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Abstract— We introduce the system level approach to con-

troller synthesis, which is composed of three elements: Sys-

tem Level Parameterizations (SLPs), System Level Constraints

(SLCs) and System Level Synthesis (SLS) problems. SLPs

provide a novel parameterization of all internally stabilizing

controllers and the system responses that they achieve. These

can be combined with SLCs to provide parameterizations of

constrained stabilizing controllers. We provide a catalog of

useful SLCs, and show that by using SLPs with SLCs, we can

parameterize the largest known class of constrained stabilizing

controllers that admit a convex characterization. Finally, we

formulate the SLS problem, and show that it defines the

broadest known class of constrained optimal control problems

that can be solved using convex programming. We end by using

the system level approach to computationally explore tradeoffs

in controller performance, architecture cost, robustness and

synthesis/implementation complexity.

I. INTRODUCTION

The Youla parameterization [1] represented an important
shift towards a system level approach to optimal controller
synthesis. Youla showed that there exists an isomorphism
between a stabilizing controller and the resulting closed loop
system response from sensors to actuators – therefore rather
than synthesizing the controller itself, this system response
(or Youla parameter) could be designed directly. Together
with state-space methods, this contribution played a major
role in shifting controller synthesis from an ad hoc, loop-at-
a-time tuning process to a principled one with well defined
notions of optimality. Indeed, this approach proved very
powerful, and paved the way for the foundational results of
robust and optimal control that would follow [2].

This paper presents an approach that is inspired by the
system level thinking pioneered by Youla: rather than di-
rectly designing only the feedback loop between sensors and
actuators, we propose directly designing the entire closed
loop response of the system, as captured by the maps from
process and measurement disturbances to control actions and
states – as such, we call the proposed method a system level
approach to controller synthesis. A distinction between our
approach and Youla’s is that we explicitly model the inter-
nal delay structure of the feedback system, whereas Youla
(and contemporary state-space methods) hid the internals
of the controller, and focused instead on its input-output
behavior. However, modern cyber-physical systems (CPS)
are large-scale, physically distributed, and interconnected.
Rather than a logically centralized controller, these systems
are composed of several sub-controllers, each equipped with
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their own sensors and actuators – these sub-controllers then
exchange locally available information (such as sensor mea-
surements or applied control actions) via a communication
network. It follows that the information exchanged between
sub-controllers is constrained by the delay, bandwidth and
reliability properties of this communication network, ulti-
mately manifesting as information asymmetry among sub-
controllers of the system. It is this information asymmetry,
as imposed by the underlying communication network, that
lies at the heart of what makes distributed optimal controller
synthesis challenging [3]–[7].

A defining feature of CPS is that controllers have internal
delays, as specified by the exchange of information between
constituent sub-controllers. These delays thus needed to be
reintroduced into Youla synthesis methods, which aimed
to hide the internals of the controller from the system
engineer. There were also indications that introducing in-
formation asymmetry into the optimal control problem lead
to intractable synthesis tasks [8]. Despite these apparent
technical and conceptual challenges, a body of work [4]–
[7], [9] that began in the early 2000s, and culminated with
the introduction of quadratic invariance (QI) in the seminal
paper [5], showed that for a large class of practically relevant
systems, such internal structure could be incorporated into
the Youla parameterization and still preserve the convexity of
the optimal controller synthesis task. Informally, a system is
quadratically invariant if sub-controllers are able to exchange
information with each other faster than their control actions
propagate through the CPS [10]. Further, this condition is
tight, in the sense that QI is a necessary [11] and sufficient
[5] condition for subspace constraints on the controller to be
enforceable via convex constraints on the Youla parameter.

These results then set the stage for the advancements in
distributed optimal controller synthesis that would follow
(e.g., [12]–[16] and references therein). As impressive as
these results were, they also showed that the QI framework
does not allow for synthesis methods to scale to very large
systems. We show in Section II that the QI framework, which
adapts the Youla parameterization to a distributed setting,
fails to capture certain constraints that are needed for optimal
controller synthesis to scale to arbitrarily large systems. In
particular, when the underlying physical system is strongly
connected,1 the QI framework does not allow for localized
controllers, in which local sub-controllers only access a
subset of system-wide measurements (c.f., Section IV-.5),
to be synthesized using convex programming – perhaps

1We say that a plant is strongly connected if the state of any subsystem
can eventually alter the state of all other subsystems.



counter-intuitively, this statement holds true even when sub-
controllers can exchange information with no delay (c.f.,
Example 1). Although this may seem surprising, note that
implicit to the Youla parameterization is that sub-controllers
can only exchange locally collected measurements with each
other, and not, for instance, locally applied control actions.

