
ar
X

iv
:1

70
3.

02
07

5v
1

 [
cs

.S
Y

]
 6

 M
ar

 2
01

7

Robust Motion Planning employing Signal Temporal Logic*

Lars Lindemann1 and Dimos V. Dimarogonas1

Abstract— Motion planning classically concerns the prob-
lem of accomplishing a goal configuration while avoiding
obstacles. However, the need for more sophisticated motion
planning methodologies, taking temporal aspects into account,
has emerged. To address this issue, temporal logics have recently
been used to formulate such advanced specifications. This
paper will consider Signal Temporal Logic in combination with
Model Predictive Control. A robustness metric, called Discrete
Average Space Robustness, is introduced and used to maximize
the satisfaction of specifications which results in a natural
robustness against noise. The comprised optimization problem
is convex and formulated as a Linear Program.

I. INTRODUCTION

A new approach to the motion planning problem has

evolved over the past years by formulating system spec-

ifications in temporal logics. Especially linear-time logics

have established their application with a focus on Linear

Temporal Logic (LTL) as in [1], [2] and also on Metric

Interval Temporal Logic (MITL) [3]. LTL and MITL control

synthesis uses automata representation of the specification

while abstracting the workspace into a transition system. The

state space of these automata and their product usually get

huge and result in the state explosion problem [4].

Recently, research has been focusing on Signal Tempo-

ral Logic (STL), which was introduced in [5] within the

context of monitoring temporal properties. STL comprises

of quantitative time properties and additionally Space Ro-

bustness (SR) as introduced in [6], a special case of the

robust semantics of [7]. As a consequence it is possible to

measure the satisfaction of a specification, i.e., how well a

specification is satisfied. Note that the general theoretical

concept has already been introduced in [7] where it is proven

that robust semantics, also denoted as robustness estimates,

are an under-approximation of the robustness degree. This

opposes LTL where only a boolean satisfaction is given.

STL can be used for control synthesis together with Model

Predictive Control (MPC) as in our previous work [8]. A

different MPC approach is used in [9] and [10] where SR is

incorporated into a Mixed Integer Linear Program (MILP).

Our contribution can be summarized as follows: First, we

introduce novel robust semantics, namely Discrete Average

Space Robustness (DASR). DASR has the advantage that

it considers average satisfaction, whereas SR in [6] focuses

on the worst case scenario, i.e., on a time instant where a

*This work was supported in part by the Swedish Research Council (VR),
the European Research Council (ERC), the Swedish Foundation for Strategic
Research (SSF) and the Knut and Alice Wallenberg Foundation (KAW).

1The authors are with the Department of Automatic Control, School
of Electrical Engineering, Royal Institute of Technology (KTH), 100
44 Stockholm, Sweden. llindem@kth.se (L. Lindemann),
dimos@kth.se (D.V. Dimarogonas).

specification is least satisfied. In general, it is expected that

DASR will give better control performance than SR. Second,

DASR is directly incorporated into the cost function of a

linear MPC framework. Hence, we directly maximize the

robustness of satisfying a specification against noise. Third,

this new approach is applied to the motion planning problem.

The concepts of past satisfaction and recursive feasibility

used in this paper are related to those of [10]. However,

our focus is on the robust formulation of linear temporal

operators, hence ending up with an efficient encoding as

a Linear Program (LP), opposed to the MILP approach in

[9] and [10]. Therefore, we change and simplify the Space

Robustness semantics.

The remainder of this paper is organized as follows: Sec-

tion II introduces Signal Temporal Logic, Discrete Average

Space Robustness and the problem formulation. Section III

presents the proposed solution and suggests that the method-

ology may be suitable for motion planning. The problem

solution is verified in section IV by simulations. Conclusion

and outlook are provided in section V.

II. PRELIMINARIES

Scalar quantities are denoted as lowercase, non-bold letters

x. Column vectors are lowercase, bold letters x and matrices

are denoted as uppercase, non-bold letters X . True and false

are denoted by ⊤ and ⊥; ⊗ denotes the Kronecker product

while 1N and 0N are vectors containing N ones and zeros,

respectively. We denote E(n, :) as the n-th row and E(:, n)
as the n-th column of E. Since we deal with discrete-time

logics, [a, b] will abbreviate a discretized finite set {a, a +
1, . . . , b} where a, b with a ≤ b are integers.

