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Regulation of Renewable Energy Sources to Optimal Power Flow
Solutions Using ADMM

Yijian Zhang, Emiliano Dall’Anese, Mingyi Hong, Sairaj Dhople, and Zi Xu

Abstract— This paper considers power distribution systems
featuring renewable energy sources (RESs), and it develops
a distributed optimization method to steer the RES output
powers to solutions of AC optimal power flow (OPF) problems.
The design of the proposed method leverages suitable linear
approximations of the AC power-flow equations, and it is based
on the alternating direction method of multipliers (ADMM).
Convergence of the RES-inverter output powers to solutions
of the OPF problem is established under suitable conditions
on the stepsize as well as mismatches between the commanded
setpoints and actual RES output powers. In a broad sense,
the methods and results proposed here are also applicable to
other distributed optimization problem setups with ADMM and
inexact dual updates.

I. INTRODUCTION

This paper focuses on optimization and control of inverter-
interfaced renewable energy resources (RESs) in power dis-
tribution systems, and it addresses the problem of regulating
the RES output powers to solutions of AC optimal power
flow (OPF) problems. The main motivations are to re-
solve emerging power-quality and reliability concerns when
RESs are integrated and operated according to business-
as-usual practices, and to enable RES inverters to partake
in distribution-network optimization and controls tasks at
similar time scales to maximize operational efficiency.

Related to this effort are methods tailored to bulk power
systems, including feedback control architectures that seek
Karush-Kuhn-Tucker optimality conditions for economic
dispatch in continuous time [1], and modified automatic-
generation and frequency-control methods that incorpo-
rate DC OPF objectives [2], [3]. A heuristic comprising
continuous-time dual ascent and discrete-time reference-
signal updates is proposed in [4], where local stability of
the resultant closed-loop system is also established. Focusing
on AC OPF models, saddle-point-flow methods are utilized
in [5], and an online AC OPF algorithm is proposed in [6]
for distribution systems with a tree topology based on barrier
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functions. A dual-subgradient method is leveraged in [7] to
develop feedback controllers that drive RES output powers
to solutions of convex surrogates of the AC OPF. Broadly,
the theoretical foundation of the methods we develop relates
to regulating dynamical systems to solutions of convex
optimization problems. Of particular interest in this regard
is the seminal work in [8], where dynamical systems that
serve as proxies for optimization variables and multipliers
are synthesized to evolve in a continuous-time gradient-like
fashion to the saddle points of Lagrangian functions [9], [10].

In this work, we outline the theoretical foundation to
leverage the alternating direction method of multipliers
(ADMM) [11] to synthesize controllers that pursue solutions
of the AC OPF problem. Our focus on ADMM is well
motivated since it offers faster convergence compared to
subgradient methods [12], [13], and it enables one to relax
(potentially restrictive) assumptions on the strict convexity
of the cost in the target optimization problem. Another
contribution is that we formulate the AC OPF problem with
linear approximations of the AC power-flow equations [14]–
[17]. This approach provides a convex surrogate of the AC
OPF problem while significantly reducing the computational
burden. Two control strategies are considered to trade con-
vergence for computational complexity: in the first strategy,
the update of the desired voltages across the system is carried
out by solving a linearly-constrained quadratic program,
whereas a simpler projected gradient step is involved in the
second case. In both cases, convergence of the RES-inverter
output powers is established under suitable conditions on the
stepsize and responsiveness of the RES inverters to power
commands. Numerical experiments are provided to corrobo-
rate the convergence claims for the proposed ADMM-based
controllers.

II. PROBLEM FORMULATION

A. Notation

Upper-case (lower-case) boldface letters are used for ma-
trices (column vectors); (·)> and (·)∗ are used to denote
matrix transpose and complex-conjugate, respectively; Re(·)
and Im(·) denote the real and imaginary parts of a complex
number, respectively; for given vector x, diag(x) denotes
a diagonal matrix with diagonal entries composed of the
components of x; j :=

√
−1. Given a vector x, ‖x‖ denotes

the `2 norm of x. For column vectors x,y, z, [x; y; z] :=
[x>,y>, z>]>, a long column vector. For a given function
f(·), ∇f(·) denotes the gradient; For a given matrix X,
X � 0 indicates that X is positive definite. For a given
matrix X, vector X(i) denotes the ith row of X.

