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Abstract— In this paper a decentralized control algorithm
for systems composed of N dynamically decoupled agents,
coupled by feasibility constraints, is presented. The control
problem is divided into N optimal control sub-problems and a
communication scheme is proposed to decouple computations.
The derivative of the solution of each sub-problem is used to
approximate the evolution of the system allowing the algorithm
to decentralize and parallelize computations. The effectiveness
of the proposed algorithm is shown through simulations in a
cooperative driving scenario.

I. INTRODUCTION

In the last decade researchers have focused on automa-
tion in several application fields and in the near future
autonomous mechatronic systems will be part of our ev-
eryday lives. Under this scenario, the need for cooperative
control algorithms able to manage the interactions among
autonomous agents is increasing. Despite the advance in
computational power allowing for solving complex tasks
for a single autonomous agent in real time, it is far more
challenging to control the interaction among autonomous
agents [1]. Indeed, when two or more agents have to interact,
there could be communication limitations or the dimension of
the problem could increase exponentially, and consequently
the computational burden.

In this paper we focus on dynamically decoupled systems
subjected to coupling constraints. This could be the case for
UAV flight formation, air traffic control, power management
and several other applications [1]–[10]. Early works in the
field did not explicitly take into account the coupling con-
straints [11], [12]. For example in UAV flight control, the
collision avoidance constraints are usually enforced using
barrier functions, which do not guaranty safety. In [8] a
decentralized control strategy able to take into account hard
constraints was proposed. However, the problem is solved
sequentially and each decentralized optimization has to wait
until the previous one is completed. Thus, for large scale
systems, this approach could prove infeasible for real-time.
In order to overcome this issue, the authors in [9] proposed a
strategy to parallelize computations. The problem is divided
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into N sub-problems, which are solved in parallel when the
agents are not coupled. In [13] a robust distributed MPC
which allows the authors to decouple the computation is
presented. A robust tube is constructed for each i-th agent
and a local feedback controller is used to keep the agent into
the tube. Therefore, communication between agents is only
required to update the tube.

This work proposes a decentralized and parallelized algo-
rithm to compute a nearly optimal solution of a specific class
of non-linear non-convex problems under the assumption
of no delay or loss of communication. The optimization
is divided into N sub-problems, similar to [9]. The main
contribution of this paper is to propose a communication
scheme which allows for independent computation of the
solution of each sub-problem. This scheme is inspired by
the GMRES\Continuation method [14]–[16], where the time
evolution of a nonlinear algebraic system is traced by its
derivative. The proposed scheme uses the derivative of the
optimal solution to decouple the sub-problems, namely each
autonomous agent approximates the behavior of the system
based on its derivative. Continuations methods do not con-
verge to the solution when the evolution of the system is
discontinuous [14]. Unfortunately, the coupling inequality
constraints introduce a discontinuity, as shown in [17]. Thus,
we use a relaxed approach to deal with inequality constraints
which allow us to use a continuation method. These relaxed
conditions could be used also for explicit fixed time step
algorithms.

This paper is organized as follow: Section II the cen-
tralized system is expressed as the summation of N de-
centralized optimal control sub-problems. In Section III the
control algorithm is described and the proposed conditions
to deal with inequality constraints are derived. Section IV
provides additional details on the algorithm and its range of
applicability. Finally, in Section V the proposed control logic
is tested on simulations of a cooperative driving scenario.
Section VI provides final remarks.

II. PROBLEM FORMULATION

In this section the centralized control problem is intro-
duced. Afterwards, the relaxation method used to guarantee
continuity of the optimal solution to the control problem is
described. Finally, we present the decoupling strategy.

A. System description

The proposed algorithm aims to compute the trajectories
of a system composed by N dynamically decoupled agents.
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The dynamics of each agent have the following non-linear
state space representation

ẋi(t) = fi(xi(t), ui(t)), (1)

with xi ∈ Rni being the state vector and ui ∈ Rnui the
control action related with the i-th agent. Thus, the dynamic
of the overall system can be written as

Ẋ(t) = [f1(x1(t), u1(t)), · · · , fN (xN (t), uN (t))]T =

= F (X(t), U(t)),
(2)

where X(t) = [x1(t), · · · , xN (t)] ∈ Rn1×···×nN is the state
vector and U(t) = [u1(t), · · · , uN (t)] ∈ Rnu1×···×nuN the
input vector.

