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Abstract

We consider the optimal allocation of generic resources among mul-

tiple generic entities of interest over a finite planning horizon, where

each entity generates stochastic returns as a function of its resource

allocation during each period. The main objective is to maximize the

expected return while at the same time managing risk to an accept-

able level for each period. We devise a general solution framework

and establish how to obtain the optimal dynamic resource allocation.

1 Introduction

The trade-offs among risks and returns are central and fundamental to the
planning and management of any collection of generic entities of interest to
an organization. At any given time, the organization may support various
entities under its control with generic resources of interest. The risks and
returns associated with each entity as a function of the amount of allocated
resources differ from one entity to the next, as well as across entities. These
risks and returns also evolve over time according to the dynamics of each
entity, the dynamics across entities, and the dynamics of exogenous factors
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such as environmental changes. Meanwhile, the organization seeks to opti-
mize its own objectives within the context of various restrictions on what
portfolio of resource allocation decisions and actions can be made and when.
A commonly used objective is to maximize the expected returns of a collec-
tion of entities of interest to the organization over a given planning horizon,
while simultaneously maintaining the risk exposure of its portfolio of resource
allocation decisions and actions, usually represented by the variability of re-
turns, within acceptable levels. To ensure all objectives are achieved and
restrictions are met, the decisions on resource allocations to each entity are
periodically reviewed and adjusted over time.

This general dynamic resource allocation problem prominently arises for
different types of entities across a broad spectrum of application domains.
Examples include applications in cybersecurity, pharmaceuticals, software
products, and business management. For cybersecurity applications, the
entities can represent different computing devices in distinct states of cyber-
security vulnerability; the resources can include various forms of financial
investments, people working on system security, and various cybersecurity
applications (e.g., patch); and the decisions can concern the amount of re-
sources to be allocated to each device; an analogous set of entities, resources
and decisions exists for other forms of computer system management which
may also include reliability and performance. In the pharmaceutical industry,
the entities can represent research projects in different stages of development
and trials; the resources can include various forms of financial investments,
scientists and researchers working on the projects, and various pharmaceu-
tical compounds and materials; and the decisions can concern the amount
of resources to be allocated to each project. Turning to the software indus-
try for yet another example, the entities can represent product offerings and
releases of versions of product offerings; the resources can include various
forms of financial investments, software architects and programmers working
on the products, and various equipment and infrastructure support; and the
decisions can concern the amount of resources to be allocated to each prod-
uct. Finally, as a general business management application, the entities can
represent different areas of the business organization such as development,
marketing and sales; the resources can include various forms of financial in-
vestments, people working in the areas, and various infrastructure support;
and the decisions can concern the amount of resources to be allocated to
each area. In each of these application domains, the organization may want
to weight the benefits differently from one time period to the next such as
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preferring long-term benefits even at the expense of short-term benefits or
preferring short-term benefits even at the expense of long-term benefits.

Motivated by these real-world applications, we consider a mathematical
abstraction of the dynamic resource allocation problem and devise a general
solution framework. In particular, we mathematically model the resources
and returns associated with every entity as quantities that can be measured
in terms of certain forms of currency which facilitate the interactions among
different entities, where this abstract notion of currency represents any com-
bination of different types of resources such as financial investments, human
resources, equipment, materials, and so on. This mathematical abstraction
also includes a fundamental connection between entities and financial in-
struments, even though they are very different from traditional financial in-
struments, which leads to the representation of the returns from entities as
random variables where such returns are functions of the amount of resources
allocated to the entities and evolve over time according to the intrinsic dy-
namics associated with the resource allocations and entities. The allocation
of resources are reviewed and adjusted over time to achieve maximum benefit
as uncertainty is realized and information is updated. In addition, at each
time period, constraints are imposed on the variance of the return random
variables such that only allocations satisfying these restrictions are deemed
feasible.

