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Abstract— The Kalman decomposition for Linear Quantum
Stochastic Systems in the real quadrature operator represen-
tation, that was derived indirectly in [1] by the authors, is
derived here directly, using the “one-sided symplectic” SVD-like
factorization of [2] on the observability matrix of the system.

I. INTRODUCTION

Linear Quantum Stochastic Systems (LQSSs) are a class
of models used in linear quantum optics [3], [4], [5], circuit
QED systems [6], [7], quantum opto-mechanical systems [8],
[9], [10], [11], and elsewhere. The mathematical framework
for these models is provided by the theory of quantum
Wiener processes, and the associated Quantum Stochastic
Differential Equations [12], [13], [14]. Potential applications
of LQSSs include quantum information processing, and
quantum measurement and control. In particular, an impor-
tant application of LQSSs is as coherent quantum feedback
controllers for other quantum systems, i.e. controllers that
do not perform any measurement on the controlled quantum
system, and thus, have the potential to outperform classical
controllers, see e.g. [15], [16], [17], [18], [19], [20], [21],
[10], [22].

Controllability (stabilizability) and observability (de-
tectability) of a classical linear system are prerequisites
for various control design methods. These notions, and the
related mathematical concepts and techniques, can be trans-
ferred essentially unchanged to LQSSs, see e.g. [17], [18],
[23]. There is, however, an important difference from the
classical case: The allowed state transformations in LQSSs
(for the purpose of state-space decompositions) cannot be
arbitrary, but are fundamentally restricted by the laws of
quantum mechanics. More specifically, in the so called real
quadrature operator representation of an LQSS that is used
in this work, the only transformations that preserve its struc-
ture (see Subsection II-B) are real symplectic ones. Recently,
various investigations of controllability and observability for
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LQSSs have appeared in the literature, see e.g. [24], [25],
[1]. In [1], the authors of the present work showed that, a
Kalman decomposition of a LQSS is always possible with
a real orthogonal and symplectic transformation. Moreover,
they uncovered the following interesting structure in the
decomposition: The controllable/observable (co), and uncon-
trollable/unobservable subsystems (c̄ō) are LQSSs in their
own right, as is to be expected from a physics perspec-
tive. Furthermore, the states of the controllable/unobservable
(cō) subsystem are conjugate variables of the states of
the uncontrollable/observable (c̄o) subsystem. An immediate
consequence of this is that, a cō subsystem exists if and
only if a c̄o subsystem does, and they always have the same
dimension. This is a consequence of the special structure of
LQSSs.

The construction of the Kalman decomposition in [1], is
performed first in the so called creation-annihilation oper-
ator representation of a LQSS, where special bases for the
co, c̄ō, cō, and c̄o subspaces are constructed, and the result
is then translated in the real quadrature representation. We
should point out that the Kalman decomposition of a LQSS
in the real quadrature representation offers an advantage over
the corresponding decomposition in the creation-annihilation
representation of the LQSS: In the former, the cō and c̄o
subsystems are separate, as usual, while in the latter, the
two subsystems are merged, due to the grouping of states
imposed by that representation. In this work, we present a
derivation of the Kalman decomposition of a LQSS, directly
in the real quadrature operator representation. This derivation
uses the “one-sided symplectic” SVD-like factorization of [2]
on the observability matrix of the LQSS, and leads directly
to the desired decomposition. Its value lies in its brevity
and directness in uncovering the structure of the Kalman
decomposition of LQSSs.

II. BACKGROUND MATERIAL

A. Notation and terminology

1) x∗ denotes the complex conjugate of a complex num-
ber x or the adjoint of an operator x, respectively. For
a matrix X = [xij ] with number or operator entries,
X# = [x∗ij ], X

> = [xji] is the usual transpose, and
X† = (X#)>. The commutator of two operators X
and Y is defined as [X,Y ] = XY − Y X .

2) The identity matrix in n dimensions will be denoted by
In, and a r×s matrix of zeros will be denoted by 0r×s.
δij denotes the Kronecker delta symbol, i.e. I = [δij ].

We define J2k =
(

0k×k Ik
−Ik 0k×k

)
. Also,

X1

X2

...
Xk

 is the
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vertical concatenation of the matrices X1, X2, . . . , Xk,
of equal column dimension, (Y1 Y2 . . . Yk ) is the hor-
izontal concatenation of the matrices Y1, Y2, . . . , Yk of
equal row dimension, and diag(Z1, Z2, . . . , Zk) is the
block-diagonal matrix formed by the square matrices
Z1, Z2, . . . , Zk. ImA, and KerA denote the range and
the null space of a matrix, respectively.

