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Abstract— We consider a microgrid with random load real-
ization, stochastic renewable energy production, and an energy
storage unit. The grid controller provides the total net load
trajectory that the microgrid should present to the main grid
and the microgrid must impose load shedding and renewable
energy curtailment if necessary to meet that net load trajectory.
The microgrid controller seeks to operate the local energy
storage unit to minimize the risk of load shedding, and
renewable energy curtailment over a finite time horizon. We
formulate the problem of optimizing the operation of the storage
unit as a finite stage dynamic programming problem. We prove
that the multi-stage objective function of the energy storage is
strictly convex in the state of charge of the battery at each
stage. The uniqueness of the optimal decision is proven under
some additional assumptions. The optimal strategy is then
obtained. The effectiveness of the energy storage in decreasing
load shedding and RE curtailment is illustrated in simulations.

I. INTRODUCTION

As the penetration of Renewable Energies (RE) increases,
electric power systems encounter new operating problems
uncommon in conventional systems [1]. RE sources typi-
cally exhibit an intermittent pattern. This pattern presents
significant challenges for utilities, e.g. for maintaining the
transmission line capacity, regulating frequency, and balanc-
ing the generation and load [2]-[3]. Indeed, an excess of re-
newable generation at the time of low loads and transmission
constraints can lead to curtailment of renewable energies [4]-
[5], meaning that the grid controller does not allow the RE
resources to inject power into the grid. Interestingly, this may
be concomitant with load shedding that occurs if the grid
cannot meet the load because of transmission line constraints
or supply-demand imbalance.

In this work, we consider a microgrid that is equipped
with RE and energy storage (in the form of a battery). The
energy storage unit is operated by the non-profit microgrid
operator, who can direct load shedding and renewable energy
curtailment if needed. The main grid provides the microgrid
operator with a maximum net load, e.g. due to transmission
line power constraints, that it is allowed to present to the
main grid. The problem for the microgrid operator is to
minimize both RE curtailment and load shedding while
meeting the total net load constraint. It seeks to perform
this by choosing the charging and discharging strategies for
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energy storage to minimize the risk of high amounts of load
shedding and RE curtailment.

The chief contribution of this paper is the formulation and
analysis of this problem as a multi-stage dynamic program-
ming problem. Specifically, we use the Conditional Value-
at-Risk (CVaR) as a metric of risk for the load shedding
and RE curtailment and prove the strict convexity of the
objective function under some mild conditions. Thus the
optimization problem can be efficiently solved. A numerical
analysis is presented for optimization of the energy storage
for a stochastic model for the load and RE output. It is
shown that the optimal strategy for the energy storage enables
consumers to increase the penetration of renewable energies.

The optimal use of the energy storage has been inves-
tigated for different applications, e.g. frequency regulation
[6] and [7], to mitigate the intermittency of the renewable
sources [8], [9], [10], and [11], as well as peak shaving
[12], and spinning reserves [13]. Conventional optimal power
flow without storage, decouples the optimization in different
time periods [14]. In contrast, energy storage introduces
correlation across time periods. The main challenges to
optimize the energy storage operation is this correlation
across time, constraints on the capacity and charge/discharge
rate of the energy storage unit, and stochastic behaviour of
load and renewable energies. The studies most related to
our work are [15] and [16]. Authors in [15] study the load
shedding for the frequency regulation in a grid model with
a deterministic load. Authors in [16] formulate the optimal
load shedding due to supply reduction. They maximize the
operator profit for a grid model without energy storage and
with a deterministic load. Unlike these works, we minimize
the risk (as measured by CVaR) of high amounts of load
shedding and RE curtailment in the presence of stochastic
load and RE generation.

