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Modeling and Analysis of Sector Clock Bias Mismatch for Navigation
with Cellular Signals

Joe Khalife1 and Zaher M. Kassas2

Abstract— The clock bias in different sectors of a cellular
base transceiver station (BTS) cell is studied. A dynamical
model relating the clock biases in different BTS sectors is
identified and validated experimentally. A theoretical estimation
error lower bound due to the discrepancy between sector
clock biases is derived and demonstrated against Monte Carlo
simulation runs. Experimental results of an unmanned aerial
vehicle (UAV) navigating exclusively with cellular code division
multiple access signals are presented. These results demonstrate
a 10.51m reduction in the UAV’s position estimation error due
to incorporating the developed sector mismatch model into the
estimation framework.

I. INTRODUCTION

Over the past decade, research in navigation via signals
of opportunity (SOPs) has revealed their potential as an
alternative or a complement to global navigation satellite
system (GNSS). Such signals include AM/FM radio [1],
iridium satellites [2], cellular [3], [4], digital television [5],
and Wi-Fi [6]. The literature on SOPs answers theoretical
questions on the observability and estimability of the SOP
signal landscape [7], motion planning in the SOP signal
landscape for optimal information gathering [8]–[10], and
collaborative SOP landscape map building [11]. Moreover, a
number of experimental demonstrations have shown receiver
localization and timing via SOPs [12]–[16].

There are several challenges associated with using SOPs
for navigation, most notably the unavailability of: (1) special-
ized receivers capable of extracting states and parameters of
interest from received signals for navigation purposes and (2)
sources of error analysis for navigating via different classes
of SOPs. A critical source of error in SOP-based navigation
is the mismatch in the dynamics and/or observation models.
An agent entering a new signal landscape cannot assume
the availability of high fidelity models describing the SOP
landscape dynamics. As such, adaptive estimation algorithms
and estimation error bounds due to model mismatch must be
developed. In [17], adaptive filters for estimating the SOP’s
process noise covariance pertaining to the clock error states
(bias and drift) of cellular SOPs were presented. In [3], a new
error source corresponding to cellular code division multiple
access (CDMA) signals was revealed, namely bias mismatch
for different sectors within the same cellular base transceiver
station (BTS) cell. It is important to note that while these
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errors are not harmful for communication purposes, they
severely degrade the navigation performance if they are not
modeled and accounted for appropriately.

Ideally, the clocks of all sectors within a particular BTS
cell should be driven by the same oscillator, which implies
that the same clock bias should be observed in all sectors
of the same cell. However, factors such as unknown dis-
tance between the phase-center of the sector antennas and
delays due to radio frequency (RF) connectors and other
components (e.g., cabling, filters, amplifiers, etc.) cause the
clock biases corresponding to different BTS sectors to be
slightly different. This behavior was consistently observed
in experimentally collected data [18].

This discrepancy can be particularly harmful for naviga-
tion purposes in two scenarios. In the first scenario, an agent
that has no knowledge of its own states, nor has access
to GNSS, is present in a cellular CDMA environment and
is making pseudorange measurements to BTSs nearby. The
agent has access to estimates of the BTSs’ states through a
central database. These estimates could be produced through
stationary mapping agents or crowdsourced from mobile
agents in the environment. In some cases, while estimates of
the BTS sector in which the navigating agent is located may
not be available, estimates of a different sector of the same
BTS cell may be available in the database. If the navigating
agent uses such estimates, the discrepancy between the
sector clock biases will introduce errors on the order of
tens of meters in the agent’s position estimate and tens of
nanoseconds in the agent’s clock bias estimate. A second
scenario where this discrepancy must be accounted for is
when the agent is navigating in a simultaneous localization
and mapping framework and is transitioning from one sector
of the BTS to another.

This paper makes two contributions: (1) it identifies a
stochastic dynamic model for the clock bias mismatch in
different sectors of a BTS cell and (2) it derives estimation
error bounds due to the discrepancy between the sectors’
clock biases. Simulation and experimental results are pre-
sented demonstrating the paper’s contributions.