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.
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B. System Model
Consider a distribution network with N+1 nodes collected

in the set N . Let node 0 denote the secondary of the step-
down transformer, and assume that RESs are located at nodes
ND ⊆ N . Define further the set NO := N\ND. Define
the vector i := [I1, . . . , IN ]> ∈ CN , where In denotes the
phasor of the current injected at node n, and let Ynet ∈
C(N+1)×(N+1) denote the network admittance matrix, which
is formed according to the system topology and π-equivalent
circuit of the distribution lines. Let v := [V1, . . . , VN ]> ∈
CN , where Vi = |Vi|∠θi ∈ C denotes the voltage phasor
at node i; particularly, |V0|ejθ0 is the slack-bus voltage with
V0 denoting the voltage magnitude. Let Pi + jQi denote
the setpoints of RES i ∈ ND, and define ui := [Pi, Qi]

> for
brevity. Similarly, let Pl,i+jQl,i denote the power demanded
at node i ∈ N . Using Kirchhoff’s Current Law and Ohm’s
Law, the following linear relationship can be formulated:[

I0
i

]
=

[
ỹ ȳ>

ȳ Y

]
︸ ︷︷ ︸

Ynet

[
V0e

jθ0

v

]
, (1)

where ȳ ∈ CN , Y ∈ CN×N , and ỹ ∈ C\{0}. The OPF
problem of interest is as follows:

min
v,i,ui

H(v) +
∑
i∈ND

Gi(ui) (OPF)

s.t. i = Yv + ȳ|V0|ejθ0 , (2a)
ViI
∗
i = Pi − Pl,i + j(Qi −Ql,i), ∀i ∈ ND (2b)

VnI
∗
n = −Pl,n − jQl,n, ∀n ∈ NO (2c)

V min ≤ |Vi| ≤ V max, ∀i ∈ N (2d)
ui = {Pi, Qi} ∈ Yi ∀i ∈ N . (2e)

where (2b) and (2c) describe power-balance equations for
nodes with and without RES inverters, respectively; V min

and V max are prescribed voltage limits; the function H(v) :
CN → R captures network-oriented performance objectives;
and Gi(ui) : R2|ND| → R models optimization objectives
at the RES-owner side (e.g., minimization of real power
curtailed and reactive power provisioning). Finally, the set Yi
models hardware and operational constraints of the inverter
i; for example, for photovoltaic (PV) systems, Yi takes the
following form:

Yi := {(Pi, Qi) : Pmin
i ≤ Pi ≤ P avi , P 2

i +Q2
i ≤ S2

i } (3)

where P avi ≥ 0 denotes the available real power, and Si is
the inverter capacity.

Problem (2) is nonconvex problem (and, in general, NP-
hard). Convex relaxation methods have been recently ex-
plored to solve the OPF task with reduced computational bur-
den, while possibly retaining globally optimal solutions [18].
In contrast, to facilitate the design of low-complexity con-
trollers that afford implementation on microcontrollers that
accompany power-electronics interfaces of gateways and
inverters, the present paper leverages suitable linear ap-
proximations of the AC power-flow equations [14]–[17].
Particularly, the linearization approach developed in [15] is
briefly discussed next.

C. Linear Approximation of the AC OPF

Note that the power-balance equations can be reformulated
by plugging (2a) into (2b) and (2c):

s = diag(v)i∗ = diag(v)(Y∗v∗ + ȳ∗|V0|e−jθ0), (4)

where s is a vector collecting the net complex power injec-
tions throughout the network. Denote ṽ = vnom + vd as a
linear approximation of v, where vnom = |vnom|∠θnom ∈
CN is a predefined nominal voltage vector and vd captures
perturbations around vnom. We will set vnom as vnom =
−Y−1ȳ|V0|ejθ0 , which corresponds to the voltage across
the network with zero current injections. Following [15],
plugging the previous expression for vnom into (4) and
neglecting the second-order terms (in vd), we obtain the
solution for vd, given below:

vd = Y−1diag
(

1

v∗nom

)
s∗. (5)

After expanding (5), we can derive expressions for the real
and the imaginary parts of vd separately. However, the
resulting expression will couple the components of p and
q, rendering the design of the distributed algorithm difficult.
Therefore, we slightly rearrange (5) to arrive at the following
equivalent form:

diag(v∗nom)Yvd = s∗. (6)

Define Y := G + jB, where G ∈ RN×N is the conduc-
tance matrix and B ∈ RN×N is the susceptance matrix.
Furthermore, defining M := diag(|vnom| cos θnom) and
N := diag(|vnom| sin θnom) and expanding (6), we obtain
the following expressions

