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Abstract— The generalized label correcting method is an effi-
cient search-based approach to trajectory optimization. It relies
on a finite set of control primitives that are concatenated into
candidate control signals. This paper investigates the principled
selection of this set of control primitives. Emphasis is placed
on a particularly challenging input space geometry, the n-
dimensional sphere. We propose using controls which minimize
a generalized energy function and discuss the optimization
technique used to obtain these control primitives. A numerical
experiment is presented showing a factor of two improvement
in running time when using the optimized control primitives
over a random sampling strategy.

I. INTRODUCTION

Kinodynamic motion planning and trajectory optimization
problems consist of finding an open loop control signal from
an infinite dimensional signal space which minimizes a cost
functional. This challenging problem is approached by bor-
rowing techniques from numerical analysis to approximate
the input signal space by a subset over which an optimal
solution can be efficiently computed.

A traditional approach is to approximate the signal space
by a finite dimensional vector space. This enables the use
of well developed finite-dimensional nonlinear optimization
methods to compute locally optimal solutions to the ap-
proximated problem [1]. This is not always an acceptable
strategy since many kinodynamic motion planning problems
have unsatisfactory local minima.

The alternative is search-based methods which approx-
imate the input signal space by strings of control signal
primitives (or dynamically feasible trajectories) which can be
efficiently searched using graph search techniques. Some ex-
amples of search based methods include Lattice-planners [2],
the kinodynamic variant of the Rapidly Exploring Random
Tree (RRT∗) [3], the Stable Sparse RRT (SST) method [4],
and the generalized label correcting (GLC) method [5].
There are additionally some hybrid approaches utilizing ideas
from both finite-dimensional optimization and search-based
methods [6], [7], [8].

The GLC method, which is the focus of this paper, is
a general search-based algorithm for efficiently generating
feasible trajectories solving a trajectory optimization or kin-
odynamic motion planning problem. The advantage to this
method is the ability to compute feasible trajectories and
control signals whose cost approximates the globally optimal
cost to the problem in finite time. In contrast to related
algorithms the GLC method relies on weaker technical
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Fig. 1. Side-by-side comparison of the distribution of 500 points generated
by randomly sampling from the uniform distribution (left) and by obtaining
a local solution to the Thomson problem (right).

assumptions and fewer subroutines such as a local point-
to-point planning solution.

In this paper we continue the development of the GLC
method by investigating a selection strategy for the control
primitives used by the algorithm. Without prior knowledge
of the problem there is no reason to bias the selection of
control primitives around any point in the input space. This
suggests evenly dispersing the control primitives on the set
of allowable control inputs. One technique for obtaining
approximately evenly dispersed control primitives is random
sampling (cf. Figure 1). This is essentially the approach taken
with some randomized methods such as SST. In contrast, a
more principled deterministic construction of control primi-
tives can yield a more evenly distributed collection of points
on the input space.

Sukharev grids [9] are an optimal (they minimize L∞ dis-
persion) arrangement of points on hypercubes and are easily
computed. In contrast, control input spaces described by the
n-dimensional sphere are frequently encountered in control
input constrained systems and are a challenging geometry for
distributing points evenly. The principal contribution of this
paper is a procedure for computing optimal configurations of
control primitives on the n-sphere along with an open source
implementation [10]. This is accomplished by defining an
interaction potential between the points representing control
primitives and computing a local minima of the total energy.
This problem arises in many scientific fields and is classically
known as Thomson’s problem [11].

Before describing the control primitive selection strategy
in detail, a review of the kinodynamic motion planning
problem is presented in Section II together with a high
level overview of the GLC method. This is followed by
an empirical comparison of the proposed selection strategy
with a randomized selection strategy in Section III. The
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optimization, known as Thomson’s problem, used to select
control primitives is presented in Section IV. Lastly, Section
V discusses the nonlinear programming technique used to
find locally optimal solutions to Thomson’s problem.