The remainder of the paper is organized as follows. Sec-
tion II discusses a mapper/navigator framework for naviga-
tion with cellular signals. Section III develops and validates
a stochastic dynamic model capturing the error between the
clock biases of different sectors of the same BTS. Section
IV characterizes the estimation performance under such
errors. Section V presents experimental results demonstrating
estimation error reduction due to incorporating the developed
models. Concluding remark are provided in Section VI.
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II. MAPPER/NAVIGATOR FRAMEWORK FOR

CELLULAR-BASED NAVIGATION

This section describes a framework for navigating with
cellular signals. It consists of two agents: a mapping node,
referred to as the mapper, and a navigating node, referred
to as the navigator. The mapper is assumed to have full
knowledge of its position and clock states (by having access
to GNSS signals, for example). Both nodes are equipped with
a cellular receiver that is capable of producing pseudorange
measurements to nearby BTSs [3].

A. Pseudorange Measurement Model

By making pseudorange observations to N ≥ 3 BTSs,
one may estimate the two-dimensional (2-D) position and
clock bias of the navigator, provided that the BTS locations
and their clock biases are known. The state of the navigator
is defined as xn ,

[

rTn, cδtn
]T

, where rn = [xn, yn]
T is

the position vector of the navigator, δtn is the navigator’s
clock bias, and c is the speed-of-light. Similarly, the state
of the ith BTS is defined as xsi ,

[

rT

si
, cδtsi

]T

, where
rsi = [xsi , ysi ]

T is the position vector of the ith BTS and
δtsi is the clock bias. The pseudorange measurement to the
ith BTS at time k, ρi(k), is given by

ρi(k) = hi [xn(k),xsi(k)] + vi(k), (1)

where hi [xn(k),xsi(k)] , ‖rn(k)− rsi‖ + c ·
[δtn(k)− δtsi(k)] and vi is the observation noise, which is
modeled as a zero-mean white Gaussian random sequence
with variance σ2

i [7]. The navigator’s state can be readily
estimated by solving a weighted nonlinear least-squares
(WNLS) problem.

B. BTS State Estimation and Modified Pseudorange Model

Consider a mapper with knowledge of its own state vector
to be present in the navigator’s environment. The mapper’s
objective is to estimate the BTSs’ position and clock bias
states and share these estimates with the navigator through
a central database. It is assumed that the mapper has been
estimating the SOP BTSs’ states for a sufficiently long period
of time and that the position state estimate uncertainties
had become negligible. The position state estimates are
physically verifiable (through surveying or satellite images,
for example), at which point these estimates are assumed
to match the true states and are subsequently stored in the
database. Unlike the position state estimates, the clock bias
state estimates are more difficult to verify and are time-
varying. Therefore, in the sequel, it is assumed that the
mapper is only estimating the BTSs’ clock bias states, and is

sharing these estimates
{

δ̂tsi

}N

i=1
and their associated error

variances
{

σ2
δtsi

}N

i=1
with the navigator (see Fig. 1).

Since the navigator is using the estimate of the BTS clock
bias produced by the mapper, the pseudorange measurement
made by the navigator on the ith BTS is modified to

ρi(k) = ĥi(k) + ηi(k), (2)

CentralNavigator

BTSi

Database

BTS2

BTS1

Mapper
xsi

, ysi
ˆδtsi , σ

2

δtsi

Fig. 1. Mapper and navigator in a cellular environment.

where ĥi(k) , hi [xn(k), x̂si(k)], x̂si(k) =
[

rT

si
, cδ̂tsi(k)

]T

and ηi is a zero-mean white Gaussian

random sequence with variance σ2
ηi

= σ2
i + c2σ2

δtsi
that

models the overall uncertainty in the measurement.

III. MODELING OF THE CLOCK BIAS DISCREPANCY

BETWEEN DIFFERENT SECTORS OF A BTS CELL

The sources of error considered so far pertain to measure-
ment noise and to the estimation error inherent to the BTSs’
clock bias estimates produced by the mapper. However, an
additional source of error due to the discrepancy between the
clock biases corresponding to different BTS sectors within
the same cell was observed [3]. In this section, a stochastic
dynamic model for this discrepancy is identified.