(MG + NB)Re(vd)− (MB − NG)Im(vd) = p (7a)
−(MG + NB)Im(vd)− (MB − NG)Re(vd) = q (7b)

where pi = Pi − P`,i and qi = Qi − Q`,i for i ∈ ND,
whereas pi = −P`,i and qi = −Q`,i for i ∈ NO. Clearly,
the expression for p and q decoupled. Define a long vector
∆ := [Re(vd); Im(vd)]. Denote the coefficient matrix of ∆
as C and D in the following form:

C :=
(
MG + NB,−MB + NG

)
∈ RN×2N (8a)

D :=
(
−MB + NG,−MG−NB

)
∈ RN×2N . (8b)

The linearized OPF problem can be formulated as:

min
∆,ui

H(∆) +
∑
i∈ND

Gi(ui) (OPF-2)

s.t. C(i)∆− Pi + Pl,i = 0, i ∈ N\{0} (9a)
D(i)∆−Qi +Ql,i = 0, i ∈ N\{0} (9b)
∆ ∈ V, ui = {Pi, Qi} ∈ Yi. (9c)

where Pi = Qi = 0 for nodes i ∈ ND and

V := {∆ | V min − |vnom,i| ≤ ∆i ≤ V max − |vnom,i|,
i = 1, . . . , N}.

Note that the bound constraint is only on the real part
of vd; this is because |v| = |vnom|+ Re(vd) is utilized
as a first-order approximation for the magnitude of ṽ,

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.
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and this further allows us to bypass the non-convexity
caused by V min ≤ |Vn|. For notational simplicity, denote
Φi = [C(i); D(i)] ∈ R2×2N and Φ = [Φ1; · · · ; ΦN ]. We
can reformulate (9) as follows:

min
∆,ui

H(∆) +
∑
i∈ND

Gi(ui) (OPF-3)

s.t. Φi∆− ui + di = 0, i ∈ N\{0}, (10a)
∆ ∈ V, ui ∈ Yi. (10b)

D. Dynamic Modeling for RES Inverters

Problem (10) defines the optimal power commands for
the RES inverters [7], [19]. For given reference powers
ui, the dynamics of RES inverters as well as primary-level
controllers are captured by the following generic dynamical
model:

ẋi(t) = fi(xi(t),di(t),ui), (11a)
yi(t) = ri(xi(t),di(t)), (11b)

where xi(t) ∈ Rnx,i represents the state of i-th dynamical
system at time t; yi(t) ∈ Yi is the measurement of state
xi(t) at time t; and di(t) ∈ Di ⊂ Rnd,i is an exogenous
input. Finally, fi : Rnx,i × Rnd,i × Rny,i → Rnx,i and ri :
Rnx,i × Rnd,i → Rny,i are arbitrary (non)linear functions.
We also assume that for given exogenous input and reference
signals, the system will stabilize and behave according to the
reference signal; see e.g., [4], [19].

Assumption 1: For given constant exogenous inputs {di ∈
Di}i∈N and reference signals {ui ∈ Yi}Ni=1, there exist
equilibrium points {xi}Ni=1 for (11) that satisfy:

0 = fi(xi,di,ui), ui = ri(xi,di). (12)

This assumption reflects the actual operation of inverters
and asserts that the inverters and the primary controllers
embedded in the RESs are designed such that the output
powers are regulated to the commanded inputs.

III. FEEDBACK CONTROLLER

The goal is to develop a distributed control scheme that
steers the RES-inverter setpoints {ui ∈ Yi}Ni=1 and the
power-outputs of the inverters {yi(t)}Ni=1 to the solution
of the OPF problem (10). A brief overview of ADMM-
based algorithms is outlined next; the ADMM-based control
architecture is outlined in Section III-B.