A. Signals and Systems

Let x(k), y(k) and u(k) denote the state, output and input,

respectively. We consider linear, time-invariant systems in

discrete time as

x(k + 1) = Ax(k) +Bu(k) (1a)

y(k) = x(k), (1b)

where A ∈ R
n×n and B ∈ R

n×m.

B. Signal Temporal Logic

Signal Temporal Logic is a predicate logic based on

signals, hence allowing quantitative specifications in space

and time. STL consists of predicates µ that are obtained after

evaluation of a function f(x) as follows

µ =

{

⊤ if f(x) ≥ 0

⊥ if f(x) < 0.
(2)

http://arxiv.org/abs/1703.02075v1

Hence, f(x) determines the truth value of µ and maps from

R
n to R, whereas µ maps from R

n to B; µ can be an element

of the set P = {µ1, µ2, · · · , µGµ}, where Gµ indicates the

number of predicates. Predicates can be expressed as

z(k) =
[

f1(x(k)) . . . fGµ(x(k))
]T

= Cx(k) + c, (3)

where C ∈ R
Gµ×n and c ∈ R

Gµ are defined according to

the specifications. Note that the mapping in (3) is affine.

In the remainder, single predicates will be abbreviated by

zi(k) = fi(x(k)) with i ∈ {1, 2, · · · , Gµ} for the sake of

readability, where the index k might be dropped if it is clear

from the context. Inserting the solution x(k) of (1) with

initial time k0 into (3) we can calculate the stacked predicate

vector zst for a prediction horizon N as

zst = H1x(k0) +H2ust + 1N ⊗ c, (4)

where zst =
[

z(k0 + 1) z(k0 + 2) . . . z(k0 +N)
]T

,

ust =
[

u(k0) u(k0 + 1) . . . u(k0 +N − 1)
]T

,

H1 =
[

CA CA2 . . . CAN
]T

and H2 =










CB 0 · · · 0
CAB CB · · · 0

...
...

. . .
...

CAN−1B CAN−2B · · · CB











. By using predicates,

STL formulas can be assembled. Throughout this paper we

will assume that a STL formula is in Positive Normal Form

(PNF)[4]. This means that no negations (¬) occur within a

formula except if they are in front of predicates. The STL

syntax, given in Backus-Naur form, defines rules to form

formulas as

φ ::= ⊤ | µ | ¬φ | φ ∧ ψ | φU[a,b] ψ , (5)

where µ ∈ P and φ, ψ are STL formulas. The temporal until-

operator U[a,b] is time bounded with [a, b]. Conjunction,

eventually-operator and always-operator can be derived as

φ ∨ ψ = ¬(¬φ ∧ ¬ψ), F[a,b]φ = ⊤U[a,b] φ and G[a,b]φ =
¬F[a,b]¬φ. The semantics of STL are introduced in Defini-

tion 1 where the satisfaction relation (x, k) � φ denotes if

the state sequence x = x(k)x(k + 1) . . . satisfies φ.

Definition 1 ([9]): The STL semantics are

(x, k) � µ ⇔ f(x(k)) ≥ 0

(x, k) � ¬µ ⇔ ¬((x, k) � µ)

(x, k) � φ ∧ ψ ⇔ (x, k) � φ ∧ (x, k) � ψ

(x, k) � φU[a,b] ψ ⇔ ∃k1 ∈ [k + a, k + b] s.t. (x, k1) � ψ

∧ ∀k2 ∈ [k, k1],(x, k2) � φ

(x, k) � F[a,b]φ ⇔ ∃k1 ∈ [k + a, k + b] s.t. (x, k1) � φ

(x, k) � G[a,b]φ ⇔ ∀k1 ∈ [k + a, k + b],(x, k1) � φ

The length of a formula hφ, introduced in [10], can be

interpreted as the horizon that is needed to calculate the

satisfaction of a formula. The recursive definition is hµ = 0,

h¬φ = hφ, hφ∧ψ = hφ∨ψ = max(hφ, hψ), hφU[a,b] ψ =
b+ max(hφ, hψ), hG[a,b]φ = hF[a,b]φ = b+ hφ.

C. Average Space Robustness

Robust semantics have been introduced to state how

well a formula is satisfied. Space Robustness, denoted with

ρφ(x, k), is such a robustness measure which has been intro-

duced in [6]. In the control context it has been applied in [9],

[10]. For the definition of ρφ(x, k) we refer the reader to [6].