3) For a 2r × 2s matrix X , define its ]-adjoint X], by
X] = −J2sX

†J2r. The ]-adjoint satisfies properties
similar to the usual adjoint, namely (x1A + x2B)] =
x∗1A

] + x∗2B
], (AB)] = B]A], and (A])] = A.

4) A 2k×2k complex matrix T is called symplectic, if it
satisfies TT ] = T ]T = I2k. Hence, any symplectic
matrix is invertible, and its inverse is its ]-adjoint.
The set of these matrices forms a non-compact group
known as the symplectic group. Real symplectic matri-
ces constitute a subgroup of the (complex) symplectic
group.

B. Linear Quantum Stochastic Systems

The material in this Subsection is fairly standard, and
our presentation aims mostly at establishing notation and
terminology. For the mathematical background necessary for
a precise discussion of LQSSs, some standard references are
[12], [13], [14], while for a Physics perspective, see [3],
[26]. The references [27], [28], [29], [30], [31] contain a lot
of relevant material, as well.

The systems we consider in this work are collections of
quantum harmonic oscillators interacting among themselves,
as well as with their environment. The i-th harmonic oscilla-
tor (i = 1, . . . , n) is described by its position and momentum
variables, qi and pi, respectively. These are self-adjoint
operators satisfying the Canonical Commutation Relations
(CCRs) [qi, qj ] = 0, [pi, pj ] = 0, and [qi, pj ] = ıδij ,
for i, j = 1, . . . , n. As in classical mechanics, the states
qi and pi, i = 1, . . . , n, are called conjugate states. If
we define the vectors of operators q = (q1, q2, . . . , qn)>,
p = (p1, p2, . . . , pn)>, and x =

( q
p

)
, the CCRs can be

expressed as

[x, x>]
.
= xx> − (xx>)> =

(
0 ıIn
−ıIn 0

)
= ıJ2n. (1)

The environment is modelled as a collection of zero
temperature bosonic quantum fields. The i-th field (i =
1, . . . ,m) is described by bosonic field annihilation and
creation operators Ai(t) and A∗i (t), respectively. The field
operators are adapted quantum stochastic processes with for-
ward differentials dAi(t) = Ai(t+dt)−Ai(t), and dA∗i (t) =
A∗i (t + dt) − A∗i (t). They satisfy the quantum Itô products
dAi(t)dAj(t) = 0, dA∗i (t)dA∗j (t) = 0, dA∗i (t)dAj(t) = 0,
and dAi(t)dA∗j (t) = δijdt. If we define the vector of
field operators A(t) = (A1(t),A2(t), . . . ,Am(t))>, and the
vector of self-adjoint field quadratures

V(t) =
1√
2

(
A(t) +A(t)#

−ı(A(t)−A(t)#)

)
,

the quantum Itô products above can be expressed as

dV(t)dV(t)> =
1

2

(
Im ıIm
−ıIm Im

)
dt =

1

2
(I2m + ıJ2m)dt.(2)

To describe the dynamics of the harmonic oscillators and
the quantum fields, we introduce certain operators. We begin
with the Hamiltonian operator H = 1

2x
>Rx, which specifies

the dynamics of the harmonic oscillators in the absence of
any environmental influence. R is a 2n× 2n real symmetric
matrix referred to as the Hamiltonian matrix. Next, we have
the coupling operator L (vector of operators) that specifies
the interaction of the harmonic oscillators with the quantum
fields. L depends linearly on the position and momentum
operators of the oscillators, and can be expressed as L =
Lqq + Lpp. We construct the real coupling matrix C2m×2n

from Lm×n
q and Lm×n

p , as C = 1√
2

( Lq+L#
q Lp+L#

p

−ı(Lq−L#
q ) −ı(Lp−L#

p )

)
.

Finally, we have the unitary scattering matrix Sm×m, that
describes the mixing A(t)→ SA(t) effected on the quantum
field operators by a linear static passive network (made up
of phase shifters and beam splitters) preceding the inputs
of the dynamical elements of the LQSS (such as cavities,
degenerate parametric amplifiers, etc).