To overcome this limitation, we propose the system level
approach to controller synthesis, which is composed of three
elements: System Level Parameterizations (SLPs) , System
Level Constraints (SLCs) and System Level Synthesis (SLS)
problems. This paper is organized as follows: in §II, we
define the system model considered in this paper, review
relevant results from the distributed optimal control and QI
literature, provide a motivating example for a system level
approach, and present a survey of our main results. We
then define and analyze SLPs in §III, which provide a novel
parameterization of all internally stabilizing controllers and
the closed loop system responses that they achieve. In §IV,
we provide a catalog of useful SLCs that can then be imposed
on these system responses and the controllers that achieve
them – we further show that by using SLPs and SLCs, we can
parameterize a set of constrained stabilizing controllers that
are a strict superset of those that can be parameterized using
quadratic invariance, hence generalizing the QI framework.
Finally, we use SLPs and SLCs to formulate the SLS
problem, and show that it defines the broadest known class
of constrained optimal control problems that can be solved
using convex programming.

Proofs: Complete proofs for all results, as well as ad-
ditional results, discussion and examples, can be found in
[17]–[19].

II. PROBLEM STATEMENT AND MAIN RESULTS
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Fig. 1. Interconnection of the plant P and controller K.

Preliminaries & Notation: We use lower and upper case
boldface Latin letters such as x and G to denote signals
and transfer matrices, respectively, and calligraphic letters
such as S to denote sets. We work with discrete time
linear time invariant systems, but unless stated otherwise, all
results extend naturally to the continuous time setting. We
use standard definitions of the Hardy spaces H2 and H1,
and denote their restriction to the set of real-rational proper
transfer matrices by RH2 and RH1. We use G[i] to denote
the ith spectral component of a transfer function G, i.e.,
G(z) =

P1
i=0

1
z

i G[i] for |z| > 1. We use F
T

to denote the
space of finite impulse response (FIR) transfer matrices with
horizon T , i.e., F

T

:= {G 2 RH1 |G =
P

T

i=0
1
z

i G[i]}.

1) System Model: We consider discrete time linear time
invariant (LTI) systems of the form

x[t + 1] = Ax[t] + B1w[t] + B2u[t] (1a)
z̄[t] = C1x[t] + D11w[t] + D12u[t] (1b)
y[t] = C2x[t] + D21w[t] + D22u[t] (1c)

where x, u, w, y, z̄ are the state vector, control action,
external disturbance, measurement, and regulated output,
respectively. Equation (1) can be written in state space form
as

P =

2

4
A B1 B2

C1 D11 D12

C2 D21 D22

3

5 =


P11 P12

P21 P22

�

where P

ij

= C
i

(zI � A)�1B
j

+ D
ij

. We refer to P as the
open loop plant model.

Consider a dynamic output feedback control law u =
Ky. The controller K is assumed to have the state space
realization

⇠[t + 1] = A
k

⇠[t] + B
k

y[t] (2a)
u[t] = C

k

⇠[t] + D
k

y[t], (2b)

where ⇠ is the internal state of the controller. We have
K = C

k

(zI � A
k

)�1B
k

+ D
k

. A schematic diagram of
the interconnection of the plant P and the controller K is
shown in Figure 1.

The following assumptions are made throughout the paper.
Assumption 1: The interconnection in Figure 1 is well-

posed – the matrix (I � D22Dk

) is invertible.
Assumption 2: Both the plant and the controller realiza-

tions are stabilizable and detectable; i.e., (A, B2, C2) and
(A

k

, B
k

, C
k

) are stabilizable and detectable.
2) Structured Controller Synthesis, Youla, and QI: We

follow the paradigm adopted in [5], [12]–[16], and focus on
information asymmetry introduced by delays in the commu-
nication network. In the references cited above, locally ac-
quired measurements are exchanged between sub-controllers
subject to delays imposed by the communication network,2
which manifest as subspace constraints on the controller
itself.

We consider the following optimal structured controller
synthesis task, as defined in [5], [11], [20], [21]:

minimize
K

kP11 + P12K(I � P22K)�1
P21k

subject to K internally stabilizes P, K 2 C,
(3)

for C a subspace. This subspace can enforce, for instance,
the information sharing constraints imposed on the controller
K by the underlying communication network.