A. Detecting the Discrepancy Between Sectors’ Clock Biases

In order to detect the discrepancy between sectors’ clock
biases, a cellular CDMA receiver was placed at the border
of two sectors of a BTS cell and was drawing pseudor-
ange measurements from both sector antennas. The receiver
had full knowledge of its state and of the BTS’ position.
Subsequently, the receiver solved for the BTS clock biases
δt

(pi)
si and δt

(qi)
si observed in sectors pi and qi, respectively.

A realization of δt(pi)
si and δt

(qi)
si is depicted in Fig. 2.

Sector pi

Sector qi

Time [s]

Sector pi
Sector qi
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t
B
T
S
se
ct
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Fig. 2. (a) A cellular CDMA receiver placed at the border of two
sectors of a BTS cell, making pseudorange observations on both sector
antennas simultaneously. The receiver has knowledge of its own states and
has knowledge of the BTS position states. (b) Observed BTS clock bias
corresponding to two different sectors.

Fig. 2 suggests that the clock biases δt
(pi)
si and δt

(qi)
si can

be related through

δt(qi)si
(k) = δt(pi)

si
(k) + [1− 1qi(pi)] ǫi(k),

where ǫi is a random sequence that models the discrepancy
between the sectors’ clock biases and

1qi(pi) =

{

1, if pi = qi,

0, otherwise,

3574



is the indicator function. In what follows, a stochastic dy-
namic model for ǫi is identified.

B. Model Identification

It is hypothesized that the discrepancy ǫi(k) = δt
(qi)
si (k)−

δt
(pi)
si (k) for pi 6= qi adheres to an autoregressive (AR)

model of order n, which can be expressed as [19]

ǫi(k) +

n
∑

j=1

αjǫi(k − j) = ζ(k),

where ζ is a white sequence. The objective is to find the
order n and the coefficients {αj}

n

j=1 that will minimize the

sum of the squared residuals
∑k

l=0 ζ
2(l). To find the order

n, several AR models were identified and for a fixed order, a
least-squares estimator was used to solve for {αj}

n

j=1. It was
noted that the sum of the squared residuals corresponding to
each n ∈ {1, . . . , 10} were comparable, suggesting that the
minimal realization of the AR model is of first-order. For
n = 1, it is found that α1 = −(1− β), where 0 < β << 1
(on the order of 8 × 10−5 to 3 × 10−4). This implies that
ǫi is an exponentially correlated random variable (ECRV),
with exp

(

−T
τ

)

= 1 − β, where T is the sampling time
and τ is the time constant of the continuous-time model
of the discrepancy. Experimental data collected over five-
minute time spans shows that 1

τ
→ 0 for different carriers,

at different times, and in different locations. In particular,
1
τ

= {2.08, 1.66, 1.77, 1.70, 1.39, 2.53} × 10−4 for the six
data sets reported in [18]. Consequently, α1 ≈ −1, implying
that ǫi evolves according to a random walk given by

ǫi(k + 1) = ǫi(k) + ζ(k). (3)

Fig. 3 shows a realization of ǫi and the corresponding
residual ζ.

ǫ i
(k
)
[n
s]

ζ
(k
)
[n
s]

Time [s]

(a) (b)

Time [s]

Fig. 3. (a) A realization of the discrepancy ǫi between the observed clock
biases of two BTS sectors and (b) the corresponding residual ζ .

C. Model Validation

The identified model in (3) was validated through residual
analysis [19]. To this end, the autocorrelation function (acf)
and power spectral density (psd) of the residual error ei
defined as the difference between the measured data ǫ′i and
predicted value from the identified model ǫi in (3), i.e.,
ei , ǫ′i−ǫi, were computed. Fig. 4 shows the acf and psd of
ei computed from a different realization of ǫi. The psd was
computed using Welch’s method [20]. It can be seen from
Fig. 4 that the residual error ei is nearly white; hence, the
identified model is capable of describing the true system.

