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Abstract— An interval predictor model (IPM) is a compu-
tational model that predicts the range of an output variable
given input-output data. This paper proposes strategies for
constructing IPMs based on semidefinite programming and sum
of squares (SOS). The models are optimal in the sense that they
yield an interval valued function of minimal spread containing
all the observations. Two different scenarios are considered. The
first one is applicable to situations where the data is measured
precisely whereas the second one is applicable to data subject
to known biases and measurement error. In the latter case, the
IPMs are designed to fully contain regions in the input-output
space where the data is expected to fall. Moreover, we propose
a strategy for reducing the computational cost associated with
generating IPMs as well as means to simulate them. Numerical
examples illustrate the usage and performance of the proposed
formulations.

I. INTRODUCTION

This paper proposes a parametric metamodeling technique
for predicting the range of an output variable given input-
output data. In contrast to most metamodeling techniques,
we do not use a measurement error term, nor do we make
assumptions on the distribution of the data. This paper
focuses on models depending linearly on the parameters and
polynomially on the input. This structure makes possible to
rigorously characterize the range of the predicted output and
the uncertainty in the parameters of the model.

A few remarks on the significance and practical use of in-
terval predictor models (IPMs) are in order. There are several
conceptual differences between standard metamodeling tech-
niques and IPMs. One of them is that while some techniques
aim at interpolating the data, IPMs aim at describing their
range. For instance, while each of the functions comprising
a Gaussian Process model for a zero-noise level interpolates
all the data points, there is at least one member of the family
of functions comprising an IPM passing through each data
point. None of these functions however, interpolate all the
data. In [2], IPMs with a Gaussian radial basis have been
used to describe a radiation shielding application for space
exploration.

A solution for the IPM problem based on a Linear Matrix
Inequality formulation has been presented in [1]. In that
paper the data are not affected by uncertainties. The Sum of
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Squares (SOS) formulation is a method that allows the char-
acterization of positive polynomials (see [3] and references
therein). In the last years, many robust control problems
have been solved with the help of SOS formulations, one
may cite control design problems [4], [5], filter design
problems [6], [7], stability problems [8] and domain of
attraction estimation problems [9], [10]. It is also important
to cite [11] which have studied the data fitting problem using
SOS polynomials. A brief introduction to the SOS method
is presented in the Appendix.

The main contribution of this paper is a new methodology
for calculating IPMs based on the solution of a semidefinite
program (SDP) with SOS constraints. Two formulations are
proposed. First, an IPM is designed for a set of data that
is known precisely. This formulation is then extended to the
case in which the data are subjected to measurement error.
This error, which might be caused by biases and randomness
in the instrumentation, is bounded by a hyper-rectangular
set in the input-output space. The properties of this error
might well vary with the input and the output. Two strategies
for generating IPMs in the presence of measurement error
are developed, one in which measurement error in all data
points is considered upfront and another one requiring the
consideration of measurement error for the worst-case data
points only. The latter approach, which substantially relaxes
the computational cost of the alternative method, entails (i)
computing the IPM without considering data uncertainty, (ii)
determining the data points whose uncertainty set is not fully
contained by the IPM, (iii) solving for a second IPM that
contains such uncertainty sets, and (iv) prescribing the de-
sired IPM as the union of the two. This practice considerably
reduces the number of SOS constraints required.

The paper is organized as follows. Section II introduces
the problem formulation and provides some preliminary
information. The main results are presented in the Section III.
Section V presents a few numerical examples and Section VI
concludes the paper.

II. PROBLEM FORMULATION AND PRELIMINARIES

A Data Generating Mechanism (DGM) is postulated to act
on a vector of input variables, x ∈ Rnx , to produce an output,
y ∈ Rny . In this paper the focus will be on the single-input
(nx = 1), single-output (ny = 1) case. Assume that N input-
output pairs are obtained from the DGM, and denote this by
z = {z(t)}, with z(t) = (x(t), y(t)) for t = 1, . . . , N , the
corresponding data sequence.



It is desired to build a mathematical model of the DGM
based on z which will predict the output corresponding to
an unobserved realization of the input. Let X ⊆ Rnx be
a set of input variables, and Y ⊆ Rny be a set of outputs
which might result from evaluating the model at elements of
X . The presence of intrinsic variability, and parametric- and
model-form-uncertainty makes it unrealistic to build a model
that will predict a single output for a fixed input. Instead, an
IPM will predict an interval into which unobserved data is
expected to fall. Engineering judgment is used to select a
computational model, y = M(x, p) depends polynomially
on x, where p ∈ Rnp is a parameter. Instead of the standard
practice of trying to fit all of the data as closely as possible
with M evaluated at a fixed p, the thrust in this work is
to provide an interval-valued function of the input where
unobserved data is expected to fall.