Space robustness makes extensive use of min/max-operations

to consider the point of weakest/strongest satisfaction within

a signal. We propose a novel robustness measure Aφ(x, k)
in Definition 2, called Discrete Average Space Robustness

(DASR), where instead average satisfaction is used, i.e.,

min-operations as min
k1∈[k+a,k+b]

ρφ(x, k1) are replaced by an

average 1
b−a+1

∑k+b
k′=k+aA

φ(x, k1).

Definition 2: Discrete Average Space Robustness (DASR)

Aµ(x, k) = f(x(k))

A¬φ(x, k) = −Aφ(x, k)

Aφ∧ψ(x, k) = min(Aφ(x, k),Aψ(x, k))

Aφ∨ψ(x, k) = max(Aφ(x, k),Aψ(x, k))

AφU[a,b] ψ(x, k) =
1

2
·

[

max
k1∈[k+a,k+b]

(

1

k1 − k + 1

·

k1
∑

k′=k

Aφ(x, k′) +Aψ(x, k1)

)

]

AF[a,b]φ(x, k) = max
k1∈[k+a,k+b]

Aφ(x, k1)

AG[a,b]φ(x, k) =
1

b− a+ 1

k+b
∑

k′=k+a

Aφ(x, k′)

By manually choosing k1 as described in [8], we can remove

the max-operations and define a relaxed version of DASR

in Definition 3, called Discrete Simplified Average Space

Robustness (DSASR) and denoted by AS
φ(x, k). As an

intuition of the k1 calculation, assume φ = F[a,b]z1 where

we set k1 = k0 + b. This results in the highest AS
φ(x, k0)

in most cases since the system has the most time to settle

and satisfy φ.

Definition 3: Discrete Simplified Average Space Robust-

ness (DSASR):

AS
µ(x, k) = f(x(k))

AS
¬φ(x, k) = −AS

φ(x, k)

AS
φ∧ψ(x, k) = min(AS

φ(x, k),AS
ψ(x, k))

AS
φ∨ψ(x, k) = max(AS

φ(x, k),AS
ψ(x, k))

AS
φU[a,b] ψ(x, k) =

1

2
·

[

1

k1 − k + 1

k1
∑

k′=k

AS
φ(x, k′)

+AS
ψ(x, k1)

]

AS
F[a,b]φ(x, k) = AS

φ(x, k1)

AS
G[a,b]φ(x, k) =

1

b− a+ 1

k+b
∑

k′=k+a

AS
φ(x, k′)

Note that the robust semantics in [7] and hence also ρφ(x, k)
from [6] are an under-approximation of the robustness de-

gree in [7]. However, DASR and DSASR are not such

an under-approximation. This can be seen by considering

φ = G[a,b](x > 0), where it is possible that if AS
φ(x, 0) =

1
b−a+1

∑b
k′=a x(k

′) > 0, there might be a k1 ∈ [a, b]

s.t. x(k1) < 0 and hence ρφ(x, 0) = min
k1∈[a,b]

x(k1) < 0.

Subsequently, AS
φ(x, k) > 0 ; (x, k) � φ, whereas

ρφ(x, k) > 0 ⇒ (x, k) � φ. However, in this paper addi-

tional constraints imposed on the optimization problem will

ensure this property. We remark that averaged STL (AvSTL)

introduced in [11] is different compared with DASR and

DSASR. The averaged temporal operators of AvSTL form

a weighted time average over ρφU[a,b] ψ(x, k), ρF[a,b]φ(x, k)
and ρG[a,b]φ(x, k), hence not removing min/max-operations

and keeping a nonlinear description. This results in noncon-

vex temporal operators which cause computational burdens

in optimization problems. Furthermore, AvSTL considers

time and space robustness, while DASR and DSASR only

consider the latter. Time robustness is a useful measure yet

with the drawback of more complex definitions that can be

handled in a monitoring, but hardly within a control context.

D. Problem Statement

This paper considers a subset of STL, namely ψ1 =
z1 U[a,b] z2, ψ2 = F[a,b]z1, ψ3 = G[a,b]z1, ψ4 = ψi1 ∧
ψi2 ∧ · · · ∧ ψin , ψ5 = ψi1 ∨ ψi2 ∨ · · · ∨ ψin and ψ6 =
ψi1(∨ or ∧)ψi2 (∨ or ∧) · · · (∨ or ∧)ψin for i1, · · · , in ∈
{1, 2, 3}. We distinguish between two types of formulas,

namely all-time satisfying and one-time satisfying formulas.