A. ADMM-based distributed optimization

Consider the augmented Lagrangian function associated
with (10):

L(∆, {ui}, {λi}) := H(∆) +
∑
i∈ND

Gi(ui)

+
∑

i∈N\{0}

ρ

2

∥∥∥∥Φi∆− ui + di −
λi
ρ

∥∥∥∥2

, (13)

where λi ∈ R is the Lagrangian multiplier associated with
constraint (10a), and ρ > 0 is a design parameter. ADMM

involves an iterative procedure, whereby at iteration k, the
following steps are performed:

uki = arg min
ui∈Yi

Gi(ui)

+
ρ

2

∥∥∥∥Φi∆
k−1 − ui + di −

λki
ρ

∥∥∥∥2

, (14a)

∆k = arg min
∆∈V

H(∆)

+
∑

i∈N\{0}

ρ

2

∥∥∥∥Φi∆− uki + di −
λki
ρ

∥∥∥∥2

, (14b)

λk+1
i = λki − ρ(Φi∆

k − uki + di). (14c)

Step (14a) is performed at node i ∈ ND and it is com-
putationally tractable; in fact, when the Gi(ui) is linear
or quadratic and Yi is as in (3), uki admits a closed-form
solution. On the other hand, (14b) requires solving a con-
strained program. To reduce the computational complexity of
updating the voltage vector, consider updating ∆ by solving
a quadratic approximation:

∆k = arg min
∆∈V

〈gk−1,∆−∆k−1〉+L
2

∥∥∆−∆k−1
∥∥2
, (15)

where L > 0 is a design parameter, and gk−1 denoted the
gradient of the augmented Lagrangian with respect to ∆),
and it is expressed below

gk−1 = ∇H(∆k−1)+∑
i∈ND

Φ>i

(
Φi∆

k−1 − uki + di −
λki
ρ

)
. (16)

It is easy to show that the optimal solution of (15) admits
the following simple update

∆k = PV(∆k−1 − 1

L
gk−1). (17)

where PV denotes the projection operation onto the convex
set V .

The steps described above can be adopted to enable a
distributed solution of (10). Updates (14a)(14c) are imple-
mented at each individual RES system, while (14b) are per-
formed at the distribution system operator (DSO). However,
in conventional approaches, the optimal reference signals
{uopt

i }i∈ND
are implemented at the RES-inverters only when

the distributed algorithm converges to the optimal solution. It
is evident that under this operating paradigm the optimization
and local control tasks operate at two different time scales,
with reference signals updated every time that the OPF
problem is solved and implemented only when the inverter
dynamics are in steady state. This motivates the development
of control schemes that continuously pursue solutions of the
OPF problem by dynamically updating the setpoints, based
on current system outputs and problem parameters.

B. Dynamic Controller

Consider updates performed at discrete time instants
t ∈ {tk, k ∈ N} for updates in (14). At tk, let utk =

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.
3



{utki }i∈N\{0}, ∆tk and λtk := {λtki }i∈N\{0} denote the
primal and dual variables, respectively.

At time tk−1, the RES outputs are sampled as [cf. (11)]:

y
tk−1

i = ri(xi(tk−1),di), ∀ i ∈ ND (18a)

and the measured output powers are utilized to update
the voltage-related vector ∆, the dual variables, and the
reference setpoints as follows:

∆tk = arg min
∆∈V

H(∆)

+
∑

i∈N\{0}

ρ

2

∥∥∥∥∥Φi∆− y
tk−1

i + di −
λ
tk−1

i

ρ

∥∥∥∥∥
2

, (18b)

λtki = λ
tk−1

i − ρ(Φi∆
tk − y

tk−1

i + di), (18c)

utki = arg min
ui∈Yi

Gi(ui)

+
ρ

2

∥∥∥∥Φi∆
tk − ui + di −

λtki
ρ

∥∥∥∥2

. (18d)

The updates (18) constitute the feedback controller. Fur-
ther, update (18b) could be replaced by ∆tk = ∆tk−1 −
1
Lgtk−1 if a lower-complexity implementation is sought.

Conceptually, the key difference compared to the open-
loop optimization scheme (14) is that the dual update
incorporates feedback from the RES-inverter outputs. The
(continuous-time) reference signals {ui(t)}i∈ND

produced
by the controller have step changes at instants {tk, k ∈ N},
are left-continuous functions, and take the constant values
{utki }i∈ND

over the time interval (tk−1, tk]. It is evident that
if utki converges to uopt

i as k → ∞ (and thus ui(t) → uopt
i

as t → ∞), then yi(t) → uopt
i as t → ∞ by virtue of

Assumption 1. When the interval (tk−1, tk] is larger than
the settling time of (11), then one has that the RES output
powers converge to the intermediate setpoints {utki }Ni=1 at
each iteration; than is, limt→t−k

‖yti −utki ‖ = 0. Hence, (14)
and (18) coincide, and the well-known convergence claims
for the ADMM naturally apply to the present setup [11].
However, in case of slow-responding inverters, or, when
the updates (18) can be performed faster than the systems’
settling times, then one has that the inverter outputs may
not coincide with the commanded setpoints; particularly, let
ηtki = utki − y

tk+1

i , i ∈ N \ {0}, quantify this discrepancy.
In the following, convergence of the RES output powers in
the case where ηtki 6= 0 is assessed.