Time shift [s]

ac
f
of

e
i

Frequency [Hz]

ps
d
of

e
i
[d
B
](a) (b)

Fig. 4. The (a) acf and (b) psd of ei with a sampling frequency of 5 Hz.

D. Residual Statistics Characterization

Next, the probability density function (pdf) of ζ will
be characterized, assuming that ζ is an ergodic process. It
was found that the Laplace distribution best matches the
actual distribution of ζ obtained from experimental data,
i.e., the pdf of ζ is given by p(ζ) = 1

2λ exp
(

− |ζ−µ|
λ

)

,
where µ is the mean of ζ and λ is the parameter of the
Laplace distribution, which can be related to the variance
by σ2

ζ = 2λ2. A maximum likelihood estimator (MLE) was
adopted to calculate the parameters µ and λ of p(ζ) [21].
Fig. 5 shows the actual distribution of the data along with
the estimated pdf.

True data

Laplace

ζ [ns]

p
df

of
ζ

Fig. 5. Distribution of ζ from experimental data and the estimated Laplace
pdf via MLE.

It was noted that |µ| ≈ 0 from several batches of collected
experimental data; therefore, ζ is appropriately modeled as a
zero-mean white Laplace-distributed random sequence with
variance 2λ2. From (3), ǫi(k) can be expressed as ǫi(k) =

ǫi(0)+
k−1
∑

l=0

ζ(l), where ǫi(0) is the known initial discrepancy.

Without loss of generality, ǫi(0) is assumed to be zero. The
central limit theorem asserts that the pdf of ǫi converges to
a Gaussian pdf. It was noted that the convergence happens
for k ≥ 9. Therefore, for k ≥ 9, ǫi is modeled as Gaussian
with mean kµ ≈ 0 and variance 2kλ2.

IV. PERFORMANCE CHARACTERIZATION IN THE

PRESENCE OF SECTOR CLOCK BIAS DISCREPANCIES

In this section, the pseudorange model (2) is refined to
account for the discrepancy between sector clock biases.
Also, an analytical lower bound on the determinant of the
estimation error covariance in the presence of clock bias
discrepancy is derived.
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A. Pseudorange Model in the Presence of Sector Clock Bias
Discrepancies

The pseudorange measured by the navigator in sector qi
of the ith BTS when the mapper is in sector pi is given by

ρ
(qi)
i (k) = ĥ

(pi)
i (k) + ηi(k)− [1− 1qi(pi)] · [cǫi(k)] , (4)

where ĥ
(pi)
i (k) , hi

[

xr(k), x̂
(pi)
si

(k)
]

and x̂
(pi)
si

(k) =
[

rT

si
, cδ̂t

(pi)

si
(k)

]T

. It is assumed that σ2
ηi

= σ2
η for i =

1, . . . , N . In the remainder of this section, the mapper and
navigator are assumed to be drawing pseudorange measure-
ments from N BTSs, Ns of which have a mismatch between
the mapper and navigator sectors. Without loss of generality,
the set of pseudoranges are ordered such that the first Ns

measurements correspond to the ones coming from the BTSs
with sector mismatch between the mapper and navigator.
Hence, (4) can be expressed as

ρ(k) = ĥ(k) +w(k), (5)

where ĥ(k) ,
[

ĥ
(p1)
1 (k), . . . , ĥ

(pN )
N (k)

]T

, w(k) , cǫ(k) +

η(k), ǫ(k) , [ǫ1(k), . . . , ǫNs
(k), 0, . . . , 0]

T, and η ,

[η1(k), . . . , ηN (k)]T. The term w(k) captures the errors
due to measurement noise, mapper estimation errors, and
discrepancies between the sectors’ clock biases. It is modeled
as a zero-mean Gaussian random vector with a covariance
matrix Rk given by

Rk=

[(

σ2
η + 2kc2λ2

)

INs×Ns
0Ns×(N−Ns)

0(N−Ns)×Ns
σ2
ηI(N−Ns)×(N−Ns)

]

. (6)

B. Navigation Solution and Jacobian Re-parametrization

Given the measurement model in (5), one can solve for
the state of the navigator state using an iterative WNLS.
Since only a point solution is considered, the time argument
k will be dropped for simplicity of notation. At steady-state,
an estimate for the navigator state x̂n is obtained along
with an estimation error covariance P =