The former means that the formula ψi with i = 1, . . . , 6 is

imposed at every sampling step, i.e., φi = G[0,∞]ψi. One-

time satisfying formulas are characterized by satisfying the

formula once which is denoted by φ7 = event =⇒ ψi. The

boolean variable event is an indicator for the time when ψi
is triggered. We will include a notion of past satisfaction in

the same vein as in [10]. By respecting the prediction horizon

N and the formula length hψi , we set kl = k0 − hψi and

kh = k0+N−hψi . The formula length h
ψ
i plays the role of

determining how many predicates of the past and the future

need to be used given N .

Problem 1: Given a linear, time-invariant system (1), a

STL formula φi = G[0,∞]ψi with i = 1, . . . , 6, an initial

state x(k0) and a prediction horizon N ≥ hψi , compute

argmax
ust

kh
∑

k′=kl

AS
ψi(x, k′) (6a)

s.t. x(k + 1) = Ax(k) +Bu(k) (6b)

(x, k) � ψi for all k ∈ [kl, kh]. (6c)

Note that ust directly determines x and consequently shapes

AS
ψi(x, k). Furthermore, solve the same problem for for-

mulas φ7 = event =⇒ ψi. In the remainder we will not

explicitly mention constraint (6b) due to space limitations.

III. CONTROL STRATEGY

DSASR is linear and convex in the temporal operators

and will hence be included in the cost function of the MPC

framework. We start by investigating the basic temporal oper-

ators, i.e., φ1 = G[0,∞]

(

z1 U[a,b] z2
)

, φ2 = G[0,∞]

(

F[a,b]z1
)

and φ3 = G[0,∞]

(

G[a,b]z1).

Theorem 1: The optimization problem (6) subject to the

formulas φ1, φ2 and φ3 can be written as a Linear Program.

Proof: The operator φ1 can be formulated as

argmax
ust

1

2
·

kh
∑

k′=kl

[

z2

(

k1(k
′)
)

+
1

k1(k′)− k′ + 1

k1(k
′)

∑

k′′=k′

z1(k
′′)

]

(7a)

s.t. z1(k) ≥ 0 ∀ k′ ∈ [kl, kh], ∀k ∈ [k′, k1(k
′)] (7b)

z2

(

k1(k
′)
)

≥ 0 ∀ k′ ∈ [kl, kh], (7c)

where an intuition of k1(k
′) has already been given. The cost

function (7a) can be reduced to a Linear Program as

argmax
ust

1
T
NE zall, (8)

where zall concatenates the first Gµ(N − hψ1) elements of

zst with past predicates from time kl as follows:

zall =
[

z(kl) . . . z(k0) zst(1 : Gµ(N − hψ1))
]T

(9)

The E matrix depends on k1(k
′) and is of size E ∈

R
N×(GµN). Note that the columns of E are associated (mul-

tiplied) with zall and depend on the number of predicates

Gµ and the prediction horizon N . In other words, Ezall
is a vector of size N that consists of each sum element

in (7a), i.e., z2

(

k1(k
′)
)

+ 1
k1(k′)−k′+1

∑k1(k
′)

k′′=k′ z1(k
′′) for

k′ ∈ {kl, . . . , kh}. Each row of E is associated with k′

and hence represents a different time instant in the sum
∑kh

k′=kl
of (7a). Consequently, multiplying 1

T
N with Ezall

amounts to the complete cost function given in (7a). For the

until-operator, where Gµ = 2, E can be formed using the

following step-by-step procedure:

1) Start with k′ = kl and set i = 1.

2) Form a row vector of size 2N , where the
(

2(hψ1 + k1(k
′))

)

-th column is set to 1
2 , which corre-

sponds to the term 1
2z2

(

k1(k
′)
)

. Set all odd columns

between the columns 2(i − 1) + 1 and 2(hψ1 +
k1(k

′)) to 1
2(k1(k′)−k′+1) , which corresponds to the

term 1
2(k1(k′)−k′+1)

∑k1(k
′)

k′′=k′ z1(k
′′). Set all other el-

ements to 0 and make this row vector the E matrix if

i = 1. Otherwise, append this row vector to E.

