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Incentive-based Voltage Regulation in Distribution Networks

Xinyang Zhou, Emiliano Dall’Anese, Lijun Chen and Kyri Baker

Abstract— This paper considers distribution networks fea-
turing distributed energy resources, and designs an incentive-
based algorithm that allows the network operator and the end-
customers to pursue given operational and economic objectives,
while concurrently ensuring that voltages are within prescribed
limits. This social-welfare maximization problem is challenging
due to the non-convexity. We first reformulate the problem as
a convex task together with an incentive signal design strategy,
and then propose a distributed algorithm for solving the
reformulated problem. By doing so, we are able to achieve the
solution of the original non-convex problem without exposure
of any private information between end-customers and network
operator. Stability of the proposed schemes is analytically
established and numerically corroborated.

Index Terms— Voltage regulation, real-time pricing, social
welfare maximization, distribution networks.

I. INTRODUCTION

Market-based mechanisms to control distributed energy
assets have been recently developed with the objective of
incentivizing end-customers to provide ancillary services to
the grid while maximizing their own economic benefits; see,
e.g., [1]–[4] and the references therein. However, demand-
response and market-based problem formulations do not
generally consider the power flows in the distribution net-
work and, hence, they are oblivious to the voltage fluc-
tuations that emerge from the adjustments in the powers
generated/consumed. The frameworks proposed in, e.g., [5]–
[7] offer a way to account for the nonlinear power flows,
but either their applicability is limited to a restricted class of
network topologies, or, they consider only controllability of
the (net) real powers.

This paper aims to design an incentive-based algorithm
that allows network operator and end-customers to pursue
given operational and economic objectives and, in doing so,
ensures that voltage magnitudes are within the prescribed
limits (e.g., ANSI C84.1 limits). Similar to, e.g., [4], the
paper first formulates a social-welfare maximization problem
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that captures a variety of optimization objectives, hardware
constraints, and the nonlinear power-flow equations govern-
ing the physics of distribution systems; for the latter, a linear
approximation of the nonlinear power-flow equations [8]–
[11] is utilized in order to enable the development of a
computationally-tractable optimal coordination method. To
solve a well-defined but non-convex social-welfare maxi-
mization problem, we address two major challenges in this
paper, i.e., non-convexity and privacy preservation. 1) We re-
formulate the non-convex social-welfare maximization prob-
lem into a convex problem. Together with an incentive signal
design strategy, we are able to achieve the solution of the
original non-convex problem by solving the reformulated
convex problem. 2) We propose an iterative distributed al-
gorithm where end-customers and network operator achieve
consensus on a set of net real and reactive powers that
optimize the objectives of both parties while ensuring that
voltages are within the prescribed limits. In our design,
end-customers are not required to share private information
regarding their cost functions and the operating region of
their loads/generators with the distribution-network operator.

In the proposed algorithm, the design of the incentive
signals is based on the equivalence between the optimal
points of the target (non-convex) social-welfare maximiza-
tion problem and the ones of the subproblems solved at
the network operator and the end-customer sides. The de-
velopment of the iterative distributed algorithm, grounded
on the decomposability of the primal-dual projected gradient
algorithms, solves the social-welfare maximization problem
without exposure of private information from either party to
the other. Convergence of the distributed algorithm to the
optimizer of a regularized Lagrangian function associated
with the social-welfare maximization problem is shown
by leveraging contraction mapping arguments. Finally, we
characterize the performance of the proposed algorithm in
the purview of the nonlinear power-flow equations.

It should be pointed out that, traditionally, voltage regu-
lation problems arising from reverse power flows [12] have
been tackled by considering local Volt/VAR and Volt/Watt
controllers [13]–[18] or optimization-based techniques [8],
[19], [20] that leverage the flexibility of power-electronics-
interfaced renewable sources of energy in adjusting the
output real and reactive powers. Compared to local control
strategies, the proposed method allows the network operator
and the end-customers to pursue well-defined performance
objectives; compared to existing optimization strategies, the
proposed method casts the voltage regulation problem within
an incentive realm, and provides insights as to how to design
real-time incentive schemes.