A synthesis of the main results of these papers can be
expressed as follows: if the subspace C is quadratically
invariant [5] with respect to P22, then the set of all stabilizing
controllers lying in subspace C can be parameterized by those
stable transfer matrices Q 2 RH1 satisfying M(Q) 2 C,

2Note that this delay may range from 0, modeling instantaneous commu-
nication between sub-controllers, to infinite, modeling no communication
between sub-controllers.



for M an invertible affine map defined in terms of an
arbitrary doubly co-prime factorization of the plant P [21].
Further, these conditions can be viewed as tight, in the sense
that quadratic invariance is also a necessary condition [11],
[20] for a subspace constraint C on the controller K to be
enforced on the Youla parameter Q in a convex manner.
This allows the optimal control problem (3) to be recast as
the following convex model matching problem:

minimize
Q

kT11 + T12QT21k
subject to Q 2 RH1, M(Q) 2 C,

(4)

where the transfer matrices T

ij

can be expressed in terms of
the original plant P

ij

and the doubly co-prime factorization
used to construct the map M.

3) Beyond QI: We now present a simple example showing
how the QI framework fails to capture an “obvious” struc-
tured controller. We return to this example at the end of this
section to preview the benefits of our proposed system level
approach.

Example 1: Consider the optimal control problem:

minimize
u

lim
T!1

1
T

P
T

t=0 Ekx[t]k2
2

subject to x[t + 1] = Ax[t] + u[t] + w[t],
(5)

with disturbance w[t]
i.i.d⇠ N (0, I). We assume full state-

feedback, i.e., the control action at time t can be expressed
as u[t] = f(x[0 : t]) for some function f . An optimal
control policy u? for this LQR problem is easily seen to be
given by u?[t] = �Ax[t]. In this case, the optimal control
policy u? can be implemented in a localized manner: in
order to implement the state feedback policy for the ith
actuator u

i

, only those states x
j

for which A
ij

6= 0 need
to be collected, leading to a localized implementation. The
idea of locality is essential to allowing controller synthesis
and implementation to scale to arbitrarily large systems, and
hence such a structured controller is desirable.

Suppose that we naively attempt to solve optimal control
problem (5) by converting it to an equivalent H2 model
matching problem and constraining the controller K to
have the same support as A, i.e., K =

P1
t=0

1
z

t K[t],
supp (K[t]) ⇢ supp (A). If the graph G is strongly con-
nected, then the conditions in [10] imply that the correspond-
ing distributed optimal control problem is not quadratically
invariant. The results of [11] further allow us to conclude
that computing such a structured controller cannot be done
using convex programming and the Youla parameterization.

4) A system level approach: The rest of the paper is
devoted to defining and analyzing the system level approach
to controller synthesis, centered around the notion of a system
response. We collect here a summary of our main results, and
show how they can be used to pose a novel SLS problem
that generalizes (3).

For a LTI system with dynamics given by (1), we define
a system response {R,M,N,L} to be the maps satisfying


x

u

�
=


R N

M L

� 
�

x

�
y

�
, (6)

where �
x

= B1w is the disturbance on the state vector,
and �

y

= D21w is the disturbance on the measurement.
We say that a system response {R,M,N,L} is stable and
achievable with respect to a plant P if there exists an
internally stabilizing controller K such that the interconnec-
tion illustrated in Figure 1 leads to closed loop behavior
consistent with equation (6).

In Section III, Theorem 1, we show that a system response
{R,M,N,L} is stable and achievable with respect to a
strictly proper plant P with realization (1) if and only if
it lies in the affine subspace described by:

⇥
zI � A �B2

⇤ 
R N

M L

�
=

⇥
I 0

⇤
(7)


R N

M L

� 
zI � A
�C2

�
=


I
0

�
(8)

R,M,N 2 1

z
RH1, L 2 RH1. (9)

As the above characterizes all stable and achievable system
responses, we call it a SLP.

In addition, for such a stable achievable system response
{R,M,N,L}, a controller that leads to these closed loop
maps is given by K = L � MR

�1
N, and can be imple-

mented as:

� = (I � zR)� � Ny, u = zM� + Ly, (10)

for � the internal state of the stabilizing controller.3 A block
diagram of the controller structure is shown in Figure 2.
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Fig. 2. The proposed output feedback controller structure, with R̃+ =
zR̃ = z(I � zR), M̃ = zM, and Ñ = �zN.

Notice that any sparsity structure imposed on the system
response {R,M,N,L} translates directly to the sparsity
structure of the controller implementation – hence infor-
mation sharing constraints on the measured output y and
controller state � can be imposed via subspace constraints
on the system response {R,M,N,L}. As the controller is
implemented directly using these transfer matrices, we are
further no longer limited to subspace constraints, and can in
fact impose arbitrary SLCs on the closed loop response of
the system, and by extension the controller implementation
– we provide a catalog of useful SLCs in Section IV. We
also show in Section IV-.1 and IV-.2 that by combining
appropriate SLCs with the SLP (7) - (9), we recover all
structured controllers that can be parameterized using the
Youla parameter and quadratic invariance.