Our mathematical models and analysis have certain degrees of resem-
blance to multi-period mean-variance models in the mathematical finance
literature; see, e.g., [4, 5, 8]. This includes an additional entity, with little or
no risk, to serve as a reference point for the returns of the original set of enti-
ties, as is standard in the literature [4]. In our context, the additional (last)
entity can be cash or a Treasury note, thus representing an option that we do
not need to invest all of the resources all of the time. Alternatively, in other
instances of our models, the additional (last) entity can be a benchmark en-
tity that represents standards against which every entity will be evaluated.
There are also important connections between the resource allocations in
our models and the investments in classical portfolio optimization, though
with differences in semantics, where there is an implicit assumption in our
models that the returns from resource allocations at the end of one period
are converted into the amount of resources available at the start of the next
period.

At the same time, however, there are significant differences between our
models and those in the mathematical finance literature. First, it is typ-
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ical for the risk constraints to only be imposed on the terminal value in
mathematical finance models. This differs from our allocation of resources
to entities together with their associated financial assets, where such oper-
ational aspects of the problem have a much larger impact on the planning
and management of entities and their returns, which in turn require that
the associated risk factors be monitored and controlled at a much higher
frequency. Second, there appears to be an issue with a couple of key papers
in the field [4, 5] where, under the same model that we consider, the amount
of investment funds available from one period to the next are not properly
restricted to the amount of wealth obtained up to that point in time; i.e., an
unlimited amount of “borrowed” funds are allowed at no cost. This differs
from our allocation of resources to entities, where allocation beyond current
capacity can be much more difficult to do and therefore we explicitly enforce
the constraint of the problem formulation on the investment funds available
in each period. In addition, our models and analysis support the general
case where borrowing is allowed at a given cost rate. Our models and analy-
sis further support the inclusion of weights to differentiate the contributions
from one time period to the next.

We note that the research literature includes other mathematical mod-
els and methods to address the problem of dynamic resource allocation. In
particular, there have been several attempts to directly apply portfolio man-
agement models and methods in the planning and management of scientific
and development projects. One such approach [1, 3] is based on mathemat-
ical programming, including stochastic programming. While some of these
models and methods are quite powerful at incorporating constraints, it is not
surprising that one of the key features often ignored in these previous studies
concerns the correlations among entities, which usually causes the mathe-
matical programming approach to become extremely complex and renders
its computational complexity prohibitive [3]. In contrast, as we will show,
the mathematical models and methods devised in this paper can readily
support many aspects of the various sources of uncertainty, including corre-
lations among entities and their evolution over time. Another approach to
addressing the problem of project management is based on decision science
methods, mostly involving various structured decision trees. This approach
has important limitations when the parameter and state spaces that have
to be discretized become very large. Our interests in this paper concern
large-scale optimal dynamic allocation of resources among multiple entities
of interest over a long-run planning horizon.
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The remainder of the paper is organized as follows. Our mathematical
models are presented in Section 2, followed by our mathematical analysis
in Section 3. Extensions of our general solution framework are discussed in
Section 4, followed by concluding remarks.

2 Mathematical Models

Consider the allocation of a set of common resources among n + 1 general
entities over a discrete-time planning horizon comprising T periods. For
each period t = 1, . . . , T , the amount of resources allocated to entity i =
1, . . . , n + 1 is denoted by ut

i. Let xt denote the total return at the end
of period t where, with slight abuse of notation, such returns are implicitly
converted into the amount of available resources at the start of period t+ 1.
The total amount of resources available at the beginning of the horizon is
given by x0, and thus

∑n+1
i=1 u1

i = x0. Within each period, random returns are
generated proportional to the amount of resources allocated to each entity.
More specifically, let us define

• et := return of the (n + 1)-st entity during time period t per unit of
resource allocated;

• eti := return of the i-th entity during time period t per unit of resource
allocated;

where these random variables (r.v.s) are independent over time. Under these
assumptions, xt satisfies the dynamics

xt = etxt−1 +

n
∑

i=1

(eti − et)u
t
i, t = 1, . . . , T, (1)

where the (n+ 1)-st entity is used as a point of reference and ut
n+1 = xt−1 −

∑n

i=1 u
t
i by definition.