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.
1



TABLE I: Notation.

N Set of nodes, excluding node 0, N := {1, ..., N}
L Set of distribution lines
pi, qi Net real and reactive power injected at node i
zi Overall power injected at node i, zi := [pi, qi]

T

p, q p := [p1, . . . , pN ]T , q := [q1, . . . , qN ]T

z z := [pT , qT ]T

Vi Complex voltage at node i
vi Voltage magnitude at node i
v v := [v1, . . . , vN ]T

αi, βi Signal for real and reactive power for node i
si Overall signal for node i, zi := [αi, βi]

T

α, β α := [α1, . . . , αN ]T , β := [β1, . . . , βN ]T

[x]+ Projection of x onto the non-negative orthant
[x]Z Projection of x onto the convex set Z

II. SYSTEM MODEL AND MODELING ASSUMPTIONS

Consider a distribution network with N+1 nodes collected
in the set N ∪ {0} with N := {1, ..., N} and distribution
lines collected in the set E . Let pi ∈ R and qi ∈ R denote
the net real and reactive power injections at node i ∈ N ,
Vi ∈ C the phasor for the line-to-ground voltage at node i,
and define vi := |Vi|.

Let Zi denote the feasible set of real and reactive power
pi and qi at node i ∈ N . Since pi and qi are aggregate
net powers at node i, the set Zi is assumed convex and
compact for all i ∈ N . This is the case for, e.g., photovoltaic
(PV) systems [8], energy storage systems, small-scale diesel
generators, and variable frequency drives; for DERs with
discrete levels of output powers, Zi represents the convex
envelope of the possible operating points; see, e.g., [21].

Voltages, currents, and powers {pi, qi} are related by the
well-known nonlinear AC power flow equations; assuming,
for illustrative purpose, a balanced tree network, these equa-
tions read:

Pij = −pj +
∑

k:(j,k)∈L

Pjk + rij`ij , (1a)

Qij = −qj +
∑

k:(j,k)∈L

Qjk + xij`ij , (1b)

v2
j = v2

i − 2 (rijPij + xijQij) +
(
r2
ij + x2

ij

)
`ij , (1c)

`ijv
2
i = P 2

ij +Q2
ij , (1d)

where `ij is the squared magnitude of the current on line
(i, j), Pij , Qij are real and reactive powers injected on
line (i, j), and rij + jxij is the admittance on line (i, j).
However, a linear approximation of the nonlinear power-flow
equations is utilized in order to develop a computationally-
tractable voltage-control algorithm. Particularly, the follow-
ing linearized relationship between voltage magnitudes and
injected powers is utilized:

v̂ ≈ Rp+Xq + a, (2)

where the positive definite resistance and reactance matrices
R,X ∈ RN×N++ and the vector a ∈ RN are system parameters
that can be formed as described in, e.g., [8], [9], [11], [22].

Remark 1. For simplicity of exposition, the framework is
outlined for a single-phase system; however, the proposed

method can be readily extended to multi-phase settings. This
can be obtained by utilizing, for example, a multi-phase
extension of (2) of a semidefinite relaxation approach for
multi-phase systems [23], [24]. 2

A. Problem setup

The objective is to design a strategy where the network
operator and the end-customers pursue their own operational
and economic objectives, while achieving a global coordina-
tion to enforce voltage regulation.

1) End-customers’ problem: Consider a cost function
Ci(pi, qi) that captures well-defined performance objectives
for the customer(s) located at node i ∈ N . Let αi ∈ R
and βi ∈ R be the incentive signals sent by the network
operator (e.g., distribution system operator or aggregator) for
real and reactive power injections, respectively. Given signals
(αi, βi), the following optimization problem is solved at each
node i ∈ N :

(P1,i) min
pi,qi

fi(pi, qi|αi, βi), (3a)

s.t. (pi, qi) ∈ Zi, (3b)

where fi(pi, qi|αi, βi) := Ci(pi, qi)−αipi − βiqi with αipi
and βiqi representing payment to/reward from the network
operator. The following assumption is made.