3) Stop if k′ = kh, else increase k′ and i by 1 and go

back to step 2).

The operator φ2 can be formulated as

argmax
ust

kh
∑

k′=kl

z1

(

k1(k
′)
)

(10a)

s.t. z1

(

k1(k
′)
)

≥ 0 ∀ k′ ∈ [kl, kh] (10b)

and reduced to the cost function as in (8) with Gµ = 1 and

E formed according to the following procedure:

1) Start with k′ = kl and i = 1.

2) Form a row vector of size N , where the
(

hψ2 + k1(k
′)
)

-th column is set to 1. Set all

other elements to 0 and make this row vector the E

matrix if i = 1. Otherwise, append this row vector to

E.

3) Stop if k′ = kh, else increase k′ and i by 1 and go

back to step 2).

The operator φ3 can be formulated as

argmax
ust

kh
∑

k′=kl

1

b− a+ 1

k′+b
∑

k′′=k′+a

z1(k
′′) (11a)

s.t. z1(k) ≥ 0 ∀ k′ ∈ [kl, kh], ∀ k ∈ [k′ + a, k′ + b] (11b)

and reduced to the cost function as in (8) with Gµ = 1 and

E being formed as follows:

1) Start with k′ = kl and i = 1.

2) Form a row vector of size N , where all columns in

[a + i, b + i] are set to 1
b−a+1 . Set all other elements

to 0 and make this row vector the E matrix if i = 1.

Otherwise, append this row vector to E.

3) Stop if k′ = kh, else increase k′ and i by 1 and go

back to step 2).

To illustrate how E looks like, assume that N =
4, hψ1 = 2 and k0 = 0. Also assume that

k1(k
′) =

{

0 if k′ = {−1, 0}

2 if k′ = {1, 2}
. For the until-operator,

we get E = 1
2 ·









1
2 0 1

2 1 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1

2 0 1
2 1

0 0 0 0 0 0 1 1









, where

the rows E(1, :) and E(2, :) represent AS
ψ1(x, k′) at

times k′ = −1 and k′ = 0. The columns E(:, 1), E(:
, 3) and E(:, 5) are associated with z1(−1), z1(0) and

z1(1), whereas E(:, 2), E(:, 4) and E(:, 6) are associ-

ated with z2(−1), z2(0) and z2(1). Recall that zall =
[

z1(−1) z2(−1) z1(0) z2(0) . . . z1(2) z2(2)
]T

.

Next, we will investigate conjunctions of the form φ4 as

introduced in section II-D.

Theorem 2: The optimization problem (6) subject to the

formula φ4 can be written as a Linear Program.

Proof: First, we assume ψ4 = ψi ∧ ψj where i, j ∈
{1, 2, 3}. The problem can be expressed as

argmax
ust

kh
∑

k′=kl

min(AS
ψi(x, k′),AS

ψj (x, k′)) (12a)

s.t. c
ψi
temp and c

ψj
temp, (12b)

where c
ψi
temp is a shortcut for the constraints (7b) and (7c)

if i = 1, (10b) if i = 2 and (11b) if i = 3, i.e,

c
ψ1

temp :=(7b)∧(7c), c
ψ2

temp :=(10b) and c
ψ3

temp :=(11b). Note

that the cost function in (12a) is a sum of finite elements,

which can be written as min(AS
ψi(x, kl),AS

ψj (x, kl)) +
min(AS

ψi(x, kh),AS
ψj (x, kh)). Since (12a) is a max-

min problem, the expression can be simplified by intro-

ducing an additional decision variable ux,n with n ∈
{1, . . . , N} for each sum element. First, define the vector

ux =
[

ux,1 . . . ux,N u(k0) . . . u(k0 +N − 1)
]T

and rewrite problem (12) as

argmax
ux

N
∑

i=1

ux,i (13a)

s.t. ux,1 ≤ AS
ψi(x, kl) (13b)

ux,1 ≤ AS
ψj (x, kl) (13c)

... (13d)

ux,N ≤ AS
ψi(x, kh) (13e)

ux,N ≤ AS
ψj (x, kh) (13f)

c
ψi
temp and c

ψj
temp. (13g)

Note that (13) and (12) are equivalent (see [12] for

similar examples). This is again a Linear Program

argmax
ux

fTux, where f =
[

1N 0Nm

]T
. By defining

H2,man =
[

0GµN,N H2

]

and 0GµN,N as a matrix

consisting of zeros with GµN rows and N columns, the

stacked predicate vector from (4) can be reformulated as

zst = H1x(k0) + H2,manux + 1N ⊗ c. Define again

zall as in (9) and reformulate the linear inequalities of

(13b) - (13f) as Qux ≤ Rzall. The Q matrix is given by

Q =















1 0 · · · 0 0 · · · 0
1 0 · · · 0 0 · · · 0
0 1 · · · 0 0 · · · 0
0 1 · · · 0 0 · · · 0
...

