST CtaT . after multiplying its both sides with2(z1.x)]; b) certain
E=C(nik) SurX(vik)” S1gCfn:k) invertibility conditions apply 5, Section 3.8]. In this case,
and fi1. is the maximum a posteriori (MAP) estimatergf,  this step does not increase the total time complexity of Algo
given the measuremenys. ;1) up tok. rithm 1. If the invertibility conditions in B5, Section 3.8] do

not apply, the complexity of this computationdgn?-4K?24).

' " g ' In this case, we can use;.x, instead offi;.x, to evaluate
we first com_putem;i given yi.x—1) up 1t°_ k. This step H(z1.x |y1.x ), and keep the overall complexity of Algorithin
has complexityO(n*“K) when %i(z1.)"" is sparse 34, O(n?*K). Next, givenji,.x, we linearise our measurement
Eq. (5)] [35 Section 3.8], and it does not increase thg,qe| overs,. s, and comput&(ji,. ). Then, we continue as
total time complexity of Algorithml. Next, givenjii.x, We  tqiqws: the chain rule for conditional entropies implieas[:
linearise our measurem_ent model over.x, and compute H(zvxlyrr) = By xlrix) — H(yir) + H(z1.x). Thus,
C(p1:x)- Then, we continue as follows:;.x andyi.x aré e derive a closed formula faHl (y1. 1|1, ) @andH(y1.x):
jointly Gaussian: Closed form off(y1.x|x1.x): The chain rule for condi-

Proof. Before the k-th iteration of Step 1 in Algorithml,

(215, Y1:5) ~ N (E(@1:50, y1:10), S0, Y15 ) 5 tional entropies implies36):
E(z1.1, y1:5) = (H1:x, c(p1:x)) K
Y(21.k) S(x1x)C (k) Byl = ZH(y(tk”IltK’yl:kil) (23)
Y@k, yk) = Cfinx)S(z1.x) S (y1:x) ) k?
where: = ZEz(tk/)(H(y(tk)|$(tk) =x(ti))). (24)
k=1

Y(y1x) = StrE(v1x)S |k + Clinr)B(x1.x)C (k) -

1.5 ureB(0R) St () B (@) O i) Eq. @4) follows from (23) because givenx(tx) y(tx)
Therefore, the conditional probability distribution of.x s independent ofy;.x_1, o101y and (.. N ad-

given y1.c has covariance(z7.,) (using our notation in dition, (21) follows from (24) becausey(ty)|z(tx) ~

Proposition2) such that: N (Skg(x(tr)), SkE(v)S))) and, thus, Lemma applies.

S(at ) = Sr1k) —E(wl;K)C(/ll;K)TtI)C(ﬂl;K)E(:m:K), (_Zlosec_zl f(_)rm_ ofH(y1.x): To this end, we derive the
marginal distribution ofy;.x, denoted byf (y1.x):

where:
- - _ K) = . 0 )dxy.
® = C(jin:r)S(w1:)Cfnc) T+ S1aeS(01:)S i)~ Fx) /f(yl-K’xl-K) T1:K
Using the Woodbury matrix identity3Pp, Corollary 2.8.8]: = /f(yl:K|x1;K)f(x1:K)d$1;K,
* (= —1\—1
P@ig) = (E+2rrr)7) 7 where f(z1.rc) denotes the probability distribution af;. k.
where we also used théSy. ¥ (vi.x)S] )" = Su.x Inparticular:
Y(v1.k) 1]k, Which holds sinceS;.x and X(vi.x) are ‘ o ) S oS ) ST
block diagonal. Using9) the proof is complete. O yiglx ~ Ne(rr), S1u3(vix) k)

r1x ~ Nk, B(z1:k))-
Remark 2. The time complexity for the evaluation of ) o _
H(z1.x|y1.1) USING Lemmad is decided by the sparsity of Therefore, the best Gaussian approximation to the marginal

S(z1.5) ! since the rest of the matrices are block diagonafistribution ofyy.x is:
Lemma 5 (Formula of H(z1.x|y1.x) in terms of (z1.x)). Y16 ~ N(E(yi:x), 2(y1:x))
Consider the start of thé-th iteration in Algorithm1. Given E(y1.x) = c(u1.x)

the measurements. ;1) up to k, H(z1.x|y1.x) is given by IS ST ~ ~ T
: Syi.0) = St1. w2 (v e+ C (. 50)2 30)C (1. .
H(z1, |y1; ) =T, — To + H(z1.5 ), Where: (y1:x) 1k 2(V1:K) ST (fir:r )X (21 )C(fi1: 1)

K Thus, from Lemmal, (22) follows. O
— 1 Sk T
= 2 Zlog[(%e) det(SX(vr) Sy )] (21) Remark 3. The time complexity for the evaluation of
1 =1 . H(x1.x|y1.5) using Lemmab is decided by the sparsity of
T = B log[(2me)2=k=1 % det(E(y1.x )] (22) >(x1.x) since the rest of the matrices are block diagonal.

S(yx) = Sux (1K) Stk + Clink)S(enx)C(fx) T We complete the proof for each case of Theorgm
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