
Local Synchronization of Sampled-Data Systems on One-Parameter Lie
Subgroups

Philip James McCarthy Christopher Nielsen

Abstract— We present a distributed nonlinear control law
for synchronization of identical agents on one-parameter Lie
subgroups. If the agents are initialized sufficiently close to one
another, then synchronization is achieved exponentially fast.
The proof does not use Jacobian linearization, instead the local
nature of our result stems from our use of exponential coordi-
nates on a matrix Lie group. We characterize all equilibria
of the network and provide a characterization of deadbeat
performance for a complete connectivity graph.

I. INTRODUCTION

Systems on matrix Lie groups are common in engineering.
Rotational dynamics, such as those of UAVs, evolve on
SO(3) or SO(2); if translational dynamics are also consid-
ered, they evolve on SE(3) [1] or SE(2) [2], respectively.
Mobile ground robots can be modeled on SE(2), and quan-
tum systems on SU(n) [3], [4]. The celebrated Kuramoto
model of oscillator network evolves on the circle [5], which
is isomorphic to SO(2).

The study of control theory on Lie groups began as early as
the 1970s. The controllability of such systems was addressed
in [6] and [7]; the latter also addressed observability and
realization theory. We refer the reader to [8] for a more recent
comprehensive treatment of control theory on Lie groups.
Control theory on Lie groups differs from classical control
because the state space is not a vector space. In the nonlinear
context, such systems are usually controlled using differential
geometric techniques, i.e., using coordinate charts on the Lie
group to represent the system dynamics in local coordinates
as systems in a vector space. Consequently, singularities arise
from the choice of local coordinates as opposed to being
intrinsic to the system’s dynamics.

Control on Lie groups has also been treated globally,
for example, motion tracking in SE(3) [9], the control of
UAV [10] and spacecraft [11] orientation on SO(3), and the
synchronization of networks of rigid bodies on SE(3) [12].

A framework for coordinated motion on Lie groups was
developed in [13], where the synchronization problem that
we consider is a special case of what the authors call
biinvariant coordination. However, synchronization has been
studied mostly for specific Lie groups, such as SE(3) [12].
The Kuramoto model was extended to U(n) in [14].

The sampled-data setup, i.e., a continuous-time plant and
a discrete-time controller, is ubiquitous in applied con-
trol systems. In practice, controllers are often designed in
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continuous-time and it is assumed that the sampling pe-
riod is small enough that the sampled-data behaviour will
adequately match the theoretical continuous-time behaviour.
But, in general, such setups are not guaranteed to even be
stable for arbitrary sampling periods [15].

In the LTI case, the trajectory of the sampled-data sys-
tem has an easily computed analytic solution. But closed-
form solutions to the sampled discrete-time dynamics of
nonlinear systems do not exist, in general. Right invariant
systems on matrix Lie groups are an exception, in that
their sampled discrete-time time dynamics have closed-form
solutions [16]. The closely related class of bilinear systems
has received some attention in the discrete-time [16] and
sampled-data settings [17]. In [18], passivity was used to
achieve synchronized path-following for a class of nonlinear
systems for small sampling periods. Passivity was also used
to achieve synchronization under sampling for a network
of Kuramoto-like oscillators in [19]. Synchronization of
networks of harmonic oscillators under sampling with a time-
varying period was investigated in [20].

We present a discrete-time control law that achieves syn-
chronization for a sampled-data network of identical agents
on one-parameter Lie subgroups with driftless dynamics.
Networks of oscillators, which evolve on SO(2), are an
example of such systems. If the agents are initialized suffi-
ciently close to one another, then synchronization is achieved
exponentially fast. We consider one-parameter subgroups
to simplify analysis and facilitate discussion. We extend
our results in the currently under-review paper [21]. These
extensions include synchronization on any m-dimensional
matrix Lie group and weighted connectivity graphs.