The optimal control problem consists in the minimization
of N decoupled cost functions over a moving time interval
with fixed duration T :

J∗
c (X(t0)) = inf

U(t)

∫ t0+T

t0

N∑
i=1

hi(xi(t), ui(t))︸ ︷︷ ︸
Running Cost

dt, (3a)

s.t.

Ẋ(t) = F (X(t), U(t)) (3b)

I(X(t)) = [C1(X(t)), · · · , Cnc(X(t))]T ≥ 0 (3c)

where the nc feasibility constraints in (3c) may couple the
agents.

B. The optimal control problem

The feasibility constraints in Equation (3c) can be enforced
through the cost function [17], [18]. Given a vector of time
varying Lagrange multipliers, defined as

Λ(t) = [λ1(t), · · · , λj(t), · · ·λnc(t)] (4)

where

λj(t) =

{
6= 0 If Cj(X(t)) = 0

= 0 If Cj(X(t)) > 0
. (5)

The centralized optimal control problem consists of the
minimization of the augmented cost function

Jo(X(t), U(t)) =

∫ t+T

t

N∑
i=1

hi(xi(t), ui(t)︸ ︷︷ ︸
Running cost

+ Λ(t)I(t)︸ ︷︷ ︸
Enforcing feasibility

constraint

dt

︸ ︷︷ ︸
Running cost of the equivalent unconstrained problem

(6)
and is defined as

J∗
0 (X(t0)) = inf

U(t)

∫ t0+T

t0

Jo(X(t), U(t))dt (7a)

s.t (7b)

Ẋ(t) = F (X(t), U(t)) (7c)

C. Relaxation method

When the inequality constraint Cj(X(t)) in Equation (5)
is tightly satisfied after a period where it was not, the
optimal solution has a discontinuity [17]. Unfortunately,
continuation methods cannot be used to compute the solution
at discontinuity points [19]. Thus, continuation methods are
not suitable to compute the optimal solution when optimality
is described by the KKT conditions (Eq. (5)). In order to
overcome this issue, we introduce a set of slack variables to
convert the inequality constraints into equality constraints,

E(X(t)) =

 E1(X(t))
...

Enc(X(t))

 =

 C1(X(t))− z21(t)
...

Cnc(X(t))− z2nc(t)

 = 0.

(8)
It is clear, that when the equality constraints (Eq. 8)

hold also the inequality feasibility constraints (Eq. (3c)) are
satisfied. Moreover, this problem formulation provides for
the removal of the KKT conditions (Eq. 5), which introduced
a discontinuity.

The relaxed optimal control problem is defined as the
minimization of the cost function

J(X(t), U(t)) =

=

∫ t+T

t

N∑
i=1

hi(xi(t), ui(t)︸ ︷︷ ︸
Running cost

+ Λ(t)E(t)︸ ︷︷ ︸
Enforcing feasibility

constraint

+

nc∑
j=1

Wz

zj(t)︸ ︷︷ ︸
Slack varible

effect on
optimality

dt

︸ ︷︷ ︸
Running cost of the equivalent relaxed

unconstrained centralized problem

(9)
subject to the dynamic constraint (2). We underline that the
effect of the slack variable is to add a safety margin which
is determined by the tuning parameter Wz , and that the
optimal solution of the relaxed problem does not saturates the
feasibility constraints. Therefore, the solution of the relaxed
problem is suboptimal for the original problem, described in
Section II.B.

D. Decoupling strategy

The centralized control problem could be written as the
summation of N Pi optimal control problems. Each Pi

problem is related to the i-th agent and is defined as,

J∗
i (X(t0)) = inf

ui(t)

∫ t0+T

t0

Ji(X(t), ui(t))dt (10a)

s.t (10b)
ẋi(t) = f(xi(t), ui(t)) (10c)

with

Ji(X(t), ui(t)) =

=

∫ t+T

t

hi(xi(t), ui(t)︸ ︷︷ ︸
Running cost

+
∑
j∈Ai

[λj(t)Ej(X(t))︸ ︷︷ ︸
Enforcing feasibility

constraint

+
Wz

zj(t)︸ ︷︷ ︸
Slack varible

effect on
optimality

]dt

︸ ︷︷ ︸
Equivalent running cost of the Pi problem

(11)



where Ai is the set of subscripts of the inequalities Cj(X(t))
involving the i-th agent. It is clear that if at time t the global
optimal solutions of N−1 agents are known, the Pi problem
could be solved independently and its solution is globally
optimal for the centralized relaxed problem.