II. KINODYNAMIC MOTION PLANNING

Kinodynamic motion planning is a form of open loop
trajectory optimization with differential and point-wise con-
straints. Differential constraints can be expressed by a clas-
sical nonlinear control system

ẋ(t) = f(x(t), u(t)), (1)

with x(t) ∈ Rn, u(t) ∈ Ω, and f : Rn × Ω → Rn. The
control input space Ω is a subset of Rm. A dynamically
feasible trajectory over the time interval [0, T ] is a continuous
time history of states x : [0, T ]→ Rn for which there exists
a measurable, essentially bounded control signal u : [0, T ]→
Ω satisfying (1) almost everywhere.

The problem has three point-wise constraints. The first
is an initial state constraint, x(0) = x0. The second is a
constraint enforced along the entire trajectory, x(t) ∈ Xfree

for all t ∈ [0, T ]. Lastly, there is a terminal constraint,
x(T ) ∈ Xgoal. A trajectory that satisfies the differential and
point-wise constraints is said to be a feasible trajectory.

Next, a cost functional J is used to measure the relative
quality of trajectories,

J(u) =

∫
[0,T ]

g(x(t), u(t)) dµ(t). (2)

In the above expression x is the unique solution to (1) with
input u and initial condition x0. Since the minimum of this
functional is not attained in general, the goal of computa-
tional methods for optimal kinodynamic motion planning
is to return a sequence of feasible trajectories and control
signals which converge to the optimal value of J subject to
the feasibility constraints.

A. The Generalized Label Correcting Method

The GLC method uses a single resolution parameter R
to balance an approximation of the control signal space
and state space. An approximate shortest path algorithm
is applied to the approximation so that the output of the
algorithm converges, in cost, to the optimal cost of the
problem with increasing resolution.

The control signal space is approximated by a tree of
piecewise constant control signals taking values from a finite
subset ΩR of the input space Ω. The duration of constant
control primitives is 1/R and ΩR is assumed to converge
to a dense subset of Ω as R → ∞. The total duration of a
control signal is limited to h(R)/R where h : N→ R defines
a horizon limit that must grow unbounded as R → ∞.
This simple construction ensures an optimal control signal
can be approximated arbitrarily well with sufficiently high
resolution [5, Lemma 3].

The number of alternatives in the above construction
grows exponentially with h(R). Thus, the GLC method
performs an approximate search of for the optimal control

Fig. 2. 2D Single integrator example. The first 3000 iterations of a breadth
first exhaustive search over all strings of control primitives is shown in blue.
The subset of 416 strings satisfying the pruning condition and remaining in
the illustrated rectangle are shown in red.

signal within this finite set. This is accomplished by defining
a hyper-rectangular grid on the state space and considering
controls producing trajectories terminating within the same
hyper-rectangle as equivalent. This is denoted u1

R∼ u2. The
"label" for a hyper-rectangular region is the lowest cost signal
producing a trajectory terminating in that region discovered
by the search at any given iteration. Like the approximation
of the signal space, the grid is controlled by the resolution.
Each cell in the grid must be contained in a ball of radius
η(R) where η(R) satisfies

lim
R→∞

R

Lfη(R)

(
e

Lfh(R)

R − 1

)
= 0, (3)

for a global Lipschitz constant Lf on the system dynamics
with respect to x.

Then if u1
R∼ u2 and

J(u1) +

√
n

η(R)

Lg
Lf

(
e

Lfh(R)

R − 1

)
≤ J(u2), (4)

the signal u2 and subsequent concatenations of signals be-
ginning with u2 can be omitted or pruned from the search.
Lg denotes a global Lipschitz constant for the running cost
g in (2). Among the remaining signals is a signal with
approximately the optimal cost. With increasing resolution
this signal converges to the optimal cost [5, Theorem 1].