Defining the n-dimensional vectors Pt and ut to be

Pt := [(et1 − et), (e
t
2 − et), . . . , (e

t
n − et)]

′,

ut := (ut
1, . . . , u

t
n)

′,

respectively, the system dynamics can be expressed as

xt = etxt−1 +P′

tut. (2)
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We next define the (n + 1)-dimensional vector et := (et, e
t
1, . . . , e

t
n)

′ and in-
troduce the following assumption.

Assumption 1. E[et(et)′] is positive definite for all time periods t = 1, . . . , T .

Remark 1. While E[et(et)′] are positive semidefinite matrices by definition,
Assumption 1 guarantees they are not degenerate (i.e., et = 0, ∀t). Further
note that our model does not impose strong distributional assumptions on the
returns; we only require that they have finite second moments.

The (n+ 1)× (n + 1) matrix E[et(et)′] then can be expressed as









E[e2t ] E[ete
t
1] . . . E[ete

t
n]

E[et1et] E[(et1)
2] . . . E[et1e

t
n]

. . .
E[etnet] E[etne

t
1] . . . E[(etn)

2]









.

Assumption 1 implies that

[

E[(et)
2] E[etP

′

t]
E[etPt] E[PtP

′

t]

]

=









1 0 . . . 0
−1 1 . . . 0
. . . . . . . . . . . .
−1 0 . . . 1









E[et(et)′]









1 −1 . . . −1
0 1 . . . 0
. . . . . . . . . . . .
0 0 . . . 1









is also positive definite. In addition, we have

E[PtP
′

t] > 0, ∀t, (3)

E[(et)
2]− E[etP

′

t]E
−1[PtP

′

t]E[etPt] > 0, ∀t. (4)

Our resource allocation goal is to maximize the expected return over
time, while maintaining the variance of return within an acceptable range.
This is a natural model for many different problem instances across a wide
variety of applications. The progress of resource allocations are often closely
monitored and periodically reviewed so that they can be adjusted to yield the
best return. Hence, the returns and risks of each period need to be factored
into the decision making process as forms of operational measurements.
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Mathematically, our resource allocation planning can be formulated as
the following stochastic optimization problem

max
(u1,...,uT )

T
∑

t=1

wtE[xt] (5)

s.t. Var[xt] ≤ αt, t = 1, . . . , T, (6)

where the weights wt allow differentiation among the contributions from dis-
tinct periods, and the pre-specified risk tolerances αt reflect levels of risk
deemed to be acceptable. Let us denote the set of optimal allocations as
Π1(w, α).

This type of portfolio optimization problem is often investigated through
related Lagrangian relaxations. More specifically, solving this problem is
equivalent to solving

max
(u1,...,uT )

T
∑

t=1

wtE[xt]− ytVar[xt] (7)

for some vectors y. Denote the set of optimal allocations by Π2(w,y). This
problem remains challenging to solve because of the variance term. Since
variance is not linear, and since xt evolves according to (1), the variance
term here couples the decisions across the time slots. However, as in [4, 5],
the problem can be solved by considering a simpler set of problems that also
renders the optimal solution of (7). To this end, we consider the general
problem

max
(u1,...,uT )

T
∑

t=1

E[atxt − btx
2
t ]. (8)

Let us denote the set of optimal allocations as Π3(a,b). We henceforth focus
on the solution of (8) with respect to at and bt as a result of the following
proposition.

Proposition 1. Any solution to the problem (7) is also a solution to the
problem (8) for some vectors a and b, i.e., Π2(w,y) ⊆ Π3(a,b) for some
vectors a and b.