A. Notation and Terminology

Given N ∈ N, let NN := {1, . . . , N}. Given a matrix
M ∈ Cn×n, M> is its (non-Hermitian) transpose. The
Euclidean norm of x ∈ Cn is written ‖x‖; similarly, the
induced Euclidean norm of M ∈ Cn×n is denoted by ‖M‖.
Let 1n ∈ Rn and 0n ∈ Rn denote the column vector of ones
and zeros, respectively. Let 0m×n ∈ Rm×n denote the matrix
of zeros. Given z ∈ C, let z∗ denote its complex conjugate.
Let R− denote the set of nonpositive real numbers.

Unweighted, directed graphs are used to model communi-
cation constraints between agents. A graph G is a pair (V, E)
consisting of a finite set of vertices V = NN and a set of
edges E ⊆ V ×V . Vertex i’s neighbour set Ni := {j ∈ NN :
(i, j) ∈ E}. If agent i has access to its relative state with
respect to agent j, then (i, j) ∈ E . We assume that G has no
self-loops.
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II. SAMPLED-DATA SYNCHRONIZATION PROBLEM

We consider a network of N controlled agents, each
modelled by the differential equation

Ẋi = Xi

 m∑
j=1

Bi,jui,j

 , i ∈ NN . (1)

Here Xi ∈ G where G ⊂ GL(n,C) is an m-dimensional
connected matrix Lie group over the complex field C which
includes, as a special case, real matrix Lie groups. The
matrices Bi,j are elements of the Lie algebra g, which is a
vector space over a field F equal to either C or R, associated
with G, and ui = (ui,1, . . . , ui,m) ∈ Fm is the control input.
Note that the Lie algebra of a complex Lie group G may
in fact be a real vector space. For example, the Lie algebra
su(2) of the complex Lie group SU(2) is a vector space
over the field of reals despite its vectors being matrices with
possibly non-real entries. Equation (1) is a kinematic model
of a system evolving on a matrix Lie group G. Each agent
is assumed to be fully actuated in the sense that

(∀i ∈ NN ) spanF {Bi,1, . . . , Bi,m} = g.

Under this assumption, without loss of generality, we take
the system (1) to be driftless since the inputs ui, i ∈ NN ,
can be chosen to cancel any drift vector field. We are
interested in the sampled-data control of this multi-agent
system in which each agent’s control law is implemented
on an embedded computer, which we explicitly model using
the setup in Figure 1. The blocks H and S in Figure 1 are,
respectively, the ideal hold and sample operators. Sample
and hold represent A/D and D/A conversion, respectively.
The following assumption is made throughout this paper.

Fig. 1: Sampled-data agent on a matrix Lie group G.

Assumption 1. All sample and hold blocks operate at the
same period T > 0 and the blocks are synchronized for the
multi-agent system (1). J

Under Assumption 1, letting Xi[k] := Xi(kT ) and
ui[k] := ui(kT ), the discretized dynamics of each agent are

X+
i = Xi exp

T m∑
j=1

Bi,jui,j

, i ∈ NN (2)

which is an exact discretization of (1). For each i ∈ NN ,
define Ωi :=

∑m
j=1Bi,jui,j ∈ g. Then the discrete-time

dynamics can be compactly expressed as

X+
i = Xi exp (TΩi), i ∈ NN . (3)

A. The Synchronization Problem

Given a network of N agents with kinematic dynamics (3),
we define the error quantities Eij := X−1i Xj , i, j ∈ NN .
Observe that Eij = I if, and only if, Xi = Xj . The error
matrix Eij is called right invariant [22] since, for all X ∈
G, (XXi)

−1(XXj) = X−1i Xj . Since the class of systems
considered has G for its state space, which is generally not a
vector space, we do not use Xi −Xj as a measure of error.
Local Synchronization on Matrix Lie Groups : Given
a network of N agents with continuous-time dynamics (1),
sampling period T > 0 and an unweighted, connected com-
munication graph G = (V, E), find, if possible, distributed
control laws Ωi, i ∈ NN , such that for all initial conditions
in a neighbourhood of the identity in GN , for all i, j ∈ NN ,
Eij → I as t→∞. �

By a distributed control law we mean that for each agent
i, the control signal Ωi depends on Eij only if (i, j) ∈ E .
We propose the distributed feedback control law