A. Interval Predictor Models

An IPM is fully prescribed by its upper and lower
boundaries. In this paper, such boundaries are prescribed by
two polynomial functions, so I(x) = [fl(x), fu(x)] where
fl(x) < fu(x) for all x ∈ X . These functions will be
described as

fu(x) =

du∑
i=0

uix
i, fl(x) =

dl∑
i=0

lix
i (1)

where du and dl are the maximum degrees of the upper and
lower function respectively. The decision variables are the
coefficients of the upper function ui, i = 1, . . . , du, and the
coefficients of the lower function li, i = 1, . . . , dl. Note that
the IPM boundaries might not have the same polynomial
degree.

III. MAIN RESULTS

The conditions for designing an IPM based on N input-
output data points, x(t), y(t) with t = 1, . . . , N , exempt
from measurement uncertainty are given by:

Optimization Program 1: If there exist γ > 0, polynomi-
als fu(x) and fl(x) as in (1), and a SOS multiplier λ(x) for
a given polynomial p(x) ≤ 0 describing the input domain of
interest, such that

min γ s.t.

Ex [fu(x)− fl(x)] < γ (2)

y(t)− fl(x(t)) > 0, t = 1, . . . , N (3)

y(t)− fu(x(t)) < 0, t = 1, . . . , N (4)

fu(x)− fl(x) + λ(x)p(x) is SOS (5)

where Ex[·] is the expected value with respect to x, then

Iy(x) = {(x, y) : x ∈ X, fl(x) ≤ y(x) ≤ fu(x)}

is the IPM of minimal expected spread containing the data.
When x is a standard joint random vector with joint

probability density fx(x), the cost function in (2) can be

calculated analytically. Otherwise, the sample mean based
on the data in z should be used. In the former case, the
expected value can be computed analytically for each of the
monomials as

E [xn] =

∫ x

x

xnfx(x)dx

where X = {x : x ≤ x ≤ x}. Conditions (3) and (4)
ensure that all the data points are inside the IPM, i.e., all the
measurements y(t) are between the upper function fu(x)

and the lower function fl(x). Condition (5) assures that the
difference between the functions fu(x) and fl(x) is positive
in the interval of interest. Remember that for univariate
polynomials the SOS constraint is equivalent to positivity1.
The polynomial p(x) can be constructed as

p(x) = (x− x)(x− x) (6)

In this way p(x) is guaranteed to be negative or equal
to zero in X . Note than Equation (5) might lead to an
IPM for which fu − fl is negative outside X . This would
not have been the case if we would have make fu − fl
SOS. As such, Equation (5) renders IPM with an improved
performance. It is important to remember that optimization
program 1 is a convex problem that can be solved using
standard semidefinite software such as SeDuMi [12].

Let us now consider the case in which the data is subject to
measurement error. Assume that each data point is expected
to fall within a rectangular input-output region defined as

x(t) ≤ x(t) ≤ x(t), and y(t) ≤ y(t) ≤ y(t) (7)

where t = 1, . . . N . An IPM that contains such a region for
all data points can be identified by solving the following
optimization program:

Optimization Program 2: If there exist γ > 0, polynomi-
als fu(x) and fl(x), and the SOS multipliers λ(x), λt(x),
λt(x), t = 1, . . . , N ; for the given polynomials p(x) < 0

(describing X) and pt(x) ≤ 0 (describing the input domain
of measurement error [x(t), x(t)]), such that

min γ s.t.

Ex [fu(x)− fl(x)] < γ (8)

fu(x)− y(t) + λt(x)pt(x) for t = 1, . . . N is SOS (9)

y(t)− fl(x) + λt(x)pt(x) for t = 1, . . . N is SOS (10)

fu(x)− fl(x) + λ(x)p(x) is SOS (11)

then

Iy(x) = {(x, y) : x ∈ X, fl(x) ≤ y(x) ≤ fu(x)}

is the IPM of minimal expected spread containing the data.

1We refer the reader to the Appendix for more details about the SOS
formulation



Optimization program 2 requires setting a polyno-
mial pt(x) for each t = 1, . . . , N . Following the same
rationale used in (6), one can write

pt(x) = (x− x(t)) (x− x(t)) , t = 1, . . . N

The only difference between optimization program 1 and
optimization program 2 is the requirement for two SOS
multipliers for each data point. As such, large values of
N and large polynomial degrees can create computational
difficulties. An alternative approach for mitigating such dif-
ficulties is presented in Algorithm 1.