(

H
T
R

−1
H
)−1

,
where H is the Jacobian matrix evaluated at x̂n. The matrix
H can be expressed as [G 1N ], where G , [x y],
x , [x1, . . . , xN ]T, xi =

xn−xsi

‖rn−rsi
‖

, y , [y1, . . . , yN ]T,

yi =
yn−ysi

‖rn−rsi
‖

, and 1N , [1, . . . , 1]
T. The vectors x and

y can be re-parameterized by the bearing angle θi between
the navigator and the ith BTS, as shown in Fig. 6(a). Hence,
x = [cos θ1, . . . , cos θN ]T and y = [sin θ1, . . . , sin θN ]T.

C. Optimal Performance in the Presence of Sector Mismatch

In this subsection, a lower bound on the determinant of
the estimation error covariance is derived for the case of
pseudorange measurements with a measurement covariance
matrix given in (6). For identically distributed measurement
noise, i.e., R = σ2

IN×N , where R is the measurement noise
covariance and σ2 is the measurement noise variance, the
BTS configuration that achieves the minimum determinant
of the estimation covariance is when the line-of-sight (LOS)
vectors from the receiver to the N ≥ 3 BTSs form a
regular polyhedron around the receiver [22]. The angles

{θi}
N
i=1 corresponding to this configuration are given by

{θi =
2π
N
i+ θ0}

N
i=1, where θ0 is an arbitrary offset angle. In

the presence of sector mismatch, the measurement noise is
not identically distributed anymore. In this case, the optimal
configuration is relaxed so that the LOS vectors from the
receiver to the set of Ns ≥ 3 BTSs with sector mismatch
form a regular polygon and the LOS vectors to the remaining
N − Ns ≥ 3 BTSs with no sector mismatch also form
another regular polygon. This configuration can be described
by

θi =

{ 2π
Ns

i+ θ′0, i = 1, . . . , Ns,
2π

N−Ns
(i −Ns) + θ0, i = Ns + 1, . . . , N,

(7)

where θ′0 is an arbitrary offset angle, as shown in Fig. 6(b).

BTS1

θ1

θ2

θ3
x

y

1

BTS2

x

y

(a) (b)BTS3

θ
′

0

θ0

Fig. 6. (a) Re-parametrization of the unit line-of-sight (LOS) vectors by
the bearing angles. (b) Optimal distribution of the BTSs around the receiver
(red: BTSs with sector mismatch, gray: BTSs with no sector mismatch).

For a measurement covariance Rk given in (6), the infor-
mation matrix M = P

−1 = H
T
R

−1
H is given by

M =





xT
R

−1
k x xT

R
−1
k y xT

R
−1
k 1N

ȳT
R

−1
k x̄ yT

R
−1
k y yT

R
−1
k 1N

1
T

NR
−1
k x 1

T

NR
−1
k y 1

T

NR
−1
k 1N



 .

Given the configuration in (7) and the following properties
for this configuration [22]

∑L
l=1 cos

2 θl =
∑L

l=1 sin
2 θl =

L
2 , (8)

∑L
l=1 cos θl sin θl =

∑L
l=1 cos θl =

∑L
l=1 sin θl = 0, (9)

the elements of M can be found according to

xT
R

−1y =

Ns
∑

i=1

cos θi sin θi
σ2
η + 2kc2λ2

+

N
∑

j=Ns+1

cos θj sin θj
σ2
η

= 0,

xT
R

−1
1N =

Ns
∑

i=1

cos θi
σ2
η + 2kc2λ2

+

N
∑

j=Ns+1

cos θj
σ2
η

= 0,

xT
R

−1x =

Ns
∑

i=1

cos2 θi
σ2
η + 2kc2λ2

+

N
∑

j=Ns+1

cos2 θj
σ2
η

=
Ns

2
(

σ2
η + 2kc2λ2

) +
N −Ns

2σ2
η

,

1
T

NR
−1

1N =

Ns
∑

i=1

1

σ2
η + 2kc2λ2

+

N
∑

j=Ns+1

1

σ2
η

=
Ns

σ2
η + 2kc2λ2

+
N −Ns

σ2
η

,

yT
R

−1y = xT
R

−1x, yT
R

−1
1N = xT

R
−1

1N .
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Hence, the information matrix for the BTS configuration in
(7) can be expressed as M = 1