The rest of the paper is structured as follows. In
Section II, an energy storage objective function is modeled
with the goal of decreasing the risk of high amounts of load
shedding and RE curtailment in a microgrid. In Section III,
we formulate the optimization problem of energy storage
unit as a dynamic programming problem and prove the
convexity of the objective function in action space at
each stage. We derive a sufficient condition for the strict
convexity of the objective function. In Section IV we show
a numerical result obtained through simulation evaluations.
Finally, concluding remarks are provided in Section V.
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II. MICROGRID MODEL

We consider a microgrid with local renewable energy
resources (e.g. solar PV systems) and an energy storage unit
as shown in Figure 1. Let PLk

and Pgk denote respectively
the load and output of solar PV system of the kth consumer.
The microgrid controller allows the distributed renewable
generators to provide necessary active power locally or to
the main grid. In addition, it directs load shedding and RE
curtailment to obey a constraint on the max total active
power that the microgrid can draw from, or inject into,
the transmission line that connects it to the main grid.
To this end, it uses the energy storage unit to minimize
the curtailment of renewable energies and to minimize the
load shedding. Intuitively, the energy storage unit can act
as an energy reserve. However optimizing the usage of
energy storage to minimize the risk of high amounts of load
shedding and RE curtailment is a difficult and open problem.

Fig. 1. Microgrid model: The dashed lines are the control signals and the
solid lines are the power flow lines. The microgrid controller directs load
shedding and RE curtailment using circuit breakers to maintain transmission
line constraint.

The following notations are used in this work:

Notation:
• dt and rt are the load and renewable resource realiza-

tions respectively at time t.
• d̃t and r̃t are the load shedding and renewable resource

curtailment respectively at time t.
• |.| denotes the absolute value.
• (.)+ = max(., 0).
Electricity generated by renewable resources would first

supply the local load. Any additional power needed to satisfy
the load could be supplied from the grid or satisfied by
discharging the battery. The energy in excess of the load,
that is generated by renewable resources, can be used to
charge the battery or be injected into the grid. The microgrid
controller has the authority to curtail the excess RE injected
into the grid and to direct the load to be shutdown. The total
power to or from the microgrid must be less than a specific
value that is specified by the main grid to satisfy, e.g, the
transmission line constraints.

A. Load and Renewable Energy

Let T = {1, 2, ..., T} be the index set. Define d = {dt, t ∈
T} and r = {rt, t ∈ T} as random processes on the
probability space (Ω,F,P). d and r represent the load and
renewable resource power respectively. For a fixed t, and for

ω ∈ Ω, dt(ω) and rt(ω) are non-negative random variables
with known continuous probability density functions. For
the given ω ∈ Ω, dt, and rt are deterministic functions of
t that denote the load realization and renewable resource
power realization respectively at time t. Let P tLk

and P tgk
be respectively the load and output of solar PV system of
the kth consumer in Figure 1 at time t. dt and rt are the
aggregate consumers’ load and renewable power realization
respectively,

dt = P tL1
+ P tL2

+ ...+ P tLn
, (1)

rt = P tg1
+ P tg2

+ ...+ P tgn .

Below, the operating constraints for the energy storage are
described.

B. Energy Storage

Energy storage can charge or discharge bt amount of
power at time t, bt can be either positive (battery is charging)
or negative (battery is discharging). Let st ≥ 0 denote the
energy level of the battery at the beginning of the time t for
all t = 1, ..., T . State of charge of the battery, st, evolves
according to

st = a st−1 + bt−1 ∆t (2)

where st−1 is the energy level of the battery at the beginning
of the time t − 1, that is reduced by the factor 0 < a < 1
at time t. It is assumed that bt is constant in the time slot
[t, t+ ∆t). The energy level of the battery is bounded by a
minimum and maximum capacity

smin ≤ st ≤ smax. (3)

Using (2), inequality (3) can be written as follows

smin − ast
∆t

≤ bt ≤
smax − ast

∆t
. (4)

Maintaining constraints (2) and (4) is crucial in optimization
of energy storage operations. The method by which the mi-
crogrid controller decides on the value of renewable energy
curtailment and load shedding to maintain the transmission
line constraint is described below.