III. ALGORITHM

In this section a variation to the GMRES\Continuation
methods, which allows to parallelized and decentralize com-
putations, is presented. Moreover, we suggest a numerical
strategy to handle the feasibility constraints based on their
effect on optimality.

A. Decentralized algorithm

The GMRES\Continuation method uses the derivative
of the optimal solution to trace its behavior in time. For
details on the numerical implementation and accuracy of
continuation methods we refer to [15], [16], [20]–[22].

The proposed algorithm uses the derivative of the optimal
solution to approximate the optimal trajectories of N − 1
agents, enabling independent solution of each Pi problem.
To initialize the algorithm the derivative is computed with
a centralized optimization method. After the initialization,
the derivative is computed on-board on each i-th agent and
communicated to the others. Table I illustrates the algorithms
steps. It is interesting to notice that the proposed algorithm
does not introduced further numerical approximation with
respect to the centralized algorithm based on continuation
methods, as shown in the result section.

TABLE I
ALGORITHM SCHEME

Initialization
Step 1) Compute the optimal solution and the optimal derivative with

a centralized algorithm
Step 2) Communicate the optimal solution and its derivative to all

the agents
Iteration k
Step 3) Each i-th agent integrates numerically the trajectories of the

other agents
Step 4) Each i-th agent solves its Pi problem to compute the optimal

solution and its derivative
Step 5) Each i-th agents communicates the optimal solution and its

derivative to all the other agents
Step 6) k = k + 1 go to step 3)

B. Handling coupling constraints

In this section the effect of the coupling feasibility con-
straints on optimality is analyzed, and the relaxed approach
to deal with inequality constraints is introduced. As the
solution to the relaxed problem is similar to the original
one, when the feasibility inequality constraint is satisfied,
the relaxed equality constraint does not influence optimality.
In order to verify this statement, it is possible to compute
the relationship between the slack variable and the Lagrange
multiplier related to the j-th constraint. If zj(t) is optimal,
the following relationship for the derivative of the equivalent

running cost (Eq. 11) holds

∂(
∑N

i=1(h(xi(t), ui(t) + Λ(t)E(t) +
∑nc

j=1
Wz

z2
j (t)

)

∂zj(t)
= 0.

(12)
Combining Equation (8) and Equation (12), the explicit
relation between λj(t) and the state can be written as

λj(t) =
Wz

z4j (t)
=

Wz

C2
j (X(t))

. (13)

Equation (13) shows that when the inequality constraints
Cj(X(t)) is safely satisfied, the Lagrange multiplier related
with the relaxed constraint is small in magnitude. Therefore,
the effect of the related relaxed feasibility constraint on op-
timality is negligible. When this condition occurs, we would
like not to consider the unnecessary feasibility constraint,
reducing the dimensions of the i-th optimization problem,
Pi, in Step 4) of Table I. Namely, we set a threshold value,
Hlim, for which the j-th Lagrange multiplier of Equation (9)
is set to zero

λj(t) =

{
0 If λ2j (t) ≤ H2

lim

6= 0 If λ2j (t) > H2
lim

. (14)

Substituting in Equation (14) the relationship between the
Lagrange multiplier and the system state (Eq. 13), a threshold
value for which the relaxed feasibility constraint has to be
enforced to the problem is obtained:

λj(t) =

{
0 If C2

j (X(t)) ≥ Wz

Hlim

6= 0 If C2
j (X(t)) < Wz

Hlim

. (15)

It is interesting to notice that these conditions (Eq. 15) are
similar to the KKT conditions in Equation (5), but these are
suitable to apply continuation methods and fixed time step
algorithms.

IV. ALGORITHM ANALYSIS

A. Minimum principle properties

The MGRES/Continuation method is based on the opti-
mality conditions stated by the minimum principle [16], [23],
[24]. The minimum principle provides necessary conditions
for global optimality and it is not always sufficient to com-
pute the optimal solution [18]. Therefore, it is important to
analyze the algorithm to understand which class of problems
could be solved with the proposed control logic.