3Although not apparent, (I � zR) 2 1
zRH1, and hence the suggested

controller implementation is causal. See Section III for further details.



Let S denote such a SLC, and assume that it admits a con-
vex representation. Further, let g(·) be a convex functional.
Then the solution to the SLS problem:

minimize
{R,M,N,L}

g(R,M,N,L) (11a)

subject to equations (7) � (9),

R N

M L

�
2 S (11b)

can be found via convex programming. Further, as we briefly
discuss in Section V-.3, if the SLC and the objective g(·) are
localized and separable, then a structured optimal controller
can be synthesized and implemented in a scalable manner,
i.e., with O(1) parallel computational and implementation
complexity relative to the size of the full system.

Example 2 (Example 1 cont’d): We now return to the
motivating example introduced above. In the case of a full
control (B2 = I) state-feedback (C2 = I , D21 = 0) problem,
the conditions (7)-(9) simplify to (zI � A)R � M = I ,
R,M 2 1

z

RH1, and a controller achieving the desired re-
sponse is given by K = MR

�1 [22]. Further this controller
can be implemented as

ŵ = x � x̂, u = zMŵ, x̂ = (zR � I)ŵ. (12)

Suppose that we aim to synthesize an optimal controller that
has a communication topology given by the support of A –
from the above implementation, it suffices to constrain the
support of transfer matrices R and M to be a subset of that
of A. It can be checked that R = 1

z

I , and M = � 1
z

A satisfy
the above constraints, and recover the globally optimal
controller K = �A. This controller cannot be computed
using quadratic invariance and the Youla parameterization if
the system is strongly connected and sparse.

III. SYSTEM LEVEL PARAMETERIZATION

In this section, we show that the affine subspace defined
by the constraints (7) - (9) parameterizes all stable achievable
system responses {R,M,N,L}, and that the controller K =
L � MR

�1
N, which admits a realization as described in

(10), parameterizes all internally stabilizing controllers for a
strictly proper plant P22.4 Consider a strictly proper plant

P =

2

4
A B1 B2

C1 D11 D12

C2 D21 0

3

5 . (13)

Letting �
x

[t] = B1w[t] denote the disturbance on the
state, and �

y

[t] = D21w[t] denote the disturbance on the
measurement, the dynamics defined by plant (13) can be
written as

x[t + 1] = Ax[t] + B2u[t] + �
x

[t]
y[t] = C2x[t] + �

y

[t].
(14)

We define a system response {R,M,N,L} from pertur-
bations (�

x

, �
y

) to state and control inputs (x,u) via the
following relation:


x

u

�
=


R N

M L

� 
�

x

�
y

�
. (15)

4The non-strictly proper case follows from standard arguments [23], c.f.,
Section III.C in [17].

Substituting the output feedback control law u = Ky into
the z-transform of system equation (14), we obtain

(zI � A � B2KC2)x = �
x

+ B2K�
y

.

For a proper controller K, the transfer matrix (zI � A �
B2KC2) is always invertible, hence we obtain the following
expressions for the system response (15) in terms of an
output feedback controller K:

R = (zI � A � B2KC2)
�1, M = KC2R,

N = RB2K, L = K + KC2RB2K.
(16)

We now present one of the main results of the paper:
an algebraic characterization of the set {R,M,N,L} of
output-feedback system responses that are achievable by an
internally stabilizing controller K.

Theorem 1: For the output feedback system (13), the
following are true:
(a) The affine subspace described by:

⇥
zI � A �B2

⇤ 
R N

M L

�
=

⇥
I 0

⇤
(17a)


R N

M L

� 
zI � A
�C2

�
=


I
0

�
(17b)

R,M,N 2 1

z
RH1, L 2 RH1 (17c)

parameterizes all system responses (16) achievable by an
internally stabilizing controller K.