C. Renewable Energy Curtailment and Load Shedding

Renewable resources can be used to meet the load or
charge the battery locally. The energy in excess of the
load that is generated from the renewable resources can be
injected into the grid. The microgrid controller can prohibit
renewable resources from injecting energy into the grid, a
process that is called resource curtailment. The resource
curtailment, r̃t, is bounded by

0 ≤ r̃t ≤ (rt − bt − dt)+. (5)

The load can be satisfied by using renewable resources or
discharging the battery locally, and the extra energy needed
to meet the load can be supplied from the grid. To prevent
the violation of the transmission line constraint, excessive



load can be avoided in a process known as load shedding.
The load shedding, d̃t, is bounded by

0 ≤ d̃t ≤ (dt + bt − rt)+. (6)

The power flow on the transmission line can be written as

pt = dt − d̃t + bt − rt + r̃t. (7)

The grid controller provides Pmin and Pmax to the microgrid
controller as the lower and upper bounds on the power flow
pt

Pmin ≤ pt ≤ Pmax. (8)

The main grid operator controls the output power of the gen-
erator, and provides the microgrid operator with a maximum
net load. The microgrid operator controls the load shedding,
d̃t, and resource curtailment, r̃t. The main grid controller’s
objective is to control the power flow to avoid violation
of the operating constraints (5)-(8). Let nt = dt − rt and
ñt = d̃t − r̃t. Inequalities (5) and (6) can be written as

−(−nt − bt)+ ≤ ñt ≤ (nt + bt)
+. (9)

Equation (7) can be written as

pt = nt − ñt + bt. (10)

The microgrid controller decides on the value of ñt, which
is given as a function of bt as follows

ñ∗t (bt) =

 nt + bt − Pmax if (nt + bt) > Pmax

nt + bt − Pmin if (nt + bt) < Pmin

0 otherwise .
(11)

Let ñt(bt) =| ñ∗t (bt) |. We use the abbreviation ñt instead of
ñt(bt). Let Fñt

be the cumulative distribution function for ñt.
Below, the objective function of energy storage is defined in
order to decrease the risk of high amounts of load shedding
and RE curtailment.

D. Risk Minimization

To define the objective function of the energy storage,
we use the notion of Value-at-Risk (VaR) and Conditional
Value-at-Risk (CVaR) [17]. V aRα(ñt) determines the worst
possible ñt that may occur with confidence level α. For a
given 0 < α < 1, the amount of load shedding and RE
curtailment will not exceed V aRα(ñt) with probability α,

V aRα(ñt) = min{z|Fñt
(z) ≥ α}. (12)

V aRα(ñt) is a measure of risk, however it is not a reliable
measure if ñt has a fat tail distribution. V aRα(ñt) provides
no information about the amount of ñt that may occur
beyond the value indicated by this measure [18]. CVaR is
defined as the conditional expectation of load shedding and
RE curtailment above the amount VaRα. Let E denote the
expectation over nt.

CV aRα(ñt) = E[ñt|ñt > V aRα(ñt)], (13)

CV aRα(ñt) =

∫ ∞
−∞

zdFαñt
(z), (14)

where

Fαñt
(z) =

{
0, if z < V aRα(ñt)
Fñt

(z)−α
1−α , otherwise

.

CV aRα(ñt) quantifies the value of the tail distribution
of ñt beyond the value of V aRα(ñt). CV aR is a more
conservative measure of risk than V aR, which is a lower
bound on the risk. The function gt is defined as

gt(bt) = CV aRα(ñt), (15)

for every t ∈ {1, ..., T}. At each given time t, the energy stor-
age unit minimizes its own objective function on bt, ..., bT
as follows

min
bt,...,bT

w.r.t. (2),(4)

T∑
τ=t

gτ (bτ ). (16)

Let ft be the density function of nt. We assume the density
function of nt satisfies Assumption 1.

Assumption 1: ft is strictly positive on the interval
[Pmin Pmax].