Firstly we define the difference between weak and strong
minima. Given a general optimal control problem,

J∗
g (x(0)) = inf

u(t)

∫ T

0

g(x(t), u(t))dt (16a)

s.t (16b)
ẋ(t) = f(x(t), u(t)). (16c)

A trajectory x∗(t) is a weak minima if it minimizes the
functional (Eq. (16a)) over all the trajectories x̄(t) close to



x∗(t) in the sense of the 1-norm, meaning that

||x∗(t)− x̄(t)||1 := max
0≤t≤T

|x∗(t)− x̄(t)|+

+ max
0≤t≤T

|ẋ∗(t)− ˙̄x(t)| ≤ ε.
(17)

Conversely, a trajectory x∗(t) is a strong minima if it
minimizes the functional (Eq. (16a)) over all the trajectories
x̄(t) close to x∗(t) in the sense of 0-norm,

||x∗(t)− x̄(t)||0 := max
0≤t≤T

|x∗(t)− x̄(t)| ≤ ε. (18)

The optimality conditions stated by minimum principle are
satisfied for strong minima and not for weak minima [18].
Therefore, the proposed algorithm is suitable to solve non-
convex problems with respect to the 1-norm, if those are
convex with respect to the 0-norm. For example, say that
our control problem is to find the trajectory closest to zero,
outside an unfeasible region as shown in Figure 1.

From Figure 1 is clear that the trajectory on the left
and the one the right are far in the sense of 1-norm (the
two trajectories have non-infinitesimal derivatives different
in sign) and for this reason those could represent two weak
minima for this problem. However, the two trajectories are
close in the sense of the 0-norm, thus the problem has just
one strong minima which can be correctly computed with
the optimality conditions of the minimum principle.

Fig. 1. Domain of the feasible trajectories of the optimal control problem.
The objective is to compute the trajectory x(t) closest to zero which does
not cross the unfeasible region.

B. Continuation method properties

The algorithm in Section IV.C is based on a continuation
method, meaning that at each time instant the optimal
solution is given and the algorithm computes its derivative.
This derivative is used at the next time instant to approximate
the optimal solution.

Therefore if there are more trajectories satisfying the min-
imum principle, the algorithm would compute the evolution
in time of the given trajectory. However, there could be issues
at bifurcation points where the optimal solution has two
possible derivatives. This particular situation is discussed in
the next section.

C. Non-convex problem

Combining the properties of the minimum principle and
the continuation methods we are able to solve a particular
type of non-linear non-convex problem. Indeed the algorithm
is able to take non-convex decisions if the candidate trajecto-
ries are close in the sense of the 0-norm. This property has a
key importance in control problems where the optimization is
performed on a moving time interval. In Figure 2 the domain
of an optimal control problem similar to the one in Section
IV.A is shown. Here the objective is to compute, on a moving
time interval, the feasible trajectory closest to zero.

In Figure 2 the unfeasible region is outside the opti-
mization window, thus the problem is convex. When the
optimization windows moves in time, as soon as it encounters
the unfeasible region, the problem becomes non-convex.
Indeed there are two weak minima as shown in Figure 3.

Fig. 2. Optimal control problem on a time moving window. The objective
is to compute the trajectory closest to zero, outside the unfeasible region.

Fig. 3. Representation of a bifurcation point. As soon as the unfeasible
region enters the optimization window the there are two weak local minima.

Figure 3 depicts bifurcation point mentioned in Section
IV.B. As soon as the unfeasible region enters the optimization
windows, the global optimal solution bifurcates into two
local optimal solutions with respect to the 1-norm. However,
as shown in Figure 3, the two trajectories are close with
respect to the 0-norm, and the optimality conditions of the
minimum principle allow to compute the optimal derivative
for the unique strong minima. Therefore, the algorithm
correctly choses the global optimal trajectory.



Afterwards, when the unfeasible region is almost, com-
pletely inside the optimization window, the continuation
algorithm follows the trajectory which was globally optimal
at the bifurcation point (Fig. 4).

Fig. 4. Evolution of the optimal solution after the unfeasible region has
entered the optimization window.

V. RESULTS

The algorithm is tested on a cooperative driving scenario,
where autonomous vehicles are driving on the same roadway
at different target speeds. In particular, the algorithm is used
to compute the collision free-trajectories of each autonomous
vehicles. The vehicles are modeled with a simplified sys-
tem; this choice for the trajectory planning phase is well-
established in literature [25]–[27]. It is important to note
that this problem is suitable to test our algorithm as each
vehicle has to take a non-convex decision during overtaking
maneuvers. Moreover, we assume that no safety maneuvers
are needed to guaranty the existence of the derivative re-
quired in Section III.A.

Simulation was performed on a Windows computer fea-
turing an Intel CORE i5 processor using Matlab 2013b.
In order to measure the computational time, a stand-along
executable mex-function has been compiled for each agent.
This function could be used on Linux PCs and experimental
results are envisaged for the future.