In the Heisenberg picture of quantum mechanics, the joint
evolution of the harmonic oscillators and the quantum fields
is described by the following system of Quantum Stochastic
Differential Equations (QSDEs):

dx = (JR− 1

2
C]C)xdt− C]Σ dV,

dVout = Cxdt+ Σ dV, (3)

where
Σ =

1

2

(
S + S# ı(S − S#)
−ı(S − S#) S + S#

)
,

is, by construction, 2m×2m real orthogonal and symplectic.
The field quadrature operators Vi out(t) describe the outputs
of the system. (3) is a description of the dynamics of the
LQSS in the real quadrature operator representation, where
the states, inputs, and outputs are all self-adjoint operators.
We are going to use a version of (3) generalized in two ways:
First, we replace the real orthogonal symplectic transforma-
tion Σ, with a more general real symplectic transformation
Σ, see e.g. [31] for a discussion in the creation-annihilation
representation. Second, in the context of coherent quantum
systems in particular, the output of a quantum system may
be fed into other quantum system, so we substitute the more
general input and output notations U and Y , for V and Vout,
respectively. The resulting QSDEs are the following:

dx = (JR− 1

2
C]C)xdt− C]Σ dU ,

dY = Cxdt+ Σ dU , (4)

The forward differentials dU and dY of inputs and outputs,
respectively (or, more precisely, of their quadratures), contain
“quantum noises”, as well as a “signal part” (linear combi-
nations of variables of other systems). One can prove that,
the structure of (4) is preserved under linear transformations

1074

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on April 14,2022 at 08:51:40 UTC from IEEE Xplore.  Restrictions apply. 



of the state x̄ = Tx, if and only if T is real symplectic (with
R̄ = T−>RT−1, and C̄ = CT−1 = CT#). From the point
of view of quantum mechanics, T must be real symplectic
so that the transformed position and momentum operators
are also self-adjoint and satisfy the same CCRs, as one can
verify from (1). It is exactly this additional constraint on the
allowed state transformations of LQSSs that complicates the
construction of the Kalman decomposition for these systems.

III. THE KALMAN DECOMPOSITION FOR LINEAR
QUANTUM STOCHASTIC SYSTEMS

System (4) has the standard form of a linear, time-
invariant, system with A = J2nR − 1

2C
]C, B = −C]Σ,

and D = Σ. In the following, we prove that there exists a
real symplectic transformation of the state that puts (4) in
a Kalman-like canonical form. Before we state and prove
this result, we introduce the conventions used in this work
regarding the uncontrollable and observable subspaces. Let

C =
(
B AB · · · A2n−1B

)
, and

O =


C
CA

...
CA2n−1

 , (5)

be the controllability and observability matrices of the system
(4). As usual, ImC, and KerO define the controllable and
unobservable subspaces. The uncontrollable and observable
subspaces are defined as the orthogonal complements of
ImC, and KerO in R2n, respectively. With this convention,
we have the following theorem:

Theorem 1: Given the LQSS (4), there exists a real sym-
plectic transformation V such that the following hold:

1) The transformed states
( q̂
p̂

)
= x̂ = V x = V

( q
p

)
, can

be partitioned as follows:

q̂ =

 q̂a
q̂b
q̂c

 , p̂ =

 p̂a
p̂b
p̂c

 , (6)

where
a) The states q̂a and p̂a are both controllable and

observable.
b) The states p̂b are controllable but unobservable.
c) The states q̂b are uncontrollable but observable.
d) The states q̂c and p̂c are both uncontrollable and

unobservable.
2) In the transformed states, (4) takes the form

dx̂ = Âx̂dt+ B̂dU ,
dY = Ĉx̂dt+DdU , (7)

where

Â =


Aco,11 A13,1 0 Aco,12 0 0

0 Ac̄o 0 0 0 0
0 A43,1 Ac̄ō,11 0 0 Ac̄ō,12

Aco,21 A13,2 0 Aco,22 0 0
A21,1 A23 A24,1 A21,2 Acō A24,2

0 A43,2 Ac̄ō,21 0 0 Ac̄ō,22

 ,

and

B̂ =


Bco,1

0
0

Bco,2

Bcō

0

 , Ĉ =
(
Cco,1 Cc̄o 0 Cco,2 0 0

)
.� (8)

To prove Theorem 1, we shall need the following lemmas:
Lemma 1: Let

C̃ =
(
B (JR)B · · · (JR)2n−1B

)
, and

Õ =


C

C(JR)
...

C(JR)2n−1

 . (9)

Then, ImC̃ = ImC, and KerÕ = KerO. �
This follows from standard results of linear systems theory,
since the system (4) can be constructed from a system
with (Ã, B̃, C̃, D̃) = (JR,B,C,D), with state feedback
with gain 1

2D
−1C, or from a system with (Ã, B̃, C̃, D̃) =

(JR, 1
2B,C,D) with output injection with gain − 1

2C
].