Proof. The proof of this proposition is by contradiction and similar to that
of Theorem 1 in [5], and thus we only provide a brief summary here. Let U(·)
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denote the objective in (7). Suppose there is a sequence of optimal decisions
for (7), π∗ = (u∗

1, . . . ,u
∗

T ) ∈ Π2(w,y), and let x∗ denote the correspond-
ing returns. Set bt = yt and at = wt + 2ytE[x∗

t ] and further suppose that
(u∗

1, . . . ,u
∗

T ) /∈ Π3(a,b). Note that we selected at =
∂U

∂E[xt]
under the optimal

decisions π∗. There exists a π̃ = (ũ1, . . . , ũT ) that is an optimal solution
of (8). From this fact together with the fact that U(·) is convex in E[xt]
and E[x2

t ] for all t, one can conclude that using the decisions π̃ leads to a
better value of U(·) than the decisions π∗, which contradicts the optimality
of π∗.

3 Mathematical Analysis

We now present our analysis of the above stochastic optimization problem.
First, to illustrate the basic approach, we present a detailed analysis of the
one-dimensional case where many quantities can be explicitly calculated.
Then, we proceed to provide our solution for the general problem, followed
by extensions of our analysis to support acquisition of additional resources
in each period at a cost.

3.1 One-dimensional Case

Consider the case of n = 1. From (2), the total return for any period t =
1, . . . , T is given by

Rt = etxt−1 + Ptut = et1ut + et(xt−1 − ut),

with ut denoting the amount of resource allocation. The r.v. et1 has first two
moments p1,t and p2,t, whereas the return of the second entity et is assumed to
be riskless with mean r0 > 0 and variance 0. This then renders the stochastic
optimization problem

max
(u1,...,uT )

T
∑

t=1

[atµt − btνt],

where at, bt ≥ 0 are given parameters, µt = E[Rt], and νt = E[R2
t ].

Let us next consider the solution of this stochastic dynamic program. At
the beginning of period T , since the total amount of available resources is
xT−1, we only need to determine the resource allocations uT for time period
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T that maximize JT = aTµT −bT νT . If the total allocation is y, the objective
can be rewritten as

JT = aT [yp1,T + r0(xT−1 − y)]

− bT [y
2p2,T + r20(xT−1 − y)2 + 2r0p1,Ty(xT−1 − y)].

Upon taking the derivative with respect to y, we obtain

∂JT

∂y
= [aT (p1,T − r0) + 2bTxT−1(r

2
0 − r0p1,T )]

− 2bT (p2,T + r20 − 2r0p1,T )y.

Hence, the stationary point is given by

y∗ =
aT (p1,T − r0) + 2bTxT−1(r

2
0 − r0p1,T )

2bT (p2,T + r20 − 2r0p1,T )
.

In contrast to [4, 5], we enforce the available resource constraint xT−1 on
allocation decisions. More specifically, on one side when y∗ > xT−1, we have

aT (p1,T − r0) + 2bTxT−1(r
2
0 − r0p1,T )

2bT (p2,T + r20 − 2r0p1,T )
> xT−1

which is equivalent to

xT−1 <
aT (p1,T − r0)

2bT (p2,T − r0p1,T )
.

Then the stationary point is out of reach and the maximum is obtained at
xT−1. The optimal policy therefore allocates all resources to the first entity,
thus rendering

JT (xT−1) = aTxT−1p1,T − bTx
2
T−1p2,T .

Observe that JT (xT−1) has a decreasing derivative as a function of xT−1 and
that the right derivative of JT (xT−1) evaluated at

xT−1 =
aT (p1,T − r0)

2bT (p2,T − r0p1,T )

is equal to, after some simplification,

p2,T − p21,T
p2,T − r0p1,T

aT r0.
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On the other hand, if

xT−1 ≥
aT (p1,T − r0)

2bTp2,T
,

then the optimal policy allocates y∗ resources to the first entity, in which
case the value function bears the form

JT (xT−1) =aT [y
∗p1,T + r0(xT−1 − y∗)]− bT [(y

∗)2p2,T

+ r20(xT−1 − y∗)2 + 2r0p1,Ty
∗(xT−1 − y∗)].