In the next section, it is proven that if Assumption 1
holds, then the optimal decision for the energy storage
with objective function (15) and (16) is unique for every
t ∈ {1, ..., T}.

III. DYNAMIC PROGRAMMING FORMULATION

In this section, the optimization problem in (16) is refor-
mulated as a dynamic programming problem. Let Jt be the
optimal objective function for the (T − t)-stage problem that
starts at state st at time t, and ends at time T ,

Jt(st) = min
bt,...,bT

w.r.t. (2),(4)

T∑
τ=t

gτ (bτ ). (17)

By applying the Dynamic Programming (DP),

JT+1(sT+1) = 0,

Jt(st) = min
bt

w.r.t. (2),(4)

{gt(bt) + Jt+1(st+1)}. (18)

By introducing the function Gt for the given st

Gt(bt|st) = gt(bt) + Jt+1(ast + bt∆t), (19)

the DP equation (18) can be written as

Jt(st) = min
w.r.t (2),(4)

Gt(bt|st), (20)

where

s1 := arg min
smin≤s1≤smax

J1(s1). (21)

While the convexity of CV aRα(ñt) in ñt is known [18], in
the following Proposition we prove the strict convexity of



CV aRα(ñt(bt)) in bt if Assumption 1 holds.

Proposition 1: Let Assumption 1 hold. Then, gt(bt)
is strictly convex in bt for all t = 1, ..., T .

Proof: The proof is given in Appendix A.
The constraints in minimization (20) interconnect the

minimization of the first and second term in (19). In
the following Theorems, it is shown that (20) is a convex
optimization problem and therefore can be solved efficiently,
e.g. by interior point methods [19].

Theorem 1: Let Assumption 1 hold. Then Gt(bt|st)
is convex in (bt, st) for the given smin ≤ st ≤ smax, and
for all bt that satisfies (4).

Proof: JT+1 is the zero function and because of the
convexity of gT (bT ) in bT (Proposition 1), GT (bT |sT ) is
convex in (bT , sT ). Assume that Gt(bt|st) is convex in
(bt, st), the convexity of Gt−1(bt−1|st−1) in (bt−1, st−1) is
shown below. Let

Gt−1(bt−1|st−1) = gt−1(bt−1) + Jt(st). (22)

In Theorem 2, it is proven that Jt(st) is convex in st if
Gt(bt|st) is convex in (bt, st). Therefore from (22) and
Proposition 1, Gt−1(bt−1|st−1) is convex in (bt−1, st−1).

Theorem 2: Let smin ≤ st ≤ smax and bt satisfies
inequality (4). If Gt(bt|st) is convex in (bt, st) then Jt(st)
is convex in st.

Proof: The proof is given in Appendix B.
The following Corollary implies the uniqueness of the

optimal decision for the energy storage.

Corollary 1: If Assumption 1 holds, then for the given
smin ≤ st ≤ smax, Gt(bt|st) is strictly convex in bt for all
bt that satisfies (4).

Proof: From Proposition 1, gt(bt) is strictly convex
in bt and from Theorem 1 and Theorem 2, Jt+1(st+1) is
convex in st+1. By induction and (19), it can be concluded
that Gt(bt|st) is strictly convex in bt for all t = 1, ..., T .

The proofs of Theorem 1, Theorem 2, and Corol-
lary 1 hold if we incorporate energy loss during the charg-
ing/discharging process of energy storage for a more realistic
model. For example, the actual change of state of charge
is ηinbt∆t when bt > 0, and 1

ηout
bt∆t when bt < 0,

where 0 < ηin, ηout < 1 are the efficiency factors. Several
distributions (e.g. Weibull, normal, Erlang, and beta) have
been used to model the variations in the electric load [20]-
[21]. Regardless of the type of distribution, the theoretical
result of this work remains valid as long as the density
function of nt satisfies Assumption 1. Additionally, the
proofs of Theorem 1, Theorem 2, and Corollary 1 remain
valid if the stage cost function, gt(bt), is any strict convex
function in the charging/discharging rate of the battery. We
use a normal distribution model for the nt in the following
section for illustration.