Hence, in all of the constructions above, we may use C̃ and
Õ in place of C and O. From now on, we shall refer to C̃ and
Õ simply as the controllability and observability matrices of
the system (4).

The second result we shall make use of, is the following:
Lemma 2: There exists a symplectic matrix T0, such that
Õ = T0 C̃], or, equivalently, C̃ = Õ]T0. �
Proof: Let X1, X2, . . . , Xk be complex matrices of corre-
sponding dimensions 2r × 2s1, . . . , 2r × 2sk. Then,(

X1 · · · Xk

)]
= −J2(s1+...+sk)

(
X1 · · · Xk

)† J2r

= −J2(s1+...+sk)

 X†1J2r

...
X†kJ2r



= −J2(s1+...+sk)


J2s1

0
. . .

0 J2sk


−J2s1

X†1J2r

...
−J2s1

X†kJ2r



= −J2(s1+...+sk) diag(J2s1
, . . . , J2sk)

 X]
1

...
X]

k

 .

Applying the above result to C̃, we have that

C̃] = −J4nm diag(J2m, . . . , J2m︸ ︷︷ ︸
2n

)


B]

((JR)B)]

...
((JR)2n−1B)]



= −J4nm diag(J2m, . . . , J2m)


B]

B](JR)]

...
B]((JR)])2n−1

 .
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However, B] = (−C]D)] = −D]C = −D−1C, since
T ] = T−1 for a symplectic T , and (JR)] = R]J] =
(−JR†J) (−J) = −JR† = −JR, due to the fact that R
is real symmetric. Putting everything together, we have that
C̃] = T−1

0 Õ, with

T−1
0 = J4nm diag(J2m,−J2m, . . . , J2m,−J2m)

× diag(D−1, . . . , D−1).

Since each of the matrices J4nm, diag(J2m,−J2m, . . . , J2m,
−J2m), and diag(D−1, . . . , D−1) is real symplectic, the
conclusion of the lemma follows with

T0 = diag(D, . . . ,D)

× diag(J2m,−J2m, . . . , J2m,−J2m) J4nm.�

The final result we need is the following “one-sided sym-
plectic” SVD from [2]:

Lemma 3: [2, Theorem 3] For any matrix F ∈ Rs×2r,
there exist an orthogonal matrix Qs×s, a real symplectic
matrix Z2r×2r, and integers 0 ≤ k ≤ r, and 0 ≤ l ≤
min{r − k, s− 2k} such that F = QE Z−1, where

Es×2r =

k l r − k − l k l r − k − l Ξk 0 0 0 0 0 k
0 Il 0 0 0 0 l
0 0 0 Ξk 0 0 k
0 0 0 0 0 0 l′,

with l′ = s− 2k − l, and Ξk = diag(ξ1, . . . , ξk) > 0. �
Proof of Theorem 1: We begin by applying Lemma 3
to the observability matrix Õ of system (4). Then, Õ =
QE Z−1 as above, with s = 4nm and r = n, while
the integers k and l are determined by the lemma. Using
Lemma 2, we have that C̃ = Õ]T0 = (QE Z−1)]T0 =
(Z−1)]E]Q]T0 = Z E]Q]T0. Now, we perform the state
transformation

( q̂
p̂

)
= Z−1

( q
p

)
. Since Z and Z−1 are real

symplectic, the transformed system is also of the form (4).
From standard results in systems theory, the controllability
and observability matrices of the transformed system are
given by

ˆ̃C = Z−1C̃ = Z−1Z E]Q]T0 = E]Q]T0, (10)
ˆ̃O = Õ (Z−1)−1 = QE Z−1Z = QE. (11)

Since Q is of full rank, (11) implies that Ker ˆ̃O = KerE.
Let ei denote the i-th vector of the standard basis of R2n.
From Lemma 3, we conclude that

Ker ˆ̃O = span{ek+l+1, . . . , en, en+k+1, . . . , e2n}.

From (10), we have that

Im ˆ̃C = ImE]Q]T0 = ImE] = Im(−JE>J) = ImJE>

= Im


0 0 Ξk 0
0 0 0 0
0 0 0 0
−Ξk 0 0 0

0 −Il 0 0
0 0 0 0


= span{e1, . . . , ek, en+1, . . . , en+k, en+k+1, . . . , en+k+l}.