Straightforward calculations show that JT (xT−1) has a decreasing derivative
with respect to xT−1 and the left derivative at

xT−1 =
aT (p1,T − r0)

2bT (p2,T − r0p1,T )

is also equal to

p2,T − p21,T
p2,T − r0p1,T

aT r0.

As a result of these two cases, we can conclude that the value function
JT (xT−1) is a concave function of xT−1.

With xT−2 resources available at the beginning of period T − 1, if the
allocation to the first entity is set at y ≤ xT−2, then the objective can be
expressed as

max JT−1 = aT−1µT−1 − bT−1νT−1 + E[JT (xT−1)].

Equivalently, we have

max
y

aT−1[yp1,T−1 + r0(xT−2 − y)]− bT−1[y
2p2,T−1 + r20(xT−2 − y)2

+ 2r0p1,T−1(xT−2 − y)] + E[JT (r0(xT−2 − y) + eT−1
1 y)].

Meanwhile, from the above analysis, we know that

E[JT (r0(xT−2 − y) + eT−1
1 y)]

=E[{aT [(r0(xT−2 − y) + eT−1
1 y)p1,T ]

− bT [(r0(xT−2 − y) + eT−1
1 y)

2
p2,T ]} × I{GT−1}]

+ E[{aT [(y
∗)p1,T + r0((xT−2 − y) + eT−1

1 y − y∗)]

− bT [(y
∗)2p2,T + r20(xT−2 − y + eT−1

1 y − y∗)
2
]} × I{Gc

T−1}]

10



with

GT−1 :=

{

r0(xT−2 − y) + eT−1
1 y ≤

aT (p1,T − r0)

2bT (p2,T − r0p1,T )

}

,

where I{Z} is the indicator function for event Z.
The above quantity, of course, can be easily calculated for any distribu-

tions with finite first two moments p1,t and p2,t for the independent r.v.s et1.
Once again, in contrast to [4, 5], we explicitly consider the constraint of avail-
able resources xT−2 on allocation decisions. Hence, we can repeat the process
for the last period by finding the stationary point, optimally allocating the
amount of resources (xT−2 ∧ y∗) to the first entity, and then exploiting the
properties of the function to show that the value function remains concave.

In general, for any time period t, with initial availability of xt−1 resources,
the objective becomes

max
y

at[yp1,t + r0(xt−1 − y)]− bt[y
2p2,t + r20(xt−1 − y)2

+ 2r0p1,ty(xt−1 − y)] + E[Jt+1(r0(xt−1 − y) + et1y)]

where E[Jt+1(r0(xt−1 − y) + et1y)] can be readily calculated as demonstrated
above. Then we can obtain the critical value and the optimal policy will again
be to allocate the minimum between this threshold and xt−1. To guarantee
obtaining the critical value efficiently, which is key in the derivation for the
one-dimensional case, we will establish the preservation of the concavity of
the objective for any period. Our approach is based on inductive arguments,
where the initial case has been discussed fully above. Now, assume the
concavity of the objective function holds for any period t + 1, . . . , T .

At the beginning of period t, the amount of available resources is xt−1

such that y ≤ xt−1 resources can be allocated to the first entity which yields
a total return of

et1y + Jt+1(e
t
1y + r0(xt−1 − y)).