IV. SIMULATIONS

Example: We consider a 24-stage storage optimization
problem with given normalized parameters: Pmax = 0.6,
Pmin = 0, smax = 1, smin = 0, α = 0.01 and ∆t = 1 hour.
The random variable nt for all t = 0, ..., 23 has a gaussian
distribution. The mean of nt for all t = 0, ..., 23 is plotted
in the Figure 2. The standard deviation of nt is 0.25.

For the sake of simplicity, the presented simulations are
limited to 24 hours. However, in practice the analysis should
be over the lifetime of the energy storage. We consider a
realization of nt, that is equal to the mean of the random
variable nt as plotted in Figure 2. The charge and discharge
rate of the energy storage is plotted in Figure 3. The energy
level of the battery is plotted in Figure 4.

It is observed from Figures 3 and 4 that the battery is
charged during the daytime with excess renewable energy
generation and discharged during the morning and evening
peak times. The load shedding and renewable energy cur-
tailment for both scenarios, with battery (blue) and without
battery (green), are plotted in Figure 5. It is observed that the
energy storage with an optimal strategy, decreases renewable
energy curtailment and load shedding significantly.

Fig. 2. Mean of nt.

In Figures 6-7, the optimal objective function and
charge/discharge rate is plotted as a function of the energy
level of the energy storage for the time slots 12 : 00
A.M.−1 : 00 A.M. and 3 : 00 P.M.−4 : 00 P.M. The battery
is charged from 3 : 00 P.M. to 4 : 00 P.M. and discharged
from 12 : 00 A.M. to 1 : 00 A.M. It is observed that the
optimal objective function Jt(st) is convex in the state of
charge of the battery st. It is observed from Figure 6 that
the optimal energy level for the battery is 1.00, which is
assumed to be the initial energy level of the battery in the
Figure 4.



Fig. 3. The charge and discharge rate of energy storage.

Fig. 4. State of charge of battery, st.

V. CONCLUSIONS

In this work, a microgrid with renewable energy resources
and an energy storage unit is considered. It is assumed
that the load and RE are random processes over a finite
time horizon. The main grid provides the microgrid operator
with a total net load trajectory in order to satisfy the grid
constraints. The net load trajectory is satisfied by the mi-
crogrid controller by applying renewable energy curtailment
and load shedding. The energy storage unit is controlled by
the microgrid independently from the main grid controller.
The microgrid controller decides on charging and discharging
strategies in order to minimize the risk of high amounts
of load shedding and RE curtailment within a finite time
horizon. The energy storage objective function in the grid is
formulated as a finite stage dynamic programming problem.
It is proven that under sufficient conditions the multi-stage

Fig. 5. Load shedding (positive value) and renewable energy curtailment
(negative value) with battery (blue) and without battery (green).

Fig. 6. The optimal objective function and charge/discharge rate from
12:00 A.M. to 1:00 A.M.

objective function of energy storage is strictly convex in the
charging/discharging rate. Thus, the optimal decision at each
stage is unique for the given state of charge of the battery.
The convexity of the objective function in charge/discharge
rate, is needed for implementing mathematical programming
that searches within the action space. Finally, numerical
results are presented for an energy storage unit with a mul-
tistage objective function in a microgrid with random load
and RE. It is observed that an optimal charging/discharching
strategy for the energy storage based on an stochastic model
for the load and renewable generation, can decrease the
realized RE curtailment and load shedding.



Fig. 7. The optimal objective function and charge/discharge rate from 3:00
P.M. to 4:00 P.M.

APPENDIX

A. Proof of Proposition 1

Proof: Let ft be the density function of nt. Without
loss of generality assume α = 0, from (12)-(15)

gt(bt) =

∫ ∞
Pmax−bt

(nt + bt − Pmax)ft∂nt (23)

−
∫ Pmin−bt

−∞
(nt + bt − Pmin)ft∂nt.