(b) For any transfer matrices {R,M,N,L} satisfying (17),
the controller K = L�MR

�1
N is internally stabilizing

and achieves the desired response (16).
The necessity of a stable and achievable system response

{R,M,N,L} lying in the affine subspace (17) follows from
rote calculation (c.f. Appendix B in [17]), and hence we
focus on proving that for any system response {R,M,N,L}
lying in the affine subspace (17), there exists an internally
stabilizing controller K that leads to the desired system
response (16). From the relations in (16), we notice the
identity K = L � KC2RB2K = L � MR

�1
N. This

relation leads to the controller structure given in Figure 2,
with ˜

R

+ = z ˜

R = z(I � zR), ˜

M = zM, and ˜

N = �zN.
As was the case for the state feedback setting, it can be
verified that ˜

R

+, ˜

M, and ˜

N are all in RH1. Therefore, the
structure given in Figure 2 is well defined. The controller
implementation of Figure 2 is governed by the equations:

z� = ˜

R

+� + ˜

Ny, u = ˜

M� + Ly. (18)

The control implementation equations (18) can be in-
terpreted as an extension of the state-space realization (2)
of a controller K. The benefit of this implementation is
that arbitrary convex constraints imposed on the transfer
matrices ˜

R

+, ˜

M, ˜

N,L carry over directly to the controller
implementation. It remains to be shown is that the controller
implementation (18) is internally stabilizing and achieves the
desired system response (16). Notice that all of the blocks
in Figure 2 are stable filters – thus, as long as the origin



(x, �) = (0, 0) is asymptotically stable, all signals internal
to the block diagram will decay to zero. We introduce
external perturbations �

x

, �
y

, �
u

, and �
�

to the system and
note that the perturbations appearing on other links of the
block diagram can all be expressed as a combination of
the perturbations (�

x

, �
y

, �
u

, �
�

) being acted upon by some
stable transfer matrices. Thus it suffices to check the input-
output stability of the closed loop transfer matrices from per-
turbations (�

x

, �
y

, �
u

, �
�

) to controller signals (x,u,y, �)
to determine the internal stability of the structure [23].

Lemma 1: Consider the output feedback system (13). For
any system response {R,M,N,L} lying in the affine sub-
space defined by (17), the controller K = L � MR

�1
N

(with structure shown in Figure 2) internally stabilizes the
plant. In addition, the desired system response, as specified
by x = R�

x

+ N�
y

and u = M�
x

+ L�
y

, is achieved.
Proof: (sketch) For any system response {R,M,N,L}

lying in the affine subspace defined by (17), we construct
a controller using the structure given in Figure 2. We now
check the stability of the closed loop transfer matrices from
the perturbations (�

x

, �
y

, �
u

, �
�

) to the internal variables
(x,u,y, �). It can be checked that the closed loop transfer
matrices from (�

x

, �
y

, �
u

, �
�

) to (x,u,y, �) are given as
in Table I. Equation (17c) implies that all sixteen transfer

TABLE I
CLOSED LOOP MAPS FROM PERTURBATIONS TO INTERNAL VARIABLES

�

x

�

y

�

u

�

�

x R N RB2
1
z
NC2

u M L I + MB2
1
z
LC2

y C2R I + C2N C2RB2
1
z

C2NC2

� � 1
z

B2M � 1
z

B2L � 1
z

B2MB2
1
z

I � 1
z2 (A + B2LC2)

matrices in Table I are stable, so the implementation in
Figure 2 is internally stable. Furthermore, the desired system
response from (�

x

, �
y

) to (x,u) is achieved.

IV. SYSTEM LEVEL CONSTRAINTS

In this section, we provide a catalog of useful SLCs that
can be naturally imposed on the SLPs described in the
previous section. In particular, we show that QI subspace
constraints are a special case of SLCs, and as such, we
provide here a description of the largest known class of
constrained stabilizing controllers that admit a convex pa-
rameterization. In the interest of space, we omit descriptions
of controller robustness, controller architecture and positivity
SLCs, which can be found in [17].

1) Constraints on the Youla parameter: We show that
any constraint imposed on the Youla parameter can be
translated into a SLC, and vice versa. In particular, if this
constraint is convex, then so is the corresponding SLC.
Consider the following modification of the standard Youla
parameterization, which characterizes a set of constrained
internally stabilizing controllers K for a plant (13):

K = Y(Q)[X(Q)]�1, Q 2 Q \RH1. (19)

Here Y and X are affine maps defined in terms of the doubly
co-prime factorization of the plant (13) mentioned in §II, and
Q is an arbitrary set – if we take Q = RH1, we recover the
standard Youla parameterization (c.f., [23]). By appropriately
varying the set Q, one can then characterize all possible
constrained internally stabilizing controllers,5 and hence this
formulation is as general as possible. We now show that an
equivalent parameterization can be given in terms of a SLC.

Theorem 2: The set of constrained internally stabiliz-
ing controllers described by (19) can be equivalently ex-
pressed as K = L � MR

�1
N, where the system response

{R,M,N,L} lies in the set

{R,M,N,L
�� (17a) - (17c) hold, L 2 M(Q)}, (20)

for M an invertible affine map. Further, this parameterization
is convex if and only if Q is convex.