C. Convergence Analysis

To the best of our knowledge, convergence of the ADMM
when one of its primal updates is computed as ∆tk+1 =
∆tk − 1

Lgtk and when errors affect the dual-ascent step is
not available in the prior literature. In the following anal-
ysis, we study the convergence of (18) using only gradient
steps. Convergence of (18) can be analyzed using similar
techniques with simpler steps.

To facilitate the derivation of convergence claims, the
following assumptions are made.

Assumption 2: The gradient stepsize L > 0 satisfies the
following property:

(L− γ)I2N − ρΦ>Φ � 0, (19)

where γ denotes the Lipschitz constant of ∇H(∆), and I2N

is the 2N × 2N identity matrix.
Assumption 3: Define the magnitude of the error as ηtk :=

‖utk−ytk‖. then, the error satisfies the condition:
∞∑
k=1

ηtk <

∞.
Assumption 3 asserts that the error should diminish as the
system reaches the steady state, which is reasonable because
when the iterates are close to the the optimal solution, the
successive difference of the set points will become small, i.e.,
u
tk+1

i − utki → 0. Since the input to the dynamic systems
changes slowly, the output is expected to be able to track the
input.

Let ŵtk := [ûtk ; ∆̂tk ; λ̂
tk

] and wtk := [utk ; ∆tk ;λtk ]
be the sequences generated by (14) and (18), respectively.
Note that ŵtk represents the error-free sequence We have
the following lemma.

Lemma 1: Let w∗ := [u∗; ∆∗;λ∗] be an optimal solution
of (10), then the following is true∥∥ŵtk − w∗∥∥2

H̃
≤
∥∥wtk−1 − w∗∥∥2

H̃
−
∥∥Φ∆tk−1− ûtk + d

∥∥2

ρI

−
∥∥∥∆̂tk − ∆tk−1

∥∥∥2

Ψ
, (20)

where we have defined H̃ :=

0 0 0
0 LI 0
0 0 1

ρI

, and Ψ :=

(L− γ)I− ρΦ>Φ.
Lemma 1 establishes a relationship between the exact and
inexact updates in terms of the distance to an optimal
solution. It can be readily shown that

‖wtk −w∗‖2
H̃

= ‖wtk − ŵtk + ŵtk −w∗‖2
H̃

= ‖wtk − ŵtk‖2
H̃

+ ‖ŵtk −w∗‖2
H̃

+ 2‖wtk − ŵtk‖H̃ · ‖ŵ
tk −w∗‖H̃.

On the other hand, from Lemma 1 it follows that∥∥wtk −w∗
∥∥

H̃
≤
∥∥ŵtk −w∗

∥∥
H̃

+ ‖wtk − ŵtk‖H̃
≤
∥∥wtk−1 −w∗

∥∥
H̃

+ (‖LΦ>‖+ ρ)ηtk . (21)

Summing both sides over k, we obtain∥∥wtk −w∗
∥∥

H̃
≤

k∑
i=1

σηti . (22)

where σ := ‖LΦ‖+ ρ. The above inequality implies that if∑∞
k=1 η

tk < +∞, then ‖ŵtk −w∗‖H̃ ≤ c, where c is some
constant. Consequently, one can obtain the following:∥∥wtk−w∗

∥∥2

H̃
≤
∥∥ŵtk−w∗

∥∥2

H̃
+ (σηtk)2+2σηtkc. (23)

Combining (23) with Lemma 1 and Assumption 2, it follows
that:∥∥wtk −w∗

∥∥2

H̃
≤
∥∥ŵtk −w∗

∥∥2

H̃
+ (σηtk)2 + 2σηtkc

≤
∥∥wtk−1 −w∗

∥∥2

H̃
−
∥∥Φ∆tk−1 − ûtk + d

∥∥2

ρI

+ (σηtk)2 + 2σηtkc. (24)
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Summing (24) from 1 to k, we obtain:

∥∥wtk−w∗
∥∥2

H̃
≤
∥∥w0−w∗

∥∥2

H̃
−

tk∑
t=1

∥∥Φ∆t−1− ût + d
∥∥2

ρI

+
k∑
i=1

(σηti)2 + 2
k∑
i=1

σηtic. (25)

Further, letting k →∞ for (25), the following result hold:

lim
k→∞

∥∥Φ∆tk−1 − ûtk + d
∥∥2

ρI
= 0. (26)

Based on the above discussion, we can derive our main
convergence result.