Algorithm 1

1) Use Program 1 to calculate an IPM after ignoring
uncertainty in the data. Denote the resulting IPM as
Iy(x),1.

2) Use Bernstein polynomials [13] to determine which
uncertainty regions are not fully contained in Iy(x),1.
Denote by Nv be the number of such regions.

3) Use Program 2 to solve for an IPM that contains the
Nv regions. Denote the resulting IPM as Iy(x),2.

4) An IPM fully enclosing the N uncertainty regions is
given by:

Iy(x) = Iy(x),1 ∪ Iy(x),2 (12)

Note that this equation leads to an IPM containing the
union of two IPMs. Even though this IPM predicts a single
interval for each value of x as desired, the resulting pre-
diction might be overly conservative since such an interval
might include large input-output regions where no data is
present. Alternatively, one might consider adding the con-
straint I1(x) ⊆ I2(x) when solving for I2(x). This algorithm
requires solving optimization programs 1 and 2. However,
in this case, optimization program 2 is solved only with Nv

uncertain regions where Nv ≤ N . The resulting IPM in (12)
is given by the union of two IPMs. As such, the boundaries of
this IPM have derivative discontinuities where the boundaries
of I1 and I2 intersect.

Remark 1: The image of a hyper-rectangle when mapped
by a multivariable polynomial is a bounded interval. By
expanding that polynomial using a Bernstein basis over
that rectangle, rigorous bounds to such an interval can be
calculated using mere algebraic manipulations. Bernstein
polynomials can be used to determine if a hyper-rectangle
in the input-output space is fully contained within an IPM
or not. The tightness of the bounds, as well as the outcome
of the set containment determination, depend exclusively on
the level of refinement used to describe the rectangle, i.e.,
a partition of sub-rectangles constituting the rectangle. The
bounds can be made arbitrarily tight and the set containment
test conclusive by using a sufficiently fine partition of the
rectangle.

Means to give a functional representation to the proposed
IPMs is presented next. This is a setting in which the IPM is
comprised by infinitely many input output functions fully and
tightly enclosed by the IPM envelopes. This representation
enables the systematic generation of input-output functions
used for simulating the IPM. Until this point there are no
constraints imposed directly in the parameter space of the
coefficients of the polynomial functions fu and fl. In [14]
a parametric approach to obtain a functional representation
of the IPM is presented. The idea was generating an IPM
by letting the coefficients of a polynomial vary within a
bounded range. The cartesian product of such ranges yield
an hyper-rectangular set, which in contrast to the ellipsoids
considered in [1] have the advantage that the range of an
individual parameter is not affected by the value taken by the
others. In particular, if y = p>φ(x) is a linear combination
of monomials, the boundaries of the IPM corresponding to
p ≤ p ≤ p are the non-polynomial functions

y(x, p, p) = pT
(
φ(x) + |φ(x)|

2

)
+ pT

(
φ(x)− |φ(x)|

2

)
(13)

and

y(x, p, p) = pT
(
φ(x)− |φ(x)|

2

)
+ pT

(
φ(x) + |φ(x)|

2

)
(14)

The developments that follow enable giving a functional
representation to the IPMs derived here. To achieve this one
must have fu(x) = y(x, p, p) and fl(x) = y(x, p, p). When
x > 0, Equations (13) and (14) yield fu(x) = pTφ(x) and
fl(x) = pTφ(x) that is the same representation (1) used in
this paper. So, in order to construct the same type of IPMs
in [14] using the proposed formulations, we need to use the
same basis for fu and fl, and add the constraint p ≤ p ≤ p.
The next Corollary summarizes this process

Corollary 1: By solving optimization program 1 (or 2)
for x > 0 and uk ≥ lk, k = 0, . . . , d we obtain an IPM such
that, the family of all polynomial functions with coefficients
lying between uk and lk, k = 0, . . . , d are within the IPM.
An input transformation can be used to map a non-positive
set X into the first orthant (see example 3 for details).

Remark 2: It is important to emphasize that the bound γ
present in both optimization programs 1 and 2 is the variable
used to measure how good the approximation is. The bound
γ can be used as an indicative of when we should consider
using higher order polynomial functions in the IPM.

IV. RELIABILITY

The reliability of an IPM is defined as the probability of a
future scenario falling outside the predicted interval. When
data is measured precisely an scenario is a data point. When
the data is subject to measurement error an scenario is an
uncertainty box. Scenario optimization enables to rigorously
bound the reliability of an IPM using a non-asymptotic,



distribution-free formula [1], [14]. This relationship de-
scribes the interplay between the reliability of the IPM,
the complexity of the model (measured by the number of
design variables), and the amount of information available
(measured by the number of scenarios N ). This framework
enables assessing the reliability of the IPMs derived herein.
The results of such an analysis however, are omitted due to
space limitations.