Hence, the optimal decision for period t is determined through the following
problem

max
y

atp1,ty + atr0(xt−1 − y)− btp2,ty
2 − btr

2
0(xt−1 − y)2

− 2btr0p1, ty(xt−1 − y) + E[Jt+1(e
t
1y + r0(xt−1 − y))]. (9)
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Taking the derivative of the objective function with respect to y, we obtain

at(p1,t − r0) + 2btxt−1(r
2
0 − r0p1,t)− 2bt(p2,t + r20 − 2r0p1,t)y

+
∂

∂y
E[Jt+1(e

t
1y + r0(xt−1 − y))]. (10)

Let y∗ denote the critical value for this function. Further, since y∗ is a
function of xt−1, let us denote by x∗

t−1 the solution to y∗(xt−1) = xt−1. Then,
if xt−1 < x∗

t−1, the optimal decision for period t is to allocate all xt−1 available
resources to the first entity; otherwise, the optimal decision is to allocate x∗

t−1

resources to the first entity.
Hence, when xt−1 < x∗

t−1, the value function can be expressed as

atp1,txt−1 − btp2,tx
2
t−1 + E[Jt+1(e

t
1xt−1)],

which is clearly a concave function of xt−1. Moreover, the left derivative
evaluated at xt−1 = y∗ is given by

atp1,t − 2btp2,ty
∗ +

∂

∂y
E[Jt+1(e

t
1y

∗)]. (11)

By definition of y∗, the above expression is equivalent to

1−
∂

∂y
E[Jt+1(e

t
1y + r0(xt−1 − y))] +

∂

∂y
E[Jt+1(e

t
1y

∗)],

which tends to approach 1 as xt−1 → x∗

t−1. In summary, the derivative
remains positive and decreases when xt−1 < x∗

t−1.
On the other hand, when xt−1 ≥ x∗

t−1, the value function and its derivative
are given by (9) and (10), respectively. From the definition of x∗

t−1, we know
that the derivative is less than or equal to (11) and non-increasing. Concavity
is therefore preserved and the desired result follows by induction.

3.2 General Case

We proceed along similar lines in our development of an algorithmic frame-
work to solve the general problem. Starting at period T , with initial available
resources xT−1, the objective that is to be maximized has the following form

JT =E[−bTx
2
T + aTxT | xT−1].

12



Substituting the expression (2) for xT , we obtain

JT ={−bTE[e
2
T ]x

2
T−1 + aTE[eT ]xT−1}+ {aTE[P

′

T ]− 2bTE[eTP
′

T ]xT−1}uT

− bTu
′

TE[PTP
′

T ]uT ,

and therefore

∂JT (uT | xT−1)

∂uT

=aTE[P
′

T ]− 2bTE[eTP
′

T ]xT−1 − 2bTE[PTP
′

T ]uT .

Upon examining the system of equations

∂JT (uT | xT )

∂uT

= 0,

we derive the solution

u∗

T = E
−1[PTP

′

T ]{aT/(2bT )E[PT ]− E[eTP
′

T ]xT−1}. (12)

Now, if 1′u∗

T ≤ xT−1 with 1 being the n-dimensional column vector of
all ones, i.e., the initial amount of available resources is large enough to
accommodate the allocation corresponding to the solution (12), then u∗

T is in
fact the optimal resource allocation decision. Otherwise, we need to introduce
the constraint 1′uT = xT−1, as well as a multiplier ν. Applying this to the
optimization problem, we obtain

uT =E
−1[PTP

′

T ]cT − ν, 1′uT = xT−1,

with
cT :=

aT
2bT

E[PT ]− E[eTP
′

T ]xT−1,

which renders

ν =
1

n

{

1′
E
−1[PTP

′

T ]cT − xT−1

}

and therefore

u∗

T =E
−1[PTP

′

T ]cT −
1

n

{

1′
E
−1[PTP

′

T ]cT − xT−1

}

. (13)

Upon combining the solutions in (12) and (13), we have

u∗

T =E
−1[PTP

′

T ]cT −
1

n

{

1′
E
−1[PTP

′

T ]cT − xT−1

}+
. (14)
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Substituting this into the objective function, we derive the optimal cost-to-go
for a given xT−1 to be

J∗

T (xT−1) =

− bT

[

E[e2T ]− 2
(

1−
1

n
AT

)

E[eTP
′

T ]E
−1[PTP

′

T ]× E[eTP
′

T ]− AT

]

x2
T−1

+ aT

[

E[eT ]−
(

1−
1

n
AT

)

E[P′

T ]E
−1[PTP

′

T ]E[eTP
′

T ]
]

xT−1

+
(

1−
1

n
AT

) a2T
4bT

E[P′

T ]E
−1[PTP

′

T ]E[PT ]

where
AT = I

{

E
−1[PTP

′

T ]
[

cT − 1xT−1

]

≥ 0
}

.