Theorem 1: Suppose Assumptions 1-3 hold true, let
wtk = [utk ; ∆tk ;λtk ] be the sequence generated by (18).
Let W ∗ denote the optimal set of (10). Then we must have
that wk converges to some w∞ ∈ W ∗, where w∞ is a
cluster point of sequence {wtk}

IV. NUMERICAL EXPERIMENT

The proposed ADMM-based RES-inverter controller is
tested using a modified version of the IEEE 37-node test
feeder. Particularly, the modified feeder is taken from [7].
In the OPF problem, the voltage limits are V min =
0.95pu, V max = 1.05pu and V0 is set to be 1pu;
with reference to [7], we assume that six photovoltaic
(PV) inverters located at nodes 4, 11, 22, 26, 29, 32; a first-
order system [20] is adopted to model the dynamics of
real and reactive power generated by the PV-inverters.
The following ratings and available real powers are as-
sumed: {Si}i∈ND

= {50, 120, 50, 100, 120, 80} kVA; and,
{P avi }i∈ND

= {22, 67, 21, 50, 68, 40} kW. Further, θ = π
2 ,

Pmin
i = 0, and the objective functions are set as:

H(∆) =10×
N∑
i=1

(∆(i)− 1)2, (27)

Gi(Pi, Qi) =ai(P
av
i − Pi)2 + bi(P

av
i − Pi)

+ ciQ
2
i + di|Qi|, (28)

where H(∆) penalizes voltage deviations, and Gi(Pi, Qi)
captures cost of ancillary service provisioning. The coeffi-
cients of (28) is chosen as ai = 1, bi = 10, ci = 0.01, di =
0.01 for i = 1, . . . , 4 and ai = 1, bi = 10, ci = 0.03, di =
0.03 for i = 5, 6. The following two versions of the controller
are tested:

1) ADMM1: The optimization package CVX is used to
solve the linearized voltage updates (18b), while (18d)
is solved in closed form.

2) ADMM2: A gradient step is adopted to the linearized
voltage updates (18b), while the power setpoints (18d)
are updated in closed form.

We use the following quantities to measure the optimality
of the solutions [21]:∥∥∥rkp∥∥∥ =

∥∥∥C∆k − pk + pl

∥∥∥ , ∥∥∥rkq∥∥∥ =
∥∥∥D∆k − qk + ql

∥∥∥∥∥∥skp∥∥∥ =
∥∥∥C(∆k − ∆k−1)

∥∥∥ , ∥∥∥skq∥∥∥ =
∥∥∥D(∆k − ∆k−1)

∥∥∥ .
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Fig. 1: Convergence of the ADMM-based algorithm with errors
in the dual-ascent step. A first-order system is used to model the
dynamics of RES system. As a benchmark, CVX solver [22] is
utilized to obtain the optimal solution of (10).

The algorithm stops if all the above quantities reaches below
5× 10−4.

From Fig. 1 it can be seen that both ADMM1 and
ADMM2 converge to the optimal objective value. Specifi-
cally, Fig. 1(a) shows that with the subproblem solved ex-
actly, ADMM1 can converge to the optimal objective in just
17 iterations. In Fig. 1(b) three different plots corresponding
to different numbers of gradient steps in each iteration are
reported. The figure shows the trade-off between the total
number of iterations and number of gradient steps in each
iteration. Clearly, the higher is the amount of gradient steps
performed in each iteration, the fewer the total iterations
are required. Notice that compared to ADMM1, ADMM2
still requires more iterations to converge. However, each
iteration of ADMM2 is computationally lighter and easy to
implement.

V. CONCLUSIONS AND FUTURE WORK

This paper developed an ADMM-based control scheme for
RESs that drives the power outputs to the optimal solution
of a linearized AC OPF problem. Linear approximation is
utilized to bypass the non-convexity of the original OPF
problem. Convergence results for the ADMM with errors
in both primal and dual updates as well as for the ADMM
featuring gradient steps were discussed.
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