As a simple illustration of the pruning operation consider
a 2D single integrator with Ω = {u ∈ R2 : ‖u‖2 = 1} and
a minimum time objective. Figure 2 shows how the pruned
subset explores the space effectively from the initial condi-
tion in the lower left corner. In comparison, an exhaustive
search over all strings of control primitives evaluates many
paths that zig-zag around the initial condition.

Algorithm 1 describes the general search procedure which
is a standard uniform cost search together with the pruning
operation. A set Ufeas. denotes signals producing trajectories
remaining in Xfree. Similarly, Ugoal denotes signals produc-
ing feasible trajectories terminating in the goal. The empty



string, denoted IdU , has no cost and the NULL control has
infinite cost.

The method expand(u) returns the set of all signals
consisting of u concatenated with one more input primitive
from ΩR. A queue Q contains candidate signals for future
expansion. The method pop(Q) returns a signal û in Q
satisfying

û ∈ argmin
w∈Q

{J(w)}. (5)

The method find(w,Σ) returns a signal z belonging to
the same hyper-rectangle as w from the set of labels Σ;
if no such signal is present in Σ the method find(w,Σ)
returns NULL. The method depth(w) returns the number of
piecewise constant segments making up w. If z prunes w in
the sense of equation (4) we write z ≺R w.

Algorithm 1 Generalized Label Correcting (GLC) Method
1: Q← {IdU}, Σ← ∅, S ← ∅
2: while Q 6= ∅
3: u← pop(Q)
4: S ← expand(u)
5: for w ∈ S
6: if w ∈ Ugoal
7: return (J(w), w)

8: z = find(w,Σ)
9: if (w /∈ Ufeas. ∨ (z ≺R w) ∨ depth(w) ≥ h(R))

10: S ← S \ {w}
11: else if J(w) < J(z)
12: Σ← (Σ \ {z}) ∪ {w}
13: Q← Q ∪ S
14: return (∞,NULL)

III. MOTIVATING EXAMPLE

Consider an agile aerial robot navigating an indoor en-
vironment. The environment, depicted in Figure 3, consists
of two 5m × 5m × 10m rooms connected by a 1m × 1m
window in an upper corner of each room. The task is to plan
a dynamically feasible and collision free trajectory between
a starting state and a goal set in minimum time.

The robot is modeled with six states; three each for
position and velocity. The mobility of the robot is described
by the following equations

ẋ = v,

v̇ = −0.1v‖v‖2 + 5u.
(6)

The states are x, v ∈ R3 and the control is u ∈ R3. In
this representation the zero control is defined about a hover
state negating the effect of gravity. The term −0.1v‖v‖2
reflects a quadratic aerodynamic drag, and the control u is
a thrust vector which can be directed in any direction. The
control is limited to a maximum thrust which is modeled
by the constraint ‖u‖2 ≤ 1 so that the robot’s acceleration
is limited to 5m/s2 and speed is limited to

√
50m/s. It

follows from Pontryagin’s minimum principle [12] that the
minimum time objective will yield saturated control inputs

Resolution range (R) R = 8, 9, ..., 13
Horizon limit (h(R)) 10R log(R)

State space partition scaling (η(R)) 65R3/2

Control primitive duration (c/R) 10/R

Number of controls from n-sphere (ΩR)
⌊
3R3/2

⌋
TABLE I

TUNING PARAMETER SELECTION FOR THE GLC METHOD.
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Optimized input approx.
Random input approx.

Fig. 4. Average cost and running times (10 trials each) of solutions
returned by the GLC method for the two input approximation schemes.
The optimized selection (blue) improves the running time required to obtain
a solution of a given cost over the random selection (green) by roughly a
factor of two.

at all times, ‖u(t)‖2 = 1 (i.e. the control is restricted to the
sphere).

An implementation of the GLC method in C++ was run on
an Intel i7 processor at 2.6GHz. Parameters of the algorithm
are provided in Table I. In the first set of trials randomly
generated control primitives on the 2-sphere are obtained by
sampling from the uniform distribution. In the second set
of trials minimum energy arrangements of points were used.
Figure 1 illustrates configurations of 500 points generated by
the two strategies.