Observe that the above expression for J∗

T (xT−1) is a joint combination of two
quadratic functions of xT−1. Furthermore, by the following known result in
convex analysis (see, e.g., [6]), J∗

T (xT−1) remains a concave function of xT−1.

Theorem 1. The solution of a convex programming problem with one knap-
sack constraint is convex with respect to the constrained value.

Next, proceeding to period T−1 with an initial amount of xT−2 resources,
the objective can be expressed as

max
uT−1

aT−1E[xT−1]− bT−1E[x
2
T−1] + E[J∗

T (xT−1)].

We can write the objective function at time T − 1 in the following nominal
form

âT−1xT−1 − b̂T−1x
2
T−1 + γ̂T−1E[P

′

T ]E
−1[PTP

′

T ]E[PT ]

with

âT−1 = aT−1 + aT

[

E[eT ]−
(

1−
1

n
AT

)

E[P′

T ]E
−1[PTP

′

T ]E[eTP
′

T ]
]

,

b̂T−1 = bT−1 + bT

[

E[e2T ]− 2
(

1−
1

n
AT

)

E[eTP
′

T ]E
−1[PTP

′

T ]E[eTP
′

T ]− AT

]

,

γ̂T−1 =
(

1−
1

n
AT

) a2T
4bT

.

Once again, we follow the same approach as presented above. First, we obtain
the derivatives with respect to the allocation uT−1 at beginning of time period
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T − 1 and solve for the stationary point. Note that the derivatives will be
piecewise linear functions of uT−1. Then we check whether the allocation
exceeds the initial amount of available resources; whenever this is the case,
we introduce the Lagrangian multiplier and obtain the corresponding optimal
allocation.

This method can be carried out for any time period. In general, for time
period t, the objective will be

âtxt − b̂tx
2
t +

T−1
∑

s=t

γ̂tE[P
′

t+1]E
−1[Pt+1P

′

t+1]E[Pt+1]

with

ât =at + at+1

[

E[et+1]−
(

1−
1

n
At+1

)

E[P′

t+1]E
−1[Pt+1P

′

t+1]E[et+1P
′

t+1]
]

,

b̂t =bt + bt+1

[

E[e2t+1]− 2
(

1−
1

n
At+1

)

E[et+1P
′

t+1]

× E
−1[Pt+1P

′

t+1]E[et+1P
′

t+1]−At+1

]

,

γ̂t =
(

1−
1

n
At+1

) â2t+1

4b̂t+1

,

and

At = I
{

E
−1[PtP

′

t]
[

ât/(2b̂t)E[Pt]− (E[etP
′

t] + 1)xt−1

]

≥ 0
}

.

The optimal allocation then takes the form

u∗

t =E
−1[PtP

′

t]

[

ât+1

2b̂t+1

E[Pt]− E[etP
′

t]xt

]

−
1

n

{

E
−1[PtP

′

t]

[

ât+1

2b̂t+1

E[Pt]− E[etP
′

t]xt

]

− xt

}+

.

Another important fact is that at time t, the objective function will be
the joint combination of at most T − t + 1 quadratic functions. As seen at
each step of the backward induction, we are introducing at most one break
point, which increases the number of quadratic functions by at most one.
This yields the following result.