The fact that Q and T0 are of full rank was used in the above
derivation. If we partition the states as

q̂ =

 q̂k×1
a

q̂l×1
b

q̂
(n−k−l)×1
c

 , and p̂ =

 p̂k×1
a

p̂l×1
b

p̂
(n−k−l)×1
c

 ,

the calculations of the controllable and unobservable sub-
spaces above, along with our convention for the uncontrol-
lable and observable subspaces, lead to the following picture:

1) The states q̂a, p̂a, and p̂b are controllable, and the states
q̂b, q̂c, and p̂c are uncontrollable.

2) The states q̂c, p̂b, and p̂c are unobservable, and the
states q̂a, q̂b, and p̂a are observable.

Combining the above controllability and observability re-
sults, we end up with the classification of states announced
in the statement of the theorem.

Hence, the state transformation
( q̂
p̂

)
= V

( q
p

)
, with V =

Z−1, essentially puts the system in the Kalman canonical
form. The qualification has to do with the fact that, the
usual grouping of states in the Kalman canonical form,
(xco, xcō, xc̄o, xc̄ō), is incompatible with the grouping of the
states of (4) in conjugate pairs of position and momentum
coordinates, (q̂, p̂), that is necessary for the structure of (4)
to be preserved. The resolution of this issue is, to modify
the usual Kalman canonical form. To do this, we start from
the usual Kalman canonical form [32], [33]

d


xco
xcō
xc̄o
xc̄ō

 =


Aco 0 A13 0
A21 Acō A23 A24

0 0 Ac̄o 0
0 0 A43 Ac̄ō



xco
xcō
xc̄o
xc̄ō

 dt

+


Bco

Bcō

0
0

 dU ,

dY =
(
Cco 0 Cc̄o 0

)
xco
xcō
xc̄o
xc̄ō

 dt+DdU , (12)

and let xco =
( q̂a
p̂a

)
, xcō = p̂b, xc̄o = q̂b, xc̄ō =

( q̂c
p̂c

)
.

Also, partition Aco =
(Aco,11 Aco,12

Aco,21 Aco,22

)
, A13 =

(A13,1

A13,2

)
, A21 =(

A21,1 A21,2

)
, A24 =

(
A24,1 A24,2

)
, A43 =

(A43,1

A43,2

)
, Ac̄ō =(Ac̄ō,11 Ac̄ō,12

Ac̄ō,21 Ac̄ō,22

)
, Bco =

(Bco,1

Bco,2

)
, and Cco =

(
Cco,1 Cco,2

)
,

accordingly. Then, by rearranging the Kalman canonical
form (12), we end up with (7), where Â, B̂, and Ĉ are
given by (8). �

Though Theorem 1 constructs one particular Kalman
decomposition for a LQSS (or, equivalently, one particular
Kalman-like canonical form (7) ), it is easy to generate many
more by use of the following corollary:

Corollary 1: Let E be the reduced form of the observ-
ability matrix Õ of system (4), according to Lemma 3. Let
X ∈ R4nm×4nm be invertible, and Y ∈ R2n×2n symplectic,
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such that,

XEY =

k l n− k − l k l n− k − l


Ξ
′
k 0 0 0 0 0 k

0 Ξ
′
l 0 0 0 0 l

0 0 0 Ξ
′′
k 0 0 k

0 0 0 0 0 0 l′,

with l′ = 4nm− 2k − l, and every element of the diagonal
matrices Ξ

′

k, Ξ
′

l, and Ξ
′′

k , be non-zero. If V is the symplectic
transformation to the Kalman-like canonical form in Theo-
rem 1, then the theorem holds for V ′ = Y −1V , as well.
�
Proof: We have that

Õ = QE Z−1 = (QX−1) (X E Y ) (Y −1Z−1).

In the proof of Theorem 1, the fact that Q is unitary was used
only to guarantee that it is of full rank. Also, the exact values
of the elements of the non-zero diagonal blocks of E were
unimportant. It is straightforward to see that, the proof of
the theorem follows through using the decomposition above,
instead of Lemma 3. The conclusion of the corollary follows.
�

IV. AN EXAMPLE

Consider the following 3-mode, 1 input/output LQSS with
Hamiltonian

H =
ω

2
(q2

3 + p2
3) + λq1q3 + λq2q3,

and coupling operator

L =
γ√
2

(q3 + ıp3).