Assumption 1 Functions Ci(pi, qi), ∀i ∈ N are continu-
ously differentiable and strongly convex in (pi, qi). Moreover,
the first-order derivative of Ci(pi, qi) is bounded in Zi.

The assumption of bounded derivative means that an
infinitesimal change should not lead to a jump in cost. Since
(3a) is strongly convex in both pi and qi and Zi is convex
and compact, a unique solution (p∗i , q

∗
i ) exists. For future

developments, consider a so-called best-response strategy bi
of end-customer i as the following function of αi and βi:

(p∗i , q
∗
i ) = bi(αi, βi) := arg min

(pi,qi)∈Zi

fi(pi, qi|αi, βi). (4)

Notice further that, for illustrative simplicity, problem (P1,i)
is stated in terms of net powers; it is clear that if multiple
controllable devices are located at node i, problem (P1,i)
should include optimization variables capturing the power
consumption/injection of each device.

2) Social-welfare problem: Consider a cost function D(v̂)
capturing the network-oriented objective in voltage. For
instance, to minimize the voltage deviation from the nominal
value vnom, we can set D(v̂) = 1

2‖v̂ − vnom‖2. Let Z :=
Z1 × . . .×ZN , and the following assumption is made.

Assumption 2 Function D(v̂) is continuously differentiable,
convex, and with bounded first-order derivative in Z .

Consider the following social-welfare optimization prob-
lem that captures both customer-oriented and network-

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.
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oriented objectives of a (portion of a) distribution feeder:

(P2) min
p,q,v̂,α,β

∑
i∈N

Ci(pi, qi) + γD(v̂), (5a)

s.t. v̂ = Rp+Xq + a, (5b)
v ≤ v̂ ≤ v, (5c)
(pi, qi) = bi(αi, βi), ∀i ∈ N , (5d)

where γ ∈ R+ is a parameter used to trade off between the
end-customers’ and the network-oriented objectives, while
vectors v and v are prescribed minimum and maximum
voltage magnitude limits (e.g., ANSI C84.1 limits). Notice
that the total payment from/reward to the end-customers
cancels out the payment received/reward paid by the network
operator, and is therefore not explicitly shown in the social
welfare objective function (5a).

Also notice that the best-response strategy of (P1,i) is
embedded in (P2) through the constraint (5d), i.e., the
network operator knows the reaction of the end-customers
towards any incentive and takes it into consideration when
making decisions. This constitutes a Stackelberg game where
the network operator solves (P2) and sends the signals α
and β to all end-customers i ∈ N ; subsequently, each end-
customer responds with computed power injections (p∗i , q

∗
i )

from (P1,i) based on the received signals (αi, βi). By
design, (p∗, q∗) coincides with the optimal solution of (P2).

However, it is impractical to solve problem (P2) not
only because of its non-convexity introduced by constraints
(5d), but also because of its requirement for end-customers’
full information, which is usually private. In the following
section, we first reformulate (P2) as a convex optimization
problem with a signal design strategy; they together bypass
the problem of non-convexity, while achieving the solution
of problem (P2). Then based on primal-dual gradient al-
gorithm, we propose a distributed algorithm that prevents
any exposure of private information from the end-customers
while solving a regularized reformulated convex optimization
problem.

III. INCENTIVE-BASED VOLTAGE REGULATION

A. Convex reformulation and incentive design

In the following, a one-step mechanism will be designed,
where the end-customers submit to the network operator a
“bid” in the form of their cost function Ci(·) as well as their
operating region Zi; upon receiving the incentive signals
from the network operator, the end-customers compute the
real and reactive powers via (P1,i).