Proposition 2. The objective function at time t is a piecewise quadratic
function with at most T − t + 1 pieces.
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Our algorithmic framework for solving the stochastic dynamic program-
ming problem can be summarized as follows:

At the beginning of period t, the initial amount of resources is xt−1 and
the optimal allocation of resources is given by the solution of the convex
programming problem for period t. Moreover, a function ft(xt−1) is
obtained as the localization of the objective function at period t, where
this function is increasing and concave.

3.3 Extensions on Resource Flexibility

Our general solution framework thus far has strictly enforced the available
resource constraint xt on allocation decisions at any time t. We now relax
this constraint and consider the more general case that allows additional
resources to be acquired at a per-unit cost of c̃t. While this introduces a more
complex cost structure, the formulation and solution gain more flexibility and
agility in allocating resources for each time period. We therefore adapt our
algorithmic framework to address the following objective function at each
time t

ãtxt − b̃tx
2
t − c̃t[1

′ut − xt−1]
+ +

T−1
∑

s=t

γ̃tE[P
′

t+1]E
−1[Pt+1P

′

t+1]E[Pt+1],

where

ãt =at + at+1

{

E[et+1]− (1− c̃tAt+1)E[P
′

t+1]E
−1[Pt+1P

′

t+1]E[et+1P
′

t+1]
}

,

b̃t =bt + bt+1

{

E[e2t+1]− 2(1− c̃tAt+1)E[et+1P
′

t+1]

× E
−1[Pt+1P

′

t+1]E[et+1P
′

t+1]− At+1

}

γ̃t =(1− c̃tAt+1)
ã2t+1

4b̃t+1

.

The optimal solution then takes the analogous form

u∗

t =E
−1[PtP

′

t]

[

ãt+1

2b̃t+1

E[Pt]− E[etP
′

t]xt

]

.
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4 Extensions on General Formulations

The stochastic dynamic programming problem considered above is most re-
lated to the various real-world applications motivating this study. Our al-
gorithmic solution framework derived herein, however, is quite general and
can be applied to a much wider range of stochastic dynamic program for-
mulations, including those in which different objective functions are used to
reflect distinct aspects of the problem.

One performance criteria often used to measure the success of entities
of interest concerns the likelihood of achieving certain pre-specified targets.
This class of problems can be readily modeled by a chance constraint, or
equivalently by an objective function with a chance element. More specifi-
cally, we can have the alternative objective function

max
(u1,...,uT )

T
∑

t=1

wtP[xt > dt],

where the dt are any type of target return values that the decision makers
usually consider to be a primary indicator of the progress and success for
each of the various entities, and the wt are user-specified weights that differ-
entiate the importance of each chance element over time. From Tchebyshev’s
inequality, we know that, when xt is large,

P[xt > dt] ≤
Var[xt]

(dt − E[xt])2
,

and therefore we can again obtain a proper weighted objective function of
the mean and variance of xt to formulate an equivalent problem to which our
solution framework applies.

More generally, variations of our algorithmic solution framework can be
applied to address the following generic class of dynamic utility maximization
problems:

max
(u1,...,uT )

T
∑

t=1

Ut(E[xt],Var[xt])

where the Ut(·, ·) represent various utility functions of the mean and vari-
ance of the returns which exhibit properties that are increasing in E[xt] and
decreasing in Var[xt]. This includes a wide range of risk measures, especially
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those exhibiting convexity, such as the entire class of value-at-risk measures.
More recent measures such as least partial moments can also be incorporated
within our general approach.

Lastly, there are many studies related to continuous time mean-variance
portfolio analysis that are also of interest. Our algorithmic solution frame-
work derived herein can be similarly applied to address this general class of
problems.

5 Conclusions

We devised a general solution framework to support the dynamic allocation
of generic resources among generic entities of interest over a finite horizon
during which entities generate random returns. With a primary objective to
maximize the expected return while restricting the risk to a manageable level
for each period, we derived an algorithmic solution framework for determining
the optimal portfolio of resource allocations. Our general solution framework
can be applied to address the planning and management of entities of interest
across a broad spectrum of application domains.
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