σ2
eq

diag
[

1
2I2×2, 1

]

, where

σ2
eq ,

(σ2
η+2kc2λ2)σ2

η

Nσ2
η+(N−Ns)2kc2λ2 . Subsequently, given that (7)

is the optimal configuration, the optimal estimation error
covariance under sector clock bias discrepancies is

P
⋆ , diag

[

P
⋆
x,y,

(

σ⋆
cδtr

)2
]

= σ2
eqdiag [2I2×2, 1] , (10)

In order to demonstrate the result in (10), Monte Carlo (MC)
simulations were conducted for several Ns and k values.
The logarithm of the determinant of each resulting position
estimation error covariance Px,y , namely log |Px,y| were
plotted along with log

∣

∣P
⋆
x,y

∣

∣ obtained in (10). A surface plot
of log

∣

∣P
⋆
x,y

∣

∣ and the MC simulation results for log |Px,y| are
shown in Fig. 7.

Ns k

k k

Theoretical lower bound log
∣

∣

∣

∣

P
⋆
x,y

∣

∣

∣

∣

Monte Carlo simulations

Ns = 5

Ns = 9

(a)

(b)

(d)(c) Ns = 7

log |Px,y|:

Fig. 7. (a) Surface plot of log
∣

∣P
⋆
x,y

∣

∣ as a function of Ns and k. (b) Plots of
log |Px,y| for 500 MC simulations along with the theoretical lower bound
log

∣

∣P
⋆
x,y

∣

∣. Simulation parameters: N = 12, σ2
η = 4 m2, and λ = 13 ns.

The following can be concluded from these simulations.
First, the expression in (10) is indeed the expression for
the optimal estimation error covariance since log

∣

∣P
⋆
x,y

∣

∣ ≤
log |Px,y| across all Monte Carlo runs. This validates the
optimality of the configuration described in (7) with respect
to minimizing the determinant of the estimation error co-
variance. Second, for a fixed Ns < N , log

∣

∣P
⋆
x,y

∣

∣ becomes
almost constant after five to ten time-steps and converges to
a constant value that is calculated to be lim

k→∞
log

∣

∣P
⋆
x,y

∣

∣ ≈

log

[

4
(

σ2
η

N−Ns

)2
]

. The same expression is obtained when

the navigator uses only the measurements from the N −Ns

BTSs with no sector mismatch to estimate its state. This is
attributed to the fact that the variance of the error in the
measurements coming from the BTSs with sector mismatch
is an affine function of time (cf. (6)). The uncertainty in these
measurements will eventually become so large that these
measurements will be “almost neglected” by the estimator.
Moreover, the rate of increase of log

∣

∣P
⋆
x,y

∣

∣ is proportional to

− log
[

1− Ns

N
+

σ2
η

2kc2λ2

]

, and for relatively large k, this rate

becomes proportional to − log
[

1− Ns

N

]

, which approaches
∞ as Ns approaches N . It is therefore imperative to have
at least one BTS with no sector mismatch in order for the
estimation error covariance to be bounded.