To this end, consider the following convex optimization
problem:

(P3) min
p,q,v̂

∑
i∈N

Ci(pi, qi) + γD(v̂), (6a)

s.t. v̂ = Rp+Xq + a, (6b)
v ≤ v̂ ≤ v, (6c)
(pi, qi) ∈ Zi ∀ i ∈ N , (6d)

where the non-convex constraint (5d) in (P2) is replaced
with (6d). We assume (P3) is feasible.

Assumption 3 (Slater’s condition) There exists a feasible
point (p̃, q̃) ∈ Z , such that

v ≤ Rp̃+Xq̃ + a ≤ v.

Assumption 3 does not involve strict inequality because
the constraint is linear. Given the strong convexity of ob-
jective function (6a) in (pi, qi) and the linear relation (6b),
a unique optimal solution exists for problem (P3). Notice
that a solution (p∗i , q

∗
i , v̂
∗) of (P3) may not be feasible

for (P2), i.e., there does not exist a (α∗, β∗) such that
(p∗i , q

∗
i ) = bi(α

∗
i , β
∗
i ). We will, however, show next that

such (α∗, β∗) exists, and thus the solution of (P3) gives
the solution of (P2).

Substitute (6b) into (6c), and denote by µ and µ the dual
variables associated with the constraints (6c). Let v̂∗ be the
optimal voltage magnitudes produced by (P3) and denote
the optimal dual variables associated with (6c) as µ∗, µ∗.
Then, the incentive signals are designed as:

α∗ = R
[
− γ∇v̂D(v̂∗) + (µ∗ − µ∗)

]
, (7a)

β∗ = X
[
− γ∇v̂D(v̂∗) + (µ∗ − µ∗)

]
, (7b)

where ∇v̂D denotes the gradient of function D with respect
to the vector v̂. As will be shown next, the above incentive
signals are bounded, precluding the possibility of infinitely
large signals.

Theorem 1 Under Assumptions 1-3, the incentive signals
(α∗, β∗) defined by equation (7) are bounded. 2

Proof: Notice that the derivative ∇v̂D is bounded. To
show the boundedness of (α∗, β∗), it is enough to show that
the optimal duals (µ∗, µ∗) are bounded.

Consider the KKT conditions for problem (P3):(
∇p
∑
i∈N

Ci(p
∗
i , q
∗
i ) + γR∇v̂D(v̂∗)−R(µ∗ − µ∗)

)T
·(p− p∗) ≥ 0,∀(p, q) ∈ Z, (8a)(

∇q
∑
i∈N

Ci(p
∗
i , q
∗
i ) + γX∇v̂D(v̂∗)−X(µ∗ − µ∗)

)T
·(q − q∗) ≥ 0, ∀(p, q) ∈ Z, (8b)

v̂∗ = Rp∗ +Xq∗ + a, (8c)
v ≤ v̂∗ ≤ v, (8d)
(v − v̂∗)Tµ∗ = 0, µ∗ ≥ 0, (8e)

(v̂∗ − v)Tµ∗ = 0, µ∗ ≥ 0. (8f)

Combine (8a)-(8c), and we have(
∇p
∑
i∈N

Ci(p
∗
i , q
∗
i ) + γR∇v̂D(v̂∗)

)T
(p− p∗)

+
(
∇q
∑
i∈N

Ci(p
∗
i , q
∗
i ) + γX∇v̂D(v̂∗)

)T
(q − q∗)

+(µ∗ − µ∗)T (v̂ − v̂∗) ≥ 0, ∀(p, q) ∈ Z, ∀v̂, (9)

where the first two terms on the left of the inequality are
bounded because of the bounded derivative of cost functions
and the bounded set Z . By the complementary slackness

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.
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condition (8e)-(8f), µ∗i and µ∗
i
, i ∈ N cannot be nonzero at

the same time. If µ∗i →∞, then v̂∗i = vi and we can choose
a (p, q) and thus v̂i such that the third term on the left of
(9) goes to −∞ and (9) does not hold. So, µ∗i and thus µ∗

is bounded. Similarly, we can show that µ∗ is bounded too.
The result follows.