In order to prove this result, we first need to understand the
relationship between the controller K, the Youla parameter
Q, and the system response {R,M,N,L}. Fortunately,
there exists a natural connection between these three objects.

Lemma 2: Let L be defined as in (16), and an invertible
affine map M as defined in [21], [24]. We then have that

L = K(I � P22K)�1 = M(Q). (21)
Proof: (sketch) From [21], [24], we have K(I �

P22K)�1 = M(Q). The rest of the proof follows from
algebraic manipulation of the closed loop response of system
(13) and the definition of the map L in (16).

Proof: [Proof of Theorem 2] The equivalence between
the parameterizations (19) and (20) is readily obtained from
Lemma 2. As M is an invertible affine mapping between
L and Q, any convex constraint imposed on the Youla
parameter Q can be equivalently translated into a convex
SLC imposed on L, and vice versa.

2) Quadratically invariant subspace constraints: Recall
that for a subspace C that is quadratically invariant with
respect to a plant P22, the set of internally stabilizing
controllers K that lie within the subspace C can be expressed
as the set of stable transfer matrices Q 2 RH1 satisfying
M(Q) 2 C, for M an invertible affine map as defined in
[21], [24]. The following corollary is then immediate.

Corollary 1: Let C be a subspace constraint that is
quadratically invariant with respect to P22. Then the set of
internally stabilizing controllers satisfying K 2 C can be
parameterized as in Theorem 2.

Proof: Invoking Theorem 14 of [5], we have that K 2 C
if and only if L = K(I � P22K)�1 2 C. The claim then
follows immediately from Theorem 2.
Thus QI subspace constraints are a special case of SLCs.

Finally, we note that in [11], [20], the authors show that
quadratic invariance is necessary for a subspace constraint C
on the controller K to be enforceable via a convex constraint
on the Youla parameter Q. However, when C is not a
subspace constraint, no general methods exist to determine
whether the set of internally stabilizing controllers lying in

5In particular, to ensure that K 2 C, it suffices to enforce that
Y(Q)[X(Q)]�1 2 C.



C admits a convex representation. In contrast, determining
the convexity of a SLC is trivial.

3) System performance constraints: Let g(·) be a func-
tional of the system response – it then follows that all
internally stabilizing controllers satisfying a performance
level, as specified by a scalar �, are given by transfer matrices
{R,M,N,L} satisfying the conditions of Theorem 1 and
the SLC

g(R,M,N,L)  �. (22)

Further, recall that the sublevel set of a convex functional is
a convex set, and hence if g is convex, then so is the SLC
(22). A particularly useful choice of convex functional is

g(R,M,N,L) =

����
⇥
C1 D12

⇤ 
R N

M L

� 
B1

D21

�
+ D11

���� ,

(23)
for a system norm k · k, which is equivalent to the objective
function of the decentralized optimal control problem (3).
Thus by imposing several performance SLCs (23) with
different choices of norm, one can naturally formulate multi-
objective optimal control problems.

Remark 1: For a continuous time system with norm k · k
in (23) chosen to be the H2 norm, the transfer matrix (23)
must be strictly proper, i.e., D12L[0]D21 + D11 = 0.

4) FIR constraints: Given the parameterization of sta-
bilizing controllers of Theorem 1, it is trivial to enforce
that a system response be FIR with horizon T via the SLC
R,M,N,L 2 F

T

. We argue that imposing a FIR SLC is
beneficial in the following ways: (a) the closed loop response
to an impulse disturbance is FIR of horizon T , where T
can be set by the control designer – thus the settling time
of the system can be accurately tuned; (b) the controller
achieving the desired system response can be implemented
using the FIR filter banks ˜

R

+, ˜

M, ˜

N,L 2 F
T

, as illustrated
in Figure 2 – this simplicity of implementation is useful when
transitioning to practice; (c) when a FIR SLC is imposed,
the resulting set of stable achievable system responses and
corresponding controllers admit a finite dimensional repre-
sentation – specifically, the constraints specified in Theorem
1 only need to be applied to the impulse response elements
{R[t], M [t], N [t], L[t]}T

t=0.6
5) Subspace and sparsity constraints: Let L be a subspace

of RH1. We can then parameterize all stable achievable
system responses that lie in this subspace by adding the
following SLC to the parameterization of Theorem 1:


R N

M L

�
2 L. (24)