...
...

...
...

...
...















, whereas R depends

on the structure of the temporal operators as explained in

the sequel. At first, the E matrices, denoted as Eφi,r and

Eφj ,r, need to be created according to the given rules for

φ1, φ2 and φ3. However, for a conjunction more predicates

are used than in the case of one temporal operator. Hence,

these matrices need to be changed slightly, i.e., for each

additional predicate, columns consisting of zeros need

to be inserted. For instance, consider F[a,b]zi ∧ F[a,b]zj
with the corresponding matrices Eφi,r and Eφj ,r with

p = NGµ columns each. Then the matrices Eφi =
[

Eφi,r(:, 1) 0N Eφi,r(:, 2) . . . Eφi,r(:, N) 0N

]

and

Eφj =
[

0N Eφj ,r(:, 1) 0N . . . 0N Eφj ,r(:, N)
]

have 2p columns. This is due to the fact

that we now have twice the amount of pred-

icates. Finally, R can be composed as R =
[

Eφi(1, :) Eφj (1, :) . . . Eφi(N, :) Eφj (N, :)
]T
.

An extension to more than one operator (ψi∧ψj∧ψk∧· · ·)

can easily be handled by adding one additional constraint for

each added conjunction. For instance, for ψi ∧ ψj ∧ ψk the

constraints ux,1 ≤ AS
ψk(x, kl), . . ., ux,N ≤ AS

ψk(x, kh),

c
ψk
temp need to be added to (13).

Disjunction formulas as φ5 can be handled as follows.

Theorem 3: The optimization problem (6) subject to the

formulas φ5 and φ6 can be written as a Linear Program.

Proof: Again, think of two temporal operators con-

nected by a disjunction ψ5 = ψi ∨ ψj where i, j ∈
{1, 2, 3}. To approach this problem, calculate the op-

timal solution and the corresponding optimal input se-

quence u∗
st,1 for argmax

ust,1

∑k0+N−hψi

k′=k0−hψi+1 AS
ψi(x, k′) s.t.

c
ψi
temp and u∗

st,2 for argmax
ust,2

∑k0+N−h
ψj

k′=k0−h
ψj+1

AS
ψj (x, k′)

s.t. c
ψj
temp. The optimal state trajectories that result from

the optimal inputs u∗
st,1 and u∗

st,2 are denoted by x∗
1

and x∗
2, respectively. Next, calculate the optimal costs

given by C1 =
∑k0+N−hψi

k′=k0−hψi+1 AS
ψi(x∗

1
, k′) and C2 =

∑k0+N−h
ψj

k′=k0−h
ψj+1

AS
ψj (x∗

2
, k′). The input corresponding to

the biggest Ci will be applied to the system. This procedure

can be applied in exactly the same way to solve formulas like

φ6, where additional conjunctions lead to additional Ci’s.

Motion planing tasks can be formulated as one-time satis-

fying STL formulas which are a subclass of all-time satisfy-

ing formulas presented so far. Hence, the same methodology

can be used in a simplified manner. The sum in the cost

function (6a) reduces to one element argmax
ust

AS
ψi(x, k0).

Subsequently, the E matrices derived before simplify to a

row vector (recall that each row is associated with k′). To

illustrate this, consider φ7 = event =⇒ ψi with i ∈
{1, 2, 3}. First, let Eφi,one denote the E matrix constructed

according to the construction rules for φi = G[0,∞]ψi. Let

kevent indicate for how long event has been activated. Then

Eφi is constructed by selecting Eφi = Eφi,one(h
ψi−kevent, :

), i.e., the (hψi − kevent)-th row of Eφi,one. The procedure

for formulas event =⇒ ψj with j ∈ {4, 5, 6} can mutatis

mutandis be adopted. Also recall that p =⇒ q is equivalent

to ¬p ∨ q.