By examining the optimality conditions of (P2) and
(P3), we have the following result.

Theorem 2 The solution of problem (P3) along with the
signals (α∗, β∗) defined in equation (7) solves problem (P2).
2

Proof: By the signal design (7), equations (8a)-(8b)
become(
∇p
∑
i∈N

Ci(p
∗
i , q
∗
i )− α∗

)T
(p− p∗) ≥ 0, (10a)

(
∇q
∑
i∈N

Ci(p
∗
i , q
∗
i )− β∗

)T
(q − q∗) ≥ 0, ∀(p, q) ∈ Z.

(10b)

Notice that the above variational inequalities imply that
(p∗i , q

∗
i ) = bi(α

∗
i , β
∗
i ), i ∈ N . So, the solution of problem

(P3) along with (α∗, β∗) defined in (7) is feasible for
problem (P2). The result follows, as (P3) is a relaxation
of (P2).

From now on, we will use the optima of (P3) and
(P2) interchangeably depending on the context. Next, based
on Theorem 2, we will develop an iterative algorithm
that achieves the optimum of (P3) (and hence that of
(P2)) without exposing any private information of the end-
customers to the network operator.

Remark 3. Theorem 2 asserts that the non-convex problem
(P2) can be solved through solving a convex problem (P3).
At the first glance, it appears that the non-convexity of (P2)
comes from a non-convex representation of the feasible set
that may have a convex representation as implied by (P3).
Ongoing investigations will identify the specific problem
structure to broaden the result in Theorem 2 to a larger class
of problems.

B. Design of iterative algorithm

For notational simplicity, let si = [αi, βi]
T denote the

overall signals for end-customer i and define zi = [pi, qi]
T .

Further denote by z := [pT , qT ]T ∈ R2N the vector of
stacked power injections, and by µ := [µT , µT ]T ∈ R2N

the vector of stacked dual variables. Consider the following
Lagrangian function associated with (P3):

L(z, µ) =
∑
i∈N

Ci(zi) + γD(z) + µT (v −Rp−Xq − a)

+µT (Rp+Xq + a− v) (11)

which is obtained by keeping the constraints z ∈ Z and
µ ∈ R2N

+ implicit. To facilitate the development of provably
convergent algorithms, consider the following regularized

Lagrangian function:

Lr(z, µ) :=
∑
i∈N

Ci(zi) + γD(z) + µT (v −Rp−Xq − a)

+ µT (Rp+Xq + a− v)− r

2
‖µ‖2 (12)

where r > 0 is a predefined parameter (see e.g., [25], [26]).
With the regularization term − r2‖µ‖

2, the resultant function
Lr(z, µ) is strongly concave in the dual variables.

Based on (12), consider the following minimax problem:

max
µ∈R2N

+

min
z∈Z

Lr(z, µ). (13)

In general, the unique optimizer of (13) is not a saddle-point
of the Lagrangian function (12) because of the regularization
term − r2‖µ‖

2; the discrepancy between the unique optimizer
of (13) and the optimizers of (12) can be bounded as
shown in [25]. However, the key advantage is that primal-
dual gradient methods applied to (13) exhibit improved
convergence properties as explained next.

Consider then the following primal-dual projected gradient
method, where k denotes the iteration index:[
z(k + 1)
µ(k + 1)

]
= T̂

([
z(k)
µ(k)

])
=

[[
z(k)
µ(k)

]
−
[
ε1∇zLr(z(k), µ(k))
−ε2∇µLr(z(k), µ(k))

]]
Z×R2N

+

,

(14)

where [x]Z×R2N
+

denotes the projection of the vector x onto
the set Z × R2N

+ , and ε1, ε2 > 0 are prescribed stepsizes for
the primal and the dual updates. Notice that ∇zLr(z, µ) and
∇µLr(z, µ) are Lipschitz continuous and strongly monotone.
Therefore by virtue of [27, Sec. 3.5, Proposition 5.4], the
following result holds.