Of particular interest are subspaces L that define transfer
matrices of sparse support. An immediate benefit of enforc-
ing such sparsity constraints on the system response is that
implementing the resulting controller (18) can be done in a
localized way, i.e., each controller state �

i

and control action
u

i

can be computed using a local subset (as defined by the

6The computational benefits claimed above hold only for discrete time
systems, as a continuous time FIR transfer matrix is still an infinite
dimensional object.

support of the system response) of the global controller state
� and sensor measurements y. For this reason, we refer to the
constraint (24) as a localized SLC when it defines a subspace
with sparse support. Further, such localized constraints also
allow for the resulting system response to be computed in a
localized way, i.e., the global computation decomposes nat-
urally into decoupled subproblems that depend only on local
sub-matrices of the state-space representation (1) (c.f., [22],
[25]. Clearly, both of these features are extremely desirable
when computing controllers for large-scale systems.

Selecting an appropriate and feasible localized SLC, as
defined by the subspace L, is a subtle task: it depends on an
interplay between actuator and sensor density, information
exchange delay and disturbance propagation delay. Formally
defining and analyzing a procedure for designing a feasible
localized SLC is beyond the scope of this paper: we refer
the reader to our recent paper [26], where show how to co-
design an actuator architecture and corresponding feasible
localized SLC. We generalize these methods to the output
feedback setting in [18], where we show that actuation and
sensing architectures, as well as feasible localized SLCs, can
be co-designed using convex programming.

6) Intersections of SLCs and spatiotemporal constraints:
A benefit of SLCs is that several such constraints can be
imposed on the system response at once. Further, as convex
sets are closed under intersection, convex SLCs are also
closed under intersection. To illustrate the usefulness of this
property, consider the intersection of a QI subspace SLC, a
FIR SLC and a localized SLC. The resulting SLC can be
interpreted as enforcing a spatiotemporal constraint on the
system response and its corresponding controller.
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Fig. 3. Space time diagram for a single disturbance striking the chain
system described in §IV-.6.

Figure 3 shows a diagram of a chain of scalar subsystems
responding to a particular disturbance (�

x

)
i

. In this figure,
the vertical axis denotes the spatial coordinate of a state in
the chain, and the horizontal axis denotes time: hence we
refer to this figure as a space-time diagram. Depicted are the
three components of the spatiotemporal constraint, namely
the communication delay imposed on the controller via the
QI subspace SLC, the deadbeat response of the system to
the disturbance imposed by the FIR SLC, and the localized
region affected by the disturbance (�

x

)
i

imposed by the
localized SLC. When the effect of each disturbance (�

x

)
i

can
be localized within such a spatiotemporal SLC, the system is
said to be localizable (c.f., [22], [25] and references therein).



V. SYSTEM LEVEL SYNTHESIS

In this section we formulate the SLS problem and show
that it can parameterize the largest known class of con-
strained optimal control problems that admit a convex formu-
lation, with all possible structured optimal control problems
of the form (3) that admit a convex representation in the
Youla domain as a special case.

1) General Formulation: Let g(·) be a functional captur-
ing a desired measure of the performance of the system (as
described in §IV-.3), and let S be a SLC. We then pose the
SLS problem as

minimize
{R,M,N,L}

g(R,M,N,L)

subject to (17a) � (17c),

R N

M L

�
2 S.

(25)

For g a convex functional and S a convex set, the resulting
SLS problem is a convex optimization problem.

2) Distributed optimal control: Recall that the objective
function in (3) is specified by a suitably chosen system norm
measuring the size of the closed loop transfer matrix from the
external disturbance w to the regulated output z̄. Therefore it
suffices to select the objective functional g to be as described
in equation (23), and to select the SLC constraint set S as
described in equation (20). The resulting SLS problem

minimize
{R,M,N,L}

����
⇥
C1 D12

⇤ 
R N

M L

� 
B1

D21

�
+ D11

����
subject to (17a) � (17c), L 2 C

is then equivalent to the distributed optimal control problem
(3) when the subspace C is QI with respect to the plant P22.
Thus all distributed optimal control problems of the form (3)
that can be formulated as convex optimization problems in
the Youla domain are special cases of the SLS problem (25).

3) Localized LQG control: In [22], [25] we posed and
solved a localized LQG optimal control problem. It can be
recovered as a special case of the SLS problem (25) by
selecting the functional g to be of the form (23) (with the
system norm k · k chosen to be the H2 norm), and selecting
the constraint set S to be a spatiotemporal SLC.