Remark 1: Theorems 1, 2 and 3 guarantee that if the

optimization problem is feasible it follows (x, k) � φ.

Finally, we provide a statement about recursive feasibility.

Corollary 1: The optimization problem (6) subject to the

formulas φ1 to φ7 in PNF can be modified such that in case

of infeasibility the least violating solution is found.

Proof: The idea is similar to [10] and makes use of a

slack variable ξ ≥ 0 . The cost function (6a) is extended to
∑kh

k′=kl
AS

ψi(x, k′)−Mξ, where M is a sufficiently large

real number. Next, the constraints in (7b), (7c), (10b) and

(11b) need to be modified to z1(k)+ξ ≥ 0, z2

(

k1(k
′)
)

+ξ ≥

0, z1

(

k1(k
′)
)

+ ξ ≥ 0 and z1(k) + ξ ≥ 0, respectively. In

contrast to our approach, [10] includes the slack variable ξ

in the predicates as zsoft = z + 1Gµξ. We avoid this since

z is part of the cost function that we do not want to alter.

IV. CASE STUDY

We consider a single robot with double integrator dy-

namics on a planar plane as in Fig. 1. The data for

the system (1) with a sampling period of 0.5 seconds

x

y

A1

A3

A2r1

r2

0
0

5

5

10

10

Fig. 1. Robot and specification workspace

is A =









1 0.5 0 0
0 1 0 0
0 0 1 0.5
0 0 0 1









, B =









0.125 0
0.5 0
0 0.125
0 0.5









and

x(k) =
[

x vx y vy
]T

denotes x-position, velocity in x-

direction, y-position and velocity in y-direction, respectively.

The input is constrained to u ∈ [−1, 1] × [−1, 1]. The

noise level can be characterized by the Signal-to-Noise ratio

defined as SNRdB = 10 · log10

(

Px

Pv

)

, with Px denoting the

average signal power of x.

The specification imposed on the robot is to visit all three

regions A1, A2 and A3 (see Fig. 1) within the time interval

of 5 to 25 seconds while avoiding to leave the workspace

as defined in ψi4 below. The latter can be seen as a safety

requirement. To use suitable predicates, consider the p-norm

as ‖x−xd‖p < c. The predicates (3) are linear and therefore

we can only deploy the infinity norm (p = ∞). Hence, the

workspace can be separated into rectangles. Two possible

paths r1 and r2 starting from x(0) =
[

0.1 0 0.1 0
]T

are

depicted in Fig. 1. As mentioned before, for robot motion

planning formulas of the form event =⇒ ψi are used.

Simulation results for all-time satisfying formulas can be

found in our previous work [8]. Hence, the specification

looks like φ = event =⇒ (ψi1 ∧ ψi2 ∧ ψi3 ∧ ψi4),
where ψi1 = F[5,25](x ≥ 0 ∧ x ≤ 2 ∧ y ≥ 8 ∧ y ≤ 10),
ψi2 = F[5,25](x ≥ 8 ∧ x ≤ 10 ∧ y ≥ 8 ∧ y ≤ 10),
ψi3 = F[5,25](x ≥ 8 ∧ x ≤ 10 ∧ y ≥ 0 ∧ y ≤ 2) and

ψi4 = G[0,25](x ≥ 0 ∧ x ≤ 10 ∧ y ≥ 0 ∧ y ≤ 10).
Fig. 2 shows the MPC result in case of no noise, whereas

Fig. 3 depicts the result for the disturbed case. In both figures,

the upper subfigure shows the x and y evolution and the

corresponding inputs separately, whereas the lower subfigure

shows the resulting trajectory. The SNR for this example is

16.23 dB and satisfaction is still ensured due to the robust

MPC implementation. The proposed MPC provides optimal

robustness in the sense that it steers the state trajectory in

the direction, where it has the farthest distance to the set of

states not fulfilling the formula. Note the computational ease

compared with the non-convex MILP implementation of [9]

0 5 10 15 20 25
0

2

4

6

8

10

Time (s)

x

0 5 10 15 20 25
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Time (s)

u
1

0 5 10 15 20 25
0

2

4

6

8

10

Time (s)

y
0 5 10 15 20 25

−1

−0.5

0

0.5

1

Time (s)

u
2

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

x

y

Fig. 2. SNRdB = ∞ dB

and [10] where it is possible to maximize Space Robustness.