V. EXPERIMENTAL RESULTS

Navigation using the proposed mapper/navigator frame-
work discussed in Section II was tested experimentally with
the cellular CDMA SDR developed in [3]. For this purpose,
a mapper was equipped with a high-gain tri-band cellular
antenna and a surveyor-grade Leica GPS antenna. A DJI
Matrice 600 unmanned aerial vehicle (UAV) was used as
the navigator, which was equipped with a consumer-grade
800/1900 MHz cellular antenna and a small consumer-grade
GPS antenna to discipline the on-board oscillator. The GPS
and cellular signals on the mapper side were simultaneously
down-mixed and synchronously sampled via a dual-channel
universal software radio peripheral (USRP) driven by a GPS-
disciplined oscillator (GPSDO). The cellular signals on the
navigator side were down-mixed and sampled by a single-
channel USRP also driven by a GPSDO. The cellular re-
ceivers were tuned to a 883.98 MHz carrier frequency, which
is a channel allocated for the US cellular provider Verizon
Wireless. Samples of the received signals were stored for
off-line post-processing. The GPS signal was processed by
a Generalized Radionavigation Interfusion Device (GRID)
SDR [23] and the cellular CDMA signals were processed
by the LabVIEW-based SDR proposed in [3]. The ground-
truth reference for the navigator trajectory was taken from
the UAV’s on-board navigation system, which uses GPS,
inertials, and other sensors. Fig. 8 shows the SOP BTS
environment in which the mapper and navigator were present
as well as the experimental hardware setup.

BTS 1

BTS 2

CDMA

Embedded

Storage

Navigator

Ettus

Mapper

GPS

CDMA
Antenna

National

USRP RIO

Storage

PC
+

North

East

Instruments

USRP

Antenna

PC +

E312

Antenna

Fig. 8. SOP BTS environment and experimental hardware setup.

Over the course of the experiment, the mapper and the nav-
igator were listening to the same 2 BTSs of which the posi-
tion states were mapped prior to the experiment according to
the framework discussed in [24]. The mapper was stationary
during the experiments and was estimating the clock biases
of the 2 known BTSs. In the absence of sector mismatch, the
measurement noise variance for the mapper and navigator
was calculated according to (2). Since only two BTSs were
available for processing, an extended Kalman filter (EKF)
framework was adopted (for observability considerations)
to estimate the navigator’s state. The navigator’s position
and velocity states were assumed to evolve according to
velocity random walk dynamics and the clock bias and clock
drift dynamics were modeled as a double integrator, driven
by noise as discussed in [7]. The navigator was assumed
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to be equipped with an oven-controlled crystal oscillator
(OCXO) [17]. Two scenarios were tested in order to evaluate
the proposed error model. In the first scenario, the mapper
was forced to listen to a different sector of BTS1 than the
navigator; however, the measurement noise covariance was
not modified to compensate for the discrepancy introduced.
The second scenario is similar to the first, except that the
measurement noise covariance was modified to account for
the sector clock bias discrepancy, as defined in (6). The
navigator’s true trajectory and estimated trajectory for each
scenario are shown in Fig. 9. The position root-mean-square
error (RMSE) for scenario 1 was found to be 23.99m, with a
maximum position error of 38.93m and a standard deviation
of 11.24m. For scenario 2, the position RMSE was found to
be 13.48m with a maximum position error of 31.98m and
a standard deviation of 5.19m. Fig. 9 shows a significant
improvement in the estimation performance when the sector
clock bias error model identified in this paper is used, which
is reflected in a reduction of around 11m in the RMSE, 6m
in the standard deviation, and 7m in the maximum error.

True trajectory

Scenario 1

Scenario 2

Total trajectory: 512m

North

East

Trajectory estimates:

Fig. 9. Navigator’s true and estimated trajectories.

VI. CONCLUSION

This paper studied the discrepancy between the clock
biases of different sectors of the same BTS cell. This
mismatch is harmful if it is unmodeled and accounted for
appropriately in the navigation framework, should cellular
signals be exploited for navigation, as it could result in
errors on the order of tens of meters in the agent’s position
estimate and tens of nanoseconds in the agent’s clock bias
estimate. A stochastic dynamic model for this mismatch
was identified and validated experimentally. The navigation
performance under such error was analyzed by deriving the
estimation error covariance with the minimum determinant,
which was demonstrated against MC simulations. Moreover,
experiments with a navigating UAV and a stationary mapper
were conducted to test the navigation performance in two
scenarios: (i) presence of discrepancies but without com-
pensation and (ii) presence of discrepancies with compen-
sation through the model derived in this paper. A reduction
of approximately 11m in the UAV’s position RMSE was
achieved by compensating for the discrepancies with the
model identified in the paper.
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