In [22], we observe that a state-feedback SLS problem7

with a localized SLC can be decomposed into a set of
independent sub-problems that solve for the columns R

i

and
M

i

of the transfer matrices R and M – as these problems
are independent, they can be solved in parallel. Further,
the sparsity constraint L restricts each sub-problem to a
local subset of the system model and states, as specified
by the nonzero components of the corresponding column
of the transfer matrices R and M (e.g., as was described
in Example 1), allowing each of these sub-problems to be
expressed in terms of optimization variables (and correspond-
ing sub-matrices of the state-space realization (17)) that are
of significantly smaller dimension than the global system
response {R,M}. Thus for a given feasible spatiotemporal
SLC, the localized SLS problem can be solved for arbitrarily

7We extend these results to the output-feedback setting in [25].

large-scale systems, assuming that each sub-controller can
solve its corresponding sub-problem in parallel.8 In [18],
we extend these concepts to the system level approach, and
show how appropriate notions of separability for SLCs can
be defined that allow for optimal controllers to be synthesized
and implemented with order constant complexity (assuming
parallel computation is available) relative to the global sys-
tem size. This approach allows to, for example, compute an
optimal controller for a 12800 state power system example
(see §VI-.2 for a description of the dynamics) on a laptop.

VI. SYSTEM LEVEL TRADEOFFS
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Fig. 4. Tradeoffs between performance and comm. speed, localized region
size, and FIR horizon (normalized with respect to the optimal centralized H2
cost). In Fig 4(b), when the delay relative to the plant is 0, this corresponds
to a centralized controller; for any relative delay of 1 or larger, the system
cannot be localized.

1) Performance vs. implementation complexity: We use
a 100 node bi-directional chain with scalar subsystems for
this numerical study. We place 40 actuators in the chain
network, with actuator location specified by i = 5j � 4
and 5j for j = 1, · · · , 20. We compute optimal controllers
with respect to the H2 norm, for measured output z̄[t] =
[x[t]> u[t]>]> (see § VI.A-B of [17] for specific parameter
values used). Throughout, we impose a spatiotemporal SLC
as described in §IV-.6 and study the effects of choosing
different sized localized regions, parameterized by d-hops
of the physical plant topology (c.f., [25]), the length of the
FIR horizon and the communication speed of the controller.
As shown in Figures 4(a) and 4(b), appropriate choices of
these parameters lead to no degradation in performance with
respect to a centralized optimal controller, while leading to
significant improvements in synthesis and implementation
complexity.

2) Performance vs. architectural complexity: For this nu-
merical study, we use a power system model with (undi-
rected) topology and subsystem interaction dynamics de-
picted in Fig. 5. The dynamics of each subsystem are
specified by a discretization of the swing equations (see
§ V.A of [18] for specific parameter values used).

We formulate a H2 optimal control problem for which the
norm of the optimal system response achieved by a proper
centralized controller is 13.32. Here, we assumed that each
subsystem in the power network has a phase measurement
unit (PMU), a frequency sensor, and a controllable load. In
practice, the installation of these sensors and actuators is

8We show how to co-design an actuation architecture and feasible
spatiotemporal constraint in [26].



expensive: we therefore study the degradation in performance
incurred as we remove sensors and actuators from the system.

A challenging problem is to determine the location of
these sensors and actuators: to do so, we use techniques
developed in the regularization for design framework [27] to
penalize the use of sensors and actuators. Thus we impose
both spatiotemporal and architectural complexity SLCs on
the corresponding SLS problem. We set the localized region
to be 4-hops (as defined by the system topology), the
FIR horizon to be T = 30, and assume sub-controllers
can communicate twice as quickly as dynamics propagate
through the system. We assume that the relative prices of
each frequency sensor, PMU, and controllable load are 1,
100, and 300, respectively.

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

11

(a) Interconnected
topology

�
i

�̇
i

�̇
j

�
j

(b) Interaction between
neighboring subsystems

Fig. 5. Power system example interaction graph.

Using the methods described in § IV of [18], we are
able to reduce the number of controllable loads and PMUs
used by 43% and 46%, respectively (no frequency sensors
are removed due to the chosen relative pricing) while still
satisfying the spatiotemporal SLC. Further, the H2 cost of
the optimal system response is given by 17.86, which is a
10% and 34% degradation in performance from that of the
corresponding sparsely and fully sensed/actuated centralized
controller, respectively.

3) Mixed Objective Optimal Control: Finally, we explore
the tradeoff between average system performance (the H2

norm of w ! z̄) and the robustness of the controller to
worst-case signal (the L1 norm of w ! z̄) on the mesh
example shown in Fig. 5(a). Fig. 6 shows that a tradeoff
between these two metrics exist, and that it can be efficiently
explored using the system level approach. Such a tradeoff
may be relevant in computationally constrained settings such
as neural computations and embedded systems.
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