Theorem 3 There exist some ε̄1, ε̄2 > 0 such that for any
ε1 ∈ (0, ε̄1], ε2 ∈ (0, ε̄2], T̂ is a contraction mapping.
For ε1 ∈ (0, ε̄1], ε2 ∈ (0, ε̄2], the sequence {(z(k), µ(k))}
generated by (14) converges geometrically to the optimizer
of (13). 2

The decomposable structure of (14) naturally enables the
following iterative distributed algorithm:

zi(k + 1) =
[
zi(k)− ε1

(
∇Ci(zi(k))− si(k)

)]
Zi
, (15a)

µ(k + 1) =
[
µ(k) + ε2

(
v − v̂(k)− rµ(k)

)]
+
, (15b)

µ(k + 1) =
[
µ(k) + ε2

(
v̂(k)− v − rµ(k)

)]
+
, (15c)

α(k + 1) = R
[
µ(k + 1)−µ(k + 1)−γ∇v̂D(v̂(k))

]
,(15d)

β(k + 1) = X
[
µ(k + 1)−µ(k + 1)−γ∇v̂D(v̂(k))

]
,(15e)

v̂(k + 1) = Rp(k + 1) +Xq(k + 1) + a (15f)

where the power setpoints of each device are computed
locally through (15a) and (15b)–(15f) are performed at
the network operator. The resultant scheme is tabulated as
Algorithm 1. Notice that each end-customer i does not share
its cost function Ci or its feasible set Zi with the network
operator; rather, the end-customer transmits to the network
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Algorithm 1 Incentive-based iterative algorithm
repeat

[S1] End-customer i ∈ N performs (15a) and sends
zi(k + 1) to network operator.
[S2] Network operator performs steps (15b)–(15f).
[S3] Network operator transmits signals si(k + 1) to
end-customer i ∈ N .

until stopping criterion is met

operator only the resultant power injections zi(k). Indeed,
the results of Theorem 3 apply to (15) too.

C. Accounting for nonlinear power flows

The iterative algorithm (15) was designed and analyzed
based on an approximate linear model for the voltages. In
this section, the stability of Algorithm 1 is assessed in the
purview of the nonlinear AC power-flow model [cf. (1)].
Particularly, the step (15f) is no longer executed to estimate
the voltages; rather, the voltages are computed based on a
nonlinear AC power-flow model or directly measured from
the network.

Hereafter, hatted symbols (e.g., v̂) refer to variables used
in the linearized voltage model; on the other hand, non-hatted
symbols represent electrical quantities obeying the nonlinear
AC power-flow model. Accordingly, the control strategy is
modified as follows:

zi(k + 1) =
[
zi(k)− ε1

(
∇Ci(zi(k))− si(k)

)]
Zi
, (16a)

µ(k + 1) =
[
µ(k) + ε2

(
v − v(k)− rµ(k)

)]
+
, (16b)

µ(k + 1) =
[
µ(k) + ε2

(
v(k)− v − rµ(k)

)]
+
, (16c)

α(k + 1) = R
[
µ(k + 1)−µ(k + 1)−γ∇vD(v(k))

]
,(16d)

β(k + 1) = X
[
µ(k + 1)−µ(k + 1)−γ∇vD(v(k))

]
,(16e)

v(k + 1) obey the nonlinear model (1). (16f)

The power setpoints are updated at each node i ∈ N
via (16a) and commanded to the devices; steps (16b)–(16e)
are performed by the the network operator; and, voltages are
either computed based on a nonlinear AC power-flow model
(e.g., using OpenDSS) or directly measured.