Below, it is shown that
∫∞
Pmax−bt(nt + bt − Pmax)ft∂nt is

strictly convex in bt. Without loss of generality, assume x <
γx+ (1− γ)y < y. Below it is shown that for all γ ∈ (0, 1)
and x 6= y

∫ ∞
Pmax−γx−(1−γ)y

(
nt + γx+ (1− γ)y − Pmax

)
ft∂nt

(24)
<

γ

∫ ∞
Pmax−x

(nt + x− Pmax)ft∂nt

+ (1− γ)

∫ ∞
Pmax−y

(nt + y − Pmax)ft∂nt.

The right hand side of inequality (24) is equal to

γ

∫ ∞
Pmax−γx−(1−γ)y

(nt + x− Pmax)ft∂nt (25)

− γ
∫ Pmax−x

Pmax−γx−(1−γ)y
(nt + x− Pmax)ft∂nt

+ (1− γ)

∫ Pmax−γx−(1−γ)y

Pmax−y
(nt + y − Pmax)ft∂nt

+ (1− γ)

∫ ∞
Pmax−γx−(1−γ)y

(nt + y − Pmax)ft∂nt

=

∫ ∞
Pmax−γx−(1−γ)y

(
nt + γx+ (1− γ)y − Pmax

)
ft∂nt

− γ
∫ Pmax−x

Pmax−γx−(1−γ)y
(nt + x− Pmax)ft∂nt

+ (1− γ)

∫ Pmax−γx−(1−γ)y

Pmax−y
(nt + y − Pmax)ft∂nt.

The strict convexity follows from Assumption 1, and∫ Pmax−x

Pmax−γx−(1−γ)y
(nt + x− Pmax)ft∂nt < 0

and ∫ Pmax−γx−(1−γ)y

Pmax−y
(nt + y − Pmax)ft∂nt > 0.

Similarly, it can be shown that −
∫ Pmin−bt
−∞ (nt + bt −

Pmin)ft∂nt is strictly convex in bt. Therefore, gt(bt) is
strictly convex in bt.

B. Proof of Theorem 2

Proof: Without loss of generality, assume

smin ≤ x < αx+ (1− α)x́ < x́ ≤ smax, (26)

It is shown below that for all α ∈ (0, 1), and x and x́ that
satisfy (26)

Jt
(
αx+ (1− α)x́

)
≤ αJt(x) + (1− α)Jt(x́). (27)

Suppose, there exists an x and x́, smin ≤ x < x́ ≤ smax,
and α ∈ (0, 1) such that

Jt
(
αx+ (1− α)x́

)
> αJt(x) + (1− α)Jt(x́). (28)

Let

bmt (x) = arg min
smin−ax

∆t ≤bt≤ smax−ax
∆t

Gt(bt|x), (29)

x̄ = αx+ (1− α)x́.

It can be proven by induction that Gt(bt|x) is continuous
in bt for all t = 1, ..., T . Because of the compactness of
the domain in (29) and the continuity of Gt(bt|x) in bt
the minimizer exists. From (20), (28), and (29), it can be
concluded that

Gt(b
m
t (x̄)|x̄) > αGt(b

m
t (x)|x) + (1− α)Gt(b

m
t (x́)|x́).

(30)



It is evident that

smin − x̄
∆t

≥ αbmt (x) + (1− α)bmt (x́) ≥ smax − x̄
∆t

. (31)

From (29), (30), and (31), it can be concluded that

Gt(αb
m
t (x) + (1− α)bmt (x́)|x̄) (32)

≥ Gt(bmt (x̄)|x̄)

> αGt(b
m
t (x)|x) + (1− α)Gt(b

m
t (x́)|x́).

The first inequality is because of (31), and bmt (x̄) being the
minimizer of Gt(.|x̄). The second inequality is because of
(30). Inequality (32) contradicts the convexity of Gt(bt|st)
in (bt, st), therefore Jt(st) is convex for smax ≤ st ≤ smin.
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