V. NUMERICAL EXPERIMENTS

The numerical experiments that follow illustrate the op-
timization programs proposed above. The routines were
implemented in MATLAB, version 8.3.0.532 (R14) using the
packages Yalmip [15], [16] and SeDuMi [12] in an Intel(R)
Core(TM) i5-4210, 1.7 GHz, 8 GB RAM, Windows 10.

Example 1. The DGM considered in [14] and given by

y(t) = x2 cos(x)− sin(3x) exp(−x2)− x− cos(x2) + xg

(15)
will be used in the examples that follow. The input x is
independent and identically distributed (i.i.d.) with a uniform
distribution over the support X = [−5.5, 5.5] and g is i.i.d.
with standard normal distribution. A set of N = 50 observa-
tions have been drawn and used to form the data sequence z.
The structure of the DGM is provided for the sake of clarity
and no information about it will be used to construct the
IPMs.

First we consider the case in which there is no uncertainty
in the data. To this end we will use optimization program 1
under two settings: i) polynomials fu(x) and fl(x) with
degrees du = dl = 6, and ii) polynomials fu(x) and fl(x)

with degrees du = dl = 8. In both cases we use a SOS
multiplier λ(x) of degree ds = 2. The solution to this
programs yields γ = 47.20 and γ = 18.06 respectively.
Figure 1 shows the resulting IPMs. The data are marked
with ×, the black dashed lines depict the first IPM and the
solid red lines depict the second one. All the observations are
enclosed by the IPMs, but second IPM does so much tightly
by virtue of the higher polynomial degree. This is reflected
in the resulting value of γ.

Table I presents the γ values obtained by optimization
program 1 for different values of du = dl while keeping
everything else the same. As expected, the bound γ de-
creases rapidly when the degree of the polynomial functions
increases. Table I also lists the time in seconds required by
SeDuMi [12] to solve the respective SDP and the number of
scalar decision variables Sv for the different degrees. It can
be seen that the time required to solve the convex problem
is reasonable (less than one second) for all cases.

Example 2. We now consider the case in which the data
generated by the DGM (15) is subjected to measurement
error. For the sake of simplicity, the limiting vertices of
the rectangular region (7) describing the uncertainty set are
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Fig. 1. Optimization program 1 using a SOS multiplier λ(x) of degree
ds = 2 and polynomial functions with du = dl = 6 (black dashed lines)
and du = dl = 8 (red solid lines).

TABLE I

BOUNDS γ OBTAINED BY OPTIMIZATION PROGRAM 1 WITH THE

RESPECTIVE TIME REQUIRED TO SOLVE THE PROBLEM AND NUMBER OF

SCALAR DECISION VARIABLES FOR DIFFERENT DEGREES du = dl .

du = dl 2 3 4 5 6 7 8

γ 178.19 169.45 61.59 61.56 47.20 42.37 18.06

Time(s) 0.099 0.100 0.157 0.149 0.172 0.216 0.318

Sv 19 23 27 31 35 39 43

x(t) = 0.9x(t), x(t) = 1.1x(t), y(t) = 0.9y(t), and
y(t) = 1.1y(t).

We now apply optimization program 2 to solve for an
IPM. Figure 2 shows the resulting IPM. The uncertainty
regions are shown as rectangles. The IPM was designed
with du = dl = 5, SOS multiplier λ(x) of degree ds = 6

and SOS multipliers λt(x) and λt(x) of degree dt = 2. As
intended, the IPM fully contains all the regions where the
data is expected to be.

Next, we use Algorithm 1 to solve the very same problem.
This approach yields to I1(x), which is the IPM shown
in Figure 3. Note that some of the uncertainty regions are
not fully contained by the IPM. In particular, the Nv =

19 regions shown as red boxes extend beyond the IPM
boundaries of I1.

The application of Step 3 in Algorithm 1 with the inclusion
of these Nv uncertainty regions leads to I2(x) (not shown).
The final IPM, computed via (12), is shown in Figure 4.
The IPM in Figure 4 is very similar to the IPM in Figure 2.
However, the main advantage of the sequential algorithm
is the smaller number of decision variables employed to
solve the problem. For instance, in this example, optimization
program 2 makes use of 944 scalar decision variables while
the procedure presented in Algorithm 1 involves 418 scalar
decision variables, i.e., a reduction of more than 50% in the
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Fig. 2. Optimization program 2 using a SOS multiplier λ(x) of degree
ds = 6, polynomial functions with du = dl = 5 and SOS multipliers
λt(x) and λt(x) of degree dt = 2.
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Fig. 3. Step 1 of Algorithm 1 using a SOS multiplier ms(x) of degree
ds = 2, polynomial functions with du = dl = 5. The uncertain regions
that violate the IPM1 are colored.

number of variables.