A. Comparison between decentralized and centralized ap-
proach

The agents in section III.A represent autonomous vehicles
and are modeled using a Single Point Mass Model in a
curvilinear abscissa reference frame, for more details [28],
[29]. The cost function of each vehicle is designed for lane
keeping at a cruise velocity:

hi(xi(t), ui(t) = W1i(y1−yitarget
)2 +W2iẏ

2
i

+W3i(ṡi − Vitarget
)2 +W4iθ̇

2
i

(19)
where si represents the distance traveled along the roadway
mid-line, and yi the lateral distance between the vehicles
center of gravity and the roadway mid-line. The inputs, Vi
and θi, are the velocity and the heading angle, respectively.
Wji, ∀j ∈ [1, · · · , 4] are the weighting parameters. More

details on this curvilinear reference frame are given in [28],
[29] and [30].

Finally, the feasibility constraints in Section II.C are
expressed as ellipses

C(si, yi, sj , yj) =
(si − sj)2

2l
+

(yi − yj)2

2w
− 1 (20)

where the axes are chosen accordingly with vehicle length, l,
and width, w: 4 and 2 meters, respectively. In this example,
for each problem Pi the distance between the i-th agent and
the j-th agent is given by zj(t). From Equation (13) and form
our choice of Wz = 7, when zj(t) = 60m then λj(t) ' 0.5 ·
10−7. Therefore we picked the threshold Hlim = 0.5 · 10−7

so that, when the relative distance between two agents is
greater that 60m, λj(t) is set to zero and the agents are
decoupled. Note that 60m is the threshold distance used in
commercial blind spot detection system.

B. Simulation Results

1) Comparison with a centralized algorithm: In this sec-
tion two simulations with the same boundary conditions
are carried out. The first one uses the proposed decentral-
ized algorithm and the second one uses a centralized GM-
RES\Continuation algorithm. The solutions are compared to
test optimality, as the solution computed with the centralized
method is optimal for the relaxed problem.

As shown in Figure 5 two agents are traveling on the
same straight path at different target velocities; therefore the
faster agent overtakes the slower one. During the overtaking
maneuver the agents move sideways from the centerline, so
that the overall derivative of the steering angle and lateral
velocity are minimized. Coefficients and boundary conditions
used in the simulation for the two agents (i = 1 and i = 2)
can be found in Tables II and III.
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Trajectory Agent1

Trajectory Agent2

Reference path

Fig. 5. Trajectories of two agents traveling on the same target path at
different target speed: 30m/s the agent in red, 24m/s the agent in green.

Figures 6 shows the lateral difference between the tra-
jectories of the two agents computed with the proposed
decentralized control algorithm and the centralized one.
The maximum difference, between the trajectories computed



TABLE II
SIMULATION COEFFICIENTS

W1i W2i W3i W4i Wz T ∆T Hlim

0.55 0.05 9 145 7 2 20 5 · 10−7

TABLE III
AGENTS’S TARGET VELOCITY AND LATERAL OFFSET

Agent i = 1 i = 2 i = 3 i = 4 i = 5 [units]
yitarget 0.1 0 0 −0.1 −0.1 [m]
Vitarget 30 24 24 18 18 [m/s]

with the centralized algorithm and the decentralized one, is
0.095m which is 5.59% of the maximum lateral displace-
ment. Thus, this proposed algorithm does not introduce fur-
ther approximation with respect to a centralized continuation
algorithm and it is able to compute a nearly optimal solution
for the relaxed problem.

Finally, it is important to analyze the computational cost.
The centralized control strategy takes on average 12.9ms to
compute the solution, while the decentralized one just 4.2ms,
as show in Figure 7.
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Fig. 6. Lateral difference between the trajectories of the agents computed
with the proposed decentralized algorithm and with a centralized one.

C. Communication method

When the number of agents increases, a decentralized
algorithm is necessary to limit the computational burden. In
this section a simulation involving five agents is carried out
and the computational time is analyzed. In this scenario, the
proposed relaxed method to deal with inequality constraints
(Eq. 15) plays a crucial role. Coefficients and boundary
conditions used in the simulation for the five agents can be
found in Tables II, III and IV.

TABLE IV
AGENTS’ INITIAL CONDITIONS

Agent i = 1 i = 2 i = 3 i = 4 i = 5 [units]
sistart 2 20 50 680 480 [m]
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Fig. 7. Comparison between computational cost of the centralized and
decentralized algorithms.