The average running time and solution cost of trajectories
returned by the GLC method are summarized in Figure 4.
We observe that the optimized input approximation strategy
improves the running time required to obtain a trajectory of
a given cost by roughly a factor of two for this problem.

IV. THOMSON’S PROBLEM

We have proposed using minimum energy configurations
of points on the n-sphere as the control primitives for the
GLC method. This is classically referred to as Thomson’s
problem. This section provides a more detailed description
of the problem and existence of optimal solutions.

Thomson’s problem is an optimization problem seeking
to find a minimum energy configuration of N points in Rn
whose Euclidean norm is 1. The generalized energy is given
by a superposition of pair-wise interactions parameterized
by scalar α. The energy between two points p1, p2 ∈ Rn is



Fig. 3. Visualization of the trajectory generated by the GLC method using the optimized input space approximation. The point robot accelerates from the
initial stationary position (left) directly to the window followed by a wide cornering maneuver and continued acceleration towards the goal (right). Note
that the goal set leaves the terminal velocity unspecified. Thus, the optimal trajectory intercepts the goal at high speed which causes the asymmetry in the
solution depicted.

given by ‖p1 − p2‖α2 if α 6= 0, and log
(
‖p1 − p2‖−12

)
if

α = 0.
The configuration of the N points is represented by a ma-

trix X ∈ Rn×N with each column representing coordinates
of a point in Rn. The notation X:,j will be used to identify
the coordinates of the jth point in Rn. In our analysis we
need to distinguish between the Frobenius and Euclidean
norms and inner products,

〈X,Y 〉F := Tr(XY T ),

‖X‖F :=
√
Tr(XXT ),

〈x, y〉2 := xT y,

‖x‖2 :=
√
xTx.

(7)

The set of feasible configurations S is defined

S :=
{
X ∈ Rn×N : ‖X:,j‖2 = 1, j = 1, ..., N

}
. (8)

It follows from this definition that

‖X‖F =
√
N ∀X ∈ S. (9)

Using the above notation, the total generalized energy is
given by

Eα(X) =
N∑
i=1

∑
j<i

(
‖X:,i −X:,j‖α2

)
if α 6= 0,

Eα(X) =
N∑
i=1

∑
j<i

log
(
‖X:,i −X:,j‖−12

)
if α = 0,

(10)

and the optimization objective is

min
X∈S

Eα(X) if α ≤ 0,

max
X∈S

Eα(X) if α > 0.
(11)

A. Existence of Optimal Configurations

For α > 0, the energy is a sum of differentiable functions.
Thus, the energy is also differentiable and continuous. The
set of configurations S is compact in (Rn×N , ‖ · ‖F ). Then
by Weierstrass’ theorem the maximum value is attained on
S.

For α ≤ 0 the continuity of Eα is broken as a result of
the negative exponent and becomes unbounded from above;
configurations with overlapping points have infinite energy.
However, Eα remains continuous on any subset in which it
is bounded.

Take X0 ∈ S such that Eα(X0) < ∞, the set{
X ∈ Rn×N : Eα(X) ≤ Eα(X0)

}
is closed and by con-

struction contains a minimizer over S if one exists. Since
S is compact, S ∩ {X ∈ Rn×N : f(X) ≤ f(X0)} is also a
compact set on which Eα is continuous. Thus, the minimum
over this subset is attained and is the minimum over S.

V. THE GRADIENT PROJECTION METHOD

This section reviews the gradient projection method with
the adaptation of the Armijo rule proposed by Bertsekas in
[13] for closed convex sets. We then address applying this
method to the Thomson problem.