Example 3. In this example we use Corollary 1 to give
a functional representation to one of the IPMs proposed.
Remember that Corollary 1 requires x(t) to be positive, so
we apply a constant shift to the original data so x(t) =

x(t) + 6. An IPM for the same data sequence in Example 1
for du = dl = 5, uk ≥ lk for k = 0, . . . , d, and a SOS
multiplier λ(x) of degree ds = 2 leads to an IPM with
boundaries

fu(x) = 50.6268− 53.7433x+ 18.0955x2

− 2.4302x3 + 0.1248x4 − 0.0015x5

and

fl(x) = 45.9672− 54.0068x+ 18.0955x2

− 2.4303x3 + 0.1248x4 − 0.0015x5
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Fig. 4. IPM obtained from Algorithm 1.

Observing the boundaries of the IPM given above one can
say that the monomials of order zero and one contribute the
most to the spread in the IPM. A Monte Carlo simulation
with 1000 different polynomials of order five, with coeffi-
cients between p, i.e., the coefficients of fu(x), and p, i.e.,
the coefficients of fl(x), are shown in Figure 5. The green
area represents the range of the 1000 functions and indicates
that all the generated polynomials lie inside the IPM.
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Fig. 5. Corollary 1 with optimization program 1 using a SOS multiplier
λ(x) of degree ds = 2, polynomial functions with du = dl = 5. Monte
Carlo simulation with 1000 different polynomial functions.

IPMs capture the discrepancy between the unknown structure
of the DGM and the model as parametric uncertainty. This
discrepancy might be caused by measurement noise and
model-form uncertainty. IPMs can be used to characterize the
prediction error of physics-based models and to prescribe the
input domain where a models’ prediction is acceptable. Let
y = f(x) be a calibrated physics-based model of a DGM,
and I(x) be an IPM based on the sequence z = {(x(t), y(t)−
f(x(t)))} for t = 1, . . . , N . The model y = f(x) + I(x)

describes the phenomenon of interest. Furthermore, the set



X̂ = {x : δy < δ̂} ⊂ X for a suitable value of δ̂, where
δy = fu(x) − fl(x), prescribes the input domain where the
prediction is an acceptable representation of the DGM.

VI. CONCLUSIONS

This paper proposes optimization-based strategies for cal-
culating interval predictor models based on a limited number
of observations. We consider the cases in which the data
is known precisely, and the case in which the data is
subject to measurement error. This error might be caused
by the intrinsic limitations of the metrology system used to
measure the data. The solution strategies were formulated
as semidefinite programs with sum of squares constraints,
where the coefficients of the IPM boundaries are polynomials
and the corresponding coefficients are the design variables.
Extensions to the multi-input case as well as the use of
the proposed technique for a realistic application are under
investigation.
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APPENDIX

A polynomial F (x) is a SOS if it can be written as

F (x) =

k∑
i=1

f2i (x)

If F (x) is SOS, then F (x) ≥ 0 and F (x) is of even degree.
Suppose F (x), of degree 2d and let z(x) be a vector of all
monomials of degree less than or equal to d. F (x) is SOS
if and only if there exist Q such that Q > 0 and F (x) =

z(x)TQz(x). If Q is a feasible solution of the SDP, then
factorize Q = V V T , and write V =

[
v1 . . . vr

]
so

F (x) =z(x)TV V T z(x) = ||V T z(x)||2 =

r∑
i=1

(
vTi z(x)

)2
where r is the rank of Q. For univariate polynomials of even
degree, the SOS constraint is equivalent to the non-negativity
constraint.

Example 4. Consider the polynomial f(x) = 4x4 − 4x3 +

6x2. f(x) as a quadratic function of monomials

f(x) =

[
x2

x

]T [
4 −2
−2 6

] [
x2

x

]
As Q =

[
4 −2
−2 6

]
is positive definite it can be factorized,

for instance using a Cholesky factorization yields

f(x) =

[
x2

x

]T [
2 −1
0
√
5

]T [
2 −1
0
√
5

] [
x2

x

]
or

f(x) = (2x2 − x)2 + 5x2

that is a SOS.

Several numerical tools are available to solve this prob-
lem [17], [16], [18].