To establish convergence of (16), the following is assumed
(see also [28], [29]).

Assumption 4 There exists a constant e > 0 such that
|v̂i(z)− vi(z)| ≤ e, i ∈ N , for all z ∈ Z .

This assumption bounds the discrepancy between voltages
generated based on the linearized model and the actual volt-
ages (obtained from the nonlinear AC power-flow equations
or measured). By comparing (15) with (16), Assumption 4
naturally leads to the following bounds:

|µ̂
i
− µ

i
| ≤ ε2e, |µ̂i − µi| ≤ ε2e,

|α̂i − αi| ≤ RTi (γ∇2D(ṽ)1n + ε2)e,

|β̂i − βi| ≤ XT
i (γ∇2D(ṽ)1n + ε2)e,

for some ṽ. The following bounds can be readily shown too:

|p̂i − pi| ≤ ε1R
T
i (γ∇2D(ṽ)1n + ε2)e := δ1,i,

|q̂i − qi| ≤ ε1X
T
i (γ∇2D(ṽ)1n + ε2)e := δ2,i.

Let δ := [δ1,1, . . . , δ1,N , δ2,1, . . . , δ2,N ] ∈ R2N×1
+ , and

collect the primal and dual variables the vector y := (z, µ)
for notational simplicity. Consequently, one has that:

‖T̂ (y)− T (y)‖ ≤ ‖ρ‖, ∀y ∈ Z × R2N
+ , (17)

where ρ := [ε2e ·11×2N , δ
T ]T and T (·) is the counterpart of

T̂ (·) for the iterates (16). Let ∆ ≤ ∆̄ < 1 be the contraction
modulus for T̂ (·); by definition, we have that:

‖T̂ (y)− T̂ (y′)‖ ≤ ∆‖y − y′‖, ∀y, y′ ∈ Z × R2N
+ , (18)

and the following result can be established.

Theorem 4 Iterates (16) converge to the unique optimizer
of (13) within a ball of radius ‖ρ‖

1−∆ .

Proof: Let ŷ∗ be the unique optimizer of (13) and
consider bounding ‖y(k)− ŷ∗‖ as follows:

‖y(k)− ŷ∗‖ = ‖T (y(k − 1))− ŷ∗‖ (19)

= ‖T (y(k − 1))− T̂ (y(k − 1)) + T̂ (y(k − 1))− ŷ∗‖
≤ ‖T (y(k − 1))− T̂ (y(k − 1))‖+ ‖T̂ (y(k − 1))− ŷ∗‖
≤ ‖ρ‖+ ‖T̂ (y(k − 1))− T̂ (ŷ∗)‖
≤ ‖ρ‖+ ∆‖y(k − 1)− ŷ∗‖, (20)

where the first inequality is due to the triangle inequality;
the second inequality is due to Assumption 4; and the last
inequality leverages the definition of contraction mapping.
By repeating steps (19)-(20) recursively, one can obtain:

‖y(k)− ŷ∗‖ ≤ ‖ρ‖(1−∆k)

1−∆
+ ∆k‖y(0)− ŷ∗‖. (21)

When k →∞, one has that:

lim
k→∞

sup ‖y(k)− ŷ∗‖ =
‖ρ‖

1−∆
. (22)

IV. APPLICATION SCENARIOS

Consider a modified version of the IEEE 37-node test
feeder shown in Figure 1. The modified network is obtained
by considering a single-phase equivalent, and by replacing
the loads specified in the original dataset with real load data
measured from feeders in Anatolia, CA during the week
of August 2012 [30]. Line impedances, shunt admittances,
as well as active and reactive loads are adopted from the
respective dataset. It is assumed that eighteen photovoltaic
(PV) systems are located at nodes 4, 7, 10, 13, 17, 20, 22, 23,
26, 28, 29, 30, 31, 32, 33, 34, 35, and 36, and their generation
profile is simulated based on the real solar irradiance data
available in [30]. The rating of these inverters are 300 kVA
for i = 3, 350 kVA for i = 15, 16, and 200 kVA for the
remaining inverters. With this setup, when no actions are
taken to prevent over-voltages, one would obtain the voltage
snapshot at noon illustrated in Figure 3 (blue dots).