Consider a general minimization problem where the fea-
sible set C is a nonempty closed convex subset of Rm. The
gradient of f at x is denoted ∇f(x), and the projection of
x ∈ Rm into C is denoted [x]+ and satisfies{

[x]+
}

= argmin
y∈C

{‖y − x‖2} . (12)

For a closed and convex C, there is a unique y ∈ C
minimizing ‖y− x‖2. The convergence of the method relies



on a non-expansiveness property,∥∥[x]+ − [y]+
∥∥
2
≤
∥∥x+ − y+∥∥

2
, (13)

which requires that C be closed and convex.
Using (12), the recursion of the gradient projection method

is of the form

xk+1 = [xk − γk∇f(x)]+. (14)

The subsequent point xk+1 is obtained by moving along the
direction of steepest descent scaled by a step-size γk, and
then projecting the result into C.

In contrast to the gradient descent step for the classical
Armijo rule, which is taken along the ray through xk in the
direction of steepest descent, the gradient projection step is
taken along the projection of that ray onto C. Three tuning
parameters define the step size selection; s > 0, σ > 0, and
β ∈ (0, 1). The step size is given by αk = sβm where m is
the smallest natural number such that

f (xk)− f ([xk − sβm∇f(xk)]+) ≥

〈σ (∇f(xk)) , (xk − [xk − sβm∇f(xk)]+)〉 .
(15)

In contrast to carrying out an exact minimization along the
steepest descent direction, the Armijo-rule has much less
computational overhead and simply finds a step size with
a sufficient decrease in f . Intuitively, s is the initial large
step size which is rapidly reduced as m is increased from 0.

It was shown in [13] that limit points x∗ of the sequence
{xk} produced by (14) satisfy the necessary (but not suffi-
cient) condition for local optimality:

〈∇f(x∗), (x− x∗)〉2 ≥ 0, ∀x ∈ C. (16)

It follows from (15) that f(xk+1) < f(xk) so these limit
points are generally local minima.

A. Application to the Thomson Problem
To adapt the standard theory, we have to address the

issue that the feasible set S for the Thomson problem is
not convex. We replace feasible set S by its convex hull to
ensure that the gradient projection iteration (20) converges
to a local solution on the convex hull. We then prove that
S is invariant under the gradient projection iteration so an
initial configuration of points on S with bounded energy will
converge to a local solution on S.

Let conv(S) denote the convex hull of S. While ‖X‖F =√
N for every X ∈ S, we now have ‖X‖F ≤

√
N for every

X ∈ conv(S).
The relaxed problem is

min
X∈conv(S)

Eα(X) if α ≤ 0,

max
X∈conv(S)

Eα(X) if α > 0.
(17)

This problem admits optimal values for X by the same
argument as the original problem. The projection onto B
is given by

(
[X]+

)
:,j

:=


X:,j

‖X:,j‖2
, if ‖X:,j‖2 > 1

X:,j otherwise
. (18)

Note that if X ∈ conv(S), the projection is the identity
map. However, if X /∈ conv(S), the projection takes X into
S That is

[X]
+

= X ∀X ∈ conv(S),

[X]
+ ∈ S ∀X /∈ conv(S).

(19)

The gradient projection iteration is then

Xk+1 =
[
Xk − γk∇E(Xk)

]+
if α ≤ 0,

Xk+1 =
[
Xk + γk∇E(Xk)

]+
if α > 0.

(20)

The existence of optimal solutions to the objective over
conv(S) together with the standard theory ensures that limit
points of the iteration will satisfy the optimality condi-
tion (16). However, we are not interested in solutions on
conv(S) \ S. To ensure that the recursion converges to a
stationary point on S, we make sure the initial configuration
is in S. The justification for this is provided below.

Proposition 1. S is an invariant set under the gradient
projection iteration.