In Figure 8 the trajectories of the five agents are shown.
Agent1 travels at the highest cruise velocity and its starting
position is the closest to the Y axis. Therefore, during the
simulation it overtakes the slower agents that it encounters
on the path.
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Fig. 8. Trajectories of the five agents. Agent1 has the highest cruise
velocity and it overtakes the others four agents. Agent2 and Agent3 have
an intermediate cruise velocity and they overtake Agent4 and Agent5.
Concluding, during the simulation there is a total of 8 overtaking maneuver.

It is clear that the feasibility constraints, which couple
Agent1 with the others, should be enforced to the P1 just
during the overtaking maneuvers. In Figure 9, a Boolean
variable with values 1 and 0 is used to indicate, respectively,
if the i-th constraint is enforced or is not enforced to P1.

Figure 10 shows the trajectory of Agent1, and those of
the other agents when the related feasibility constraints are
enforced to P1. Here it is possible to see that the relaxed
constraints are correctly enforced to the problem just during
the overtaking maneuvers.



0 1000 2000 3000 4000 5000
0

0.5

1

X axis [m]

B
o

o
le

a
n

 V
a

ri
a

b
le

Enforcement of the constraint between the Agent1 and Agent2 to the P
1
 problem

0 1000 2000 3000 4000 5000
0

0.5

1

X axis [m]

B
o

o
le

a
n

 V
a

ri
a

b
le

Enforcement of the constraint between the Agent1 and Agent3 to the P
1
 problem

0 1000 2000 3000 4000 5000
0

0.5

1

X axis [m]

B
o

o
le

a
n

 V
a

ri
a

b
le

Enforcement of the constraint between the Agent1 and Agent4 to the P
1
 problem

0 1000 2000 3000 4000 5000
0

0.5

1

X axis [m]

B
o

o
le

a
n

 V
a

ri
a

b
le

Enforcement of the constraint between the Agent1 and Agent5 to the P
1
 problem

Fig. 9. Coupling between Agent1 and the i-th agent in function of the
traveled distance on the X axis. When the Boolean variable is set to one
the Lagrange multiplier is different from zero.
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Fig. 10. Trajectory of Agent1 with its prospective view. The trajectories
of the others agents are reported when the related feasibility constraint are
enforced to the P1 problem, namely when the Boolean variable of Figure
9 is set to 1.

D. Complete Simulation

Finally the algorithm is tested in the worst case scenario,
where all the feasibility constraints has to be enforced to
the P1 problem (A video of the simulation can be found
at http://youtu.be/wTfb5M1YH44 ). Figure 11 shows
the behavior of the computational cost as a function of the

Fig. 11. Trajectory of Agent1 with its prospective view. The trajectory
of the others agents are reported when the related feasibility constraint are
enforced to the P1 problem, namely when the Boolean variable of Figure
10 is set to 1.

relaxed constraints. In particular, Figure 11 is divided in
five zones, numbered from 0 to 4, to indicate the number
of enforced constraints. The minimum computational cost,
3.85ms, is achieved when no constrains are enforced to
the problem. Furthermore, the maximum computational cost,
6.02ms, is reached when all the four constraints are enforced
to the P1 problem. Thus, the increment in computational
cost, between the unconstrained problem and the one where
all four constrains are enforced, is 2.17ms. This increment

http://youtu.be/wTfb5M1YH44


is small when compared with the centralized approach which
took 12.5ms to solve a problem involving two agents.

VI. CONCLUSIONS

In this paper a decentralized control algorithm for dynam-
ically decoupled system, coupled by feasibility constraint, is
presented. The algorithm, similarly to continuation methods,
uses the derivative of the optimal solution to approximate
the behavior of the system. This strategy allows to decouple
and to parallelize computations.

Moreover, a relaxed approach to deal with inequalities
constraints is introduced. This approach allows one to elimi-
nate the discontinuity introduced by the KKT conditions; but
it is able to recognize when an inequality constraint does not
influence optimality and thus should not be enforced on the
problem.

The algorithm has been successfully tested in simulation
in a cooperative driving scenario. The control logic is able
to compute a solution near the global optimal with a decen-
tralized strategy. The size of the problem is reduced when
the coupling between agents is not relevant, thus the com-
putational burden in reduced. Finally, the computational cost
of a simulation involving five coupled agents is compared
with a centralized control problem involving two agents. This
comparison underlines the advantage of the decentralized
control strategy which took, on average, 50% less time to
solve the optimal control problem, though the dimension of
the problem is four times larger.
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