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.
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Fig. 1: IEEE 37-node feeder. The boxed nodes represent the
location of PV systems. The red nodes are the ones analyzed
in the numerical example.

It will be demonstrated how the proposed distributed volt-
age regulation algorithm can reliably prevent over-voltages
that are likely to be experienced during periods when PV
generation exceeds the demand [12]. The voltage limits vi
and vi are set to 1.05 p.u. and 0.95 p.u. respectively, for
∀i ∈ N . Stepsizes ε1 and ε2 are tuned in Section IV-A
for the purpose of finding feasible choices, and depicting
convergence speed and non-convergence situation as well.
The customers’ objective functions are set uniformly as
Ci(pi, qi) = cp(pi,pv − pi)2 + cqq

2
i , in an effort to minimize

the amount of real power curtailed and the amount of
reactive power injected or absorbed. The coefficients are
set to cp = 3 and cq = 1. The network-oriented objective
is set to be D(v) = 1

2‖v − vnom‖22, penalizing voltage
deviation from the nominal value. Without loss of generality,
we demonstrate our result with trade-off parameter γ set
to be 0 or 1, where the former setup is indifferent about
voltage deviation cost D(v) as long as voltages are within
acceptable limits, and the latter characterizes an even trade-
off between end-customers’ and network-oriented objectives.
The regularization parameter r is set to be 10−4. All the
simulations are run with nonlinear AC power flow model
calculated by MATPOWER.

A. Convergence

In this part, we show the convergence of the iterative
voltage regulation algorithm with γ = 0. Similar results with
γ = 1 can be observed. By Theorem 3, stepsizes ε1 and ε2

both affect the convergence properties. For simplicity, we
fix a small enough ε2 = 0.01, and only tune the size of ε1.
Similar results can be observed by fixing ε1 and tuning ε2,
or tuning both ε1 and ε2. As shown in Figure 2, when the
value of ε1 increases from 0.01 to 0.3, we observe faster
convergence. However, when we further increase ε1 beyond
0.4, an oscillatory behavior takes place.

B. Voltage regulation

Consider setting ε1 = ε2 = 0.01 and sufficient iterations.
Figure 3 illustrates a snapshot of voltage magnitudes of all
nodes at noon in three scenarios: (a) no voltage regulation
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Fig. 2: Convergence of the distributed algorithm with in-
creasing stepsize ε1 and fixed stepsize ε2.
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Fig. 3: Controlled/Uncontrolled voltages at all buses at noon.

algorithm applied (blue dots), (b) iterative algorithm imple-
mented with γ = 0 (red triangles), and (c) iterative algorithm
implemented with γ = 1 (yellow triangles).

Compared with the uncontrolled scenario (a) where volt-
age values would exceed the acceptable voltage limit (black
dashed line) due to reverse power flows, scenarios (b) and
(c) achieve voltage values that are within voltage limits. Fur-
thermore, voltage magnitudes achieved by (c) are closer to
the nominal value than those by (b), because (c) additionally
penalizes voltage deviation from a nominal value of 1 p.u.

V. CONCLUSION

We have developed an iterative distributed algorithm
that allows the distribution network operator and the end-
customers to coordinate with private information preserved
in order to optimize the given economic and operational
objectives while concurrently ensuring that the voltage mag-
nitudes are within the prescribed limits. Convergence to the
unique optimizer of a regularized Lagrangian associated with
a well-defined social welfare maximization problem was
established. We have further analyzed the performance of
the proposed algorithm within nonlinear power-flow model.
Numerical examples were provided to support the theoretical
results.

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.
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