Proof. Suppose α < 0 and X ∈ S (The essentially identical
derivations for α > 0 and α = 0 are omitted for brevity). We
will first show that that X − γ∇Eα(X) /∈ conv(S) for any
γ > 0. Then by (19) we will have [X − γ∇Eα(X)]

+ ∈ S.
Select an index k and consider the motion of the coordi-

nates X:,k in a step of the gradient projection iteration. The
partial derivative with respect to X:,k is

∂E(X)

∂X:,k
=
∑
j 6=k

α (X:,k −X:,j) ‖X:,k −X:,j‖α−12 . (21)

Since X:,j 6= X:,k and ‖X:,k‖2 = ‖X:,k‖2, we have the
inequality

〈X:,k, (X:,k −X:,j)〉2 > 0, (22)

which is derived in the appendix. Since α < 0 and equation
(22) is true for all j 6= k we obtain〈

X,−∂E(X)

∂X

〉
F

> 0. (23)

The interpretation (23) is that the steepest descent direction
is directed out of conv(S). For any step size γ > 0 we have

‖X − γ∇Eα(X)‖F
=
√
‖X‖2F + 2 〈X,−γ∇Eα(X)〉F + ‖−γ∇Eα(X)‖2F

>
√
‖X‖2F + 2 〈X,−γ∇Eα(X)〉F

> ‖X‖F
(24)

By assumption X ∈ S so ‖X‖F =
√
N and

‖X − γ∇Eα(X)‖F >
√
N by equation (24). Thus,

‖X − γ∇Eα(X)‖F /∈ conv(S) so in reference to (19) the
projection will take X−γ∇Eα(X) into S which is the stated
result.

In contrast, if X /∈ S it is not necessarily true that
successive iterations of the gradient projection map will



converge to S. It is not difficult to construct fixed points
of the map on conv(S) \ S.

B. Open Source Implementation
A lightweight open source implementation in C++ has

been made available [10]. The code has no external depen-
dencies so that it can be put into use quickly and is easily
integrated into larger projects.

The initial configuration is sampled randomly from the
uniform distribution on S. The method terminates at iteration
k if

∣∣E(Xk+1)− E(Xk)
∣∣ < εtol or k = kmax. A configu-

ration file allows the user to specify εk and kmax as well as
the number of points N , the dimension of the space n and
the power law in the generalized energy α. Additionally, the
user can specify the Armijo step parameters σ, β, and s.

Figure 5 illustrates several point configurations generated
by the released code in R3 for α = −1 and various N .

Fig. 5. Visualizations of various locally optimal configurations for the
2-sphere with α = −1. The objective values E∗

α above coincide with the
best known values found in [14] and [15].

VI. CONCLUSION

This paper demonstrated that an optimized selection of
control primitives with respect to a general energy function
improved performance of the GLC method by a factor of two
in comparison to randomly sampled controls. Optimization
of the control primitives was addressed with the gradient
projection method. While the resulting optimization does
not meet the standard assumptions of the gradient projection
method, a rigorous analysis showed that it remains applicable
to this problem with an appropriately selected initial config-
uration of control inputs. An open source implementation of
the gradient projection method applied to Thomson’s prob-
lem has been made available to generate control primitives
on the n-sphere.
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APPENDIX

The strict positivity of 〈X:,j∗ , (X:,j∗ −X:,k)〉2 in (22) is
a consequence of the following Lemma which is true for any
inner product space.

Recall that X:,j∗ 6= X:,k and ‖X:,k‖2 = ‖X:,j∗‖2.

Lemma. If y 6= x and ‖y‖ ≤ ‖x‖, then 〈x, x− y〉 > 0.

Proof. We have the strict inequality 0 < ‖x− y‖2 since
y 6= x. Then

0 < ‖x− y‖2
= 〈x, x〉 − 2 〈x, y〉+ 〈y, y〉
≤ 2 〈x, x〉 − 2 〈x, y〉 ,

where we used ‖y‖ ≤ ‖x‖ in the last step. Rearranging the
expression yields

0 < 〈x, x〉 − 〈x, y〉
= 〈x, x− y〉 ,

which is the desired inequality.

https://github.com/bapaden/thomson_solver/releases/tag/v1.0
https://github.com/bapaden/thomson_solver/releases/tag/v1.0
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