V. DISCUSSION AND FUTURE WORK

This paper introduced Discrete Average Space Robust-

ness as new robust semantics for Signal Temporal Logic.

These semantics are linear in the temporal operators and

hence easier to use in control synthesis. Robust Control is

achieved due to direct maximization of Discrete Average

Space Robustness. Motion planning has been considered by

using the infinity norm and one-time satisfying formulas.

This was depicted in simulations for a single agent with

double integrator dynamics in a planar workspace.

In the current framework, we have not considered obsta-

cles within the workspace. This is subject to future work

and could potentially be handled in different ways. Future

work will also include an extension to multi-agent systems.

An advantage compared with the traditional point-to-point

navigation objective is that this methodology can include

other specifications in a rather straightforward manner. For

instance, multiple destinations can be visited (periodically),

while robot specific requirements can easily be added. Fur-

thermore, the proposed methodology has low computation

times due to the Linear Program, considers average perfor-

mance and results in a robustness against model uncertainties

and noise.

REFERENCES

[1] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Temporal-logic-
based reactive mission and motion planning,” Robotics, IEEE Trans-

actions on, vol. 25, no. 6, pp. 1370–1381, 2009.

0 5 10 15 20 25
0

2

4

6

8

10

Time (s)

x

0 5 10 15 20 25
−0.4

−0.2

0

0.2

0.4

0.6

Time (s)

u
1

0 5 10 15 20 25
0

2

4

6

8

10

Time (s)

y

0 5 10 15 20 25
−1

−0.5

0

0.5

1

Time (s)

u
2

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

x
y

Fig. 3. SNRdB = 16.23 dB

[2] M. Guo and D. V. Dimarogonas, “Multi-agent plan reconfiguration
under local ltl specifications,” The International Journal of Robotics

Research, vol. 34, no. 2, pp. 218–235, 2015.
[3] A. Nikou, J. Tumova, and D. V. Dimarogonas, “Cooperative task

planning of multi-agent systems under timed temporal specifications,”
in American Control Conference (ACC), 2016. IEEE, 2016, pp. 7104–
7109.

[4] C. Baier, J.-P. Katoen et al., Principles of model checking. MIT press
Cambridge, 2008, vol. 26202649.

[5] O. Maler and D. Nickovic, “Monitoring temporal properties of contin-
uous signals,” in Formal Techniques, Modelling and Analysis of Timed

and Fault-Tolerant Systems. Springer, 2004, pp. 152–166.
[6] A. Donzé and O. Maler, “Robust satisfaction of temporal logic over

real-valued signals,” in Proceedings of the 8th international conference

on Formal modeling and analysis of timed systems. Springer-Verlag,
2010, pp. 92–106.

[7] G. E. Fainekos and G. J. Pappas, “Robustness of temporal logic spec-
ifications for continuous-time signals,” Theoretical Computer Science,
vol. 410, no. 42, pp. 4262–4291, 2009.

[8] L. Lindemann and D. V. Dimarogonas, “Robust control for signal
temporal logic specifications using average space robustness,”
2016, submitted for journal publication. [Online]. Available:
http://arxiv.org/abs/1607.07019

[9] V. Raman, A. Donzé, M. Maasoumy, R. M. Murray, A. Sangiovanni-
Vincentelli, and S. A. Seshia, “Model predictive control with signal
temporal logic specifications,” in Decision and Control (CDC), 2014
IEEE 53rd Annual Conference on. IEEE, 2014, pp. 81–87.

[10] S. Sadraddini and C. Belta, “Robust temporal logic model predictive
control,” in 2015 53rd Annual Allerton Conference on Communication,

Control, and Computing (Allerton). IEEE, 2015, pp. 772–779.
[11] T. Akazaki and I. Hasuo, “Time robustness in mtl and expressivity in

hybrid system falsification,” in International Conference on Computer

Aided Verification. Springer, 2015, pp. 356–374.
[12] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge

university press, 2004.

http://arxiv.org/abs/1607.07019

	I Introduction
	II Preliminaries
	II-A Signals and Systems
	II-B Signal Temporal Logic
	II-C Average Space Robustness
	II-D Problem Statement

	III Control Strategy
	IV Case Study
	V Discussion and Future Work
	References