This LQSS models the linearized dynamics of an optome-
chanical system where the resonant modes of two optical
cavities, with states (q1, p1) and (q2, p2), respectively, inter-
act with a mechanical mode with states (q3, p3), of frequency
ω. We assume that the cavities are lossless, and that their
interaction strengths with the mechanical oscillator are equal.
The only source of damping in the system is mechanical. The
system QSDEs (4), take the following form:

dq1 = 0,

dq2 = 0,

dq3 =
(
− γ2

2
q3 + ωp3

)
dt− γdU1,

dp1 = −λq3dt,

dp2 = −λq3dt,

dp3 = −
(
λq1 + λq2 + ωq3 +

γ2

2
p3

)
dt− γdU2,

dY1 = γq3 dt+ dU1,

dY2 = γp3 dt+ dU2.

Recall that U1 and U2 are the two real quadratures of a single
input, and similarly for the outputs.

Applying the “one-sided symplectic” SVD of [2] to the
observability matrix of the above LQSS, we obtain the

symplectic transformation V that puts the system in the
Kalman-like canonical form (7):

V =



0 0 0 0 0 1
−1 −1 0 0 0 0
1√
2
− 1√

2
0 0 0 0

−λa −λa −1 0 0 0
0 0 0 −1/2 −1/2 λa
0 0 0 1√

2
− 1√

2
0

 ,

where

a = ω
ω8 + ω6 + ω4 + ω2 + 1

ω10 + ω8 + ω6 + ω4 + ω2 + 1
.

The new states of the system are given by
q̂1

q̂2

q̂3

p̂1

p̂2

p̂3

 =



p3

−(q1 + q2)
1√
2
(q1 − q2)

−q3 − λa(q1 + q2)
λa p3 − 1

2 (p1 + p2)
1√
2
(p1 − p2)

 .

q̂1 and p̂1 are the co states, q̂2 and p̂2 are the c̄o and cō
states, respectively, and q̂3 and p̂3 are the c̄ō states. This is
confirmed by the system QSDEs in the transformed states,
which take the following form:

dq̂1 =
(
− γ2

2
q̂1 + λb q̂2 + ωp̂1

)
dt− γdU2,

dq̂2 = 0,

dq̂3 = 0,

dp̂1 =
(
− ωq̂1 + λa

γ2

2
q̂2 −

γ2

2
p̂1

)
dt+ γdU1,

dp̂2 =
(
− λa γ2

2
q̂1 + λ2a(b+ 1) q̂2 − λb p̂1

)
dt

− γλa dU2,

dp̂3 = 0,

dY1 = γ(λa q̂2 − p̂1) dt+ dU1,

dY2 = γq̂1 dt+ dU2,

where b = 1/(ω10 + ω8 + ω6 + ω4 + ω2 + 1). We can use
Corollary 1, to produce a simpler Kalman decomposition of
the system. Indeed, with

Y =



0 0 0 1 0 0

0 −
√

2 0 0 0 0
0 0 1 0 0 0

−1 −
√

2λa 0 0 0 0
0 0 0 λa − 1√

2
0

0 0 0 0 0 1

 ,

and

X = diag(

 0 −λγa/
√
b 1

0 1 0
1 0 0

 , I9),

we obtain the following orthogonal symplectic transforma-
tion V ′ = Y −1V , that puts the system in the Kalman-like
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canonical form (7):

V ′ =



0 0 1 0 0 0
1√
2

1√
2

0 0 0 0
1√
2
− 1√

2
0 0 0 0

0 0 0 0 0 1
0 0 0 1√

2
1√
2

0

0 0 0 1√
2
− 1√

2
0


.

The new states of the system are given by
q̂1

q̂2

q̂3

p̂1

p̂2

p̂3

 =



q3
1√
2
(q1 + q2)

1√
2
(q1 − q2)

p3
1
2 (p1 + p2)
1√
2
(p1 − p2)


.

Again, q̂1 and p̂1 are the co states, q̂2 and p̂2 are the c̄o and
cō states, respectively, and q̂3 and p̂3 are the c̄ō states. This
is confirmed by the system QSDEs in the transformed states,
which take the following form:

dq̂1 =
(
− γ2

2
q̂1 + ωp̂1

)
dt− γdU1,

dq̂2 = 0,

dq̂3 = 0,

dp̂1 =
(
− ωq̂1 −

√
2λq̂2 −

γ2

2
p̂1

)
dt− γdU2,

dp̂2 = −
√

2λq̂1 dt,

dp̂3 = 0,

dY1 = γq̂1 dt+ dU1,

dY2 = γp̂1 dt+ dU2.
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