Ωi :=
1

T
log


∏
j∈Ni

Eij

 1
K

 , (4)

where K ∈ R is a gain and the matrix logarithm need
not be the principal logarithm. The control law (4) does
not require agent i to know agent j’s state Xj , or even
its own state Xi, but instead requires knowledge of the
relative state Eij . The expression (4) is well-defined so long
as the product

∏
j∈Ni

Eij has no eigenvalues in R−, as
discussed in Section III. This control law is defined in global
coordinates, but we only prove local exponential stability of
the synchronized state. When the control law (4) is well-
defined, the closed-loop discrete-time dynamics are

X+
i = Xi

∏
j∈Ni

Eij

 1
K

, i ∈ NN (5)

and it follows from the definition of Eij that

E+
ij =

∏
p∈Ni

Eip

− 1
K

Eij

 ∏
q∈Nj

Ejq

 1
K

. (6)

Remark II.1. The order of multiplication in (4) need not be
common to all agents or even constant. N

This control law (4) is motivated by exponential coordi-
nates for Lie groups, classical consensus algorithms in Rn,
and the notion of Riemannian mean of rotations on SO(3),
which on a one-parameter subgroup thereof can be explicitly
computed as

∏N
i=1R

1/N
i [23].

A key advantage of direct design over emulation, is that
stability can be guaranteed at the sampling instants. This does
not necessarily imply good performance between sampling
instants, however. But in the specific case of the plant and
problem discussed in this paper, achieving synchronization
at the sampling instants implies synchronization between the
sampling instants.



Proposition II.2. If Eij [k] = Xi[k]−1Xj [k] asymptotically
approaches I as k → ∞, then Eij(t) = Xi(t)

−1Xj(t)
asymptotically approaches I as t → ∞, where Xi(t) and
Xj(t) evolve according to (1).

Proof. If Eij [k] → I , then the proposed control law (4)
satisfies Ωi[k]→ 0n×n. Let 0 < δ < T . Then

lim
k→∞

Eij(kT + δ) = lim
k→∞

exp (δΩi[k])
−1
Eij [k] exp (δΩj [k])

= lim
k→∞

exp (δΩi[k])
−1

lim
k→∞

Eij [k] lim
k→∞

exp (δΩj [k])

= I3 = I.

Since δ is arbitrary, this implies that Eij(t)→ I .

Proposition II.2 means that asymptotically stabilizing the
set where Eij = I , for all i, j ∈ NN , at the sampling
instants is sufficient to solve the synchronization problem.
Thus, we can conduct all analysis in the discrete-time setting
and do not rely on T being sufficiently small. We impose the
following assumption, which greatly simplifies analysis.

Assumption 2. For all i, j ∈ NN , we have Eij ∈ H, for
some one-parameter subgroup H of G. J

III. PRELIMINARIES

A. Functions of matrices

For every nonsingular matrix X ∈ Cn×n there are
(infinitely many) A ∈ Cn×n such that exp (A) = X ,
see [24, Theorem 1.27]. Every such matrix A is a nonprimary
logarithm of X , which we denote by log (X). If, in addition
to being nonsingular, the matrix X has no eigenvalues in
R−, then it has a principal logarithm.

Theorem III.1 ([24, Theorem 1.31]). Let X ∈ Cn×n have
no eigenvalues in R−. There is a unique logarithm A ∈
Cn×n of X , all of whose eigenvalues lie in the strip {z :
−π < Im(z) < π}. If X ∈ Rn×n, then A ∈ Rn×n.

The unique matrix A from Theorem III.1 is called the
principal logarithm of X and is denoted by Log(X). Unlike
complex numbers, it is not possible to express log (X) as a
function of Log (X) for arbitrary non-singular matrices. If
‖X − I‖ < 1 then

Log(X) =

∞∑
k=1

(−1)k−1

k
(X − I)k. (7)

Borrowing from the definitions of complex powers of
scalars [25, Chapter III, §6] and the form of the square root
of a matrix on a Lie group [26, Lemma 2.14], we define the
Kth root of a matrix in the following way.

Definition III.2. Let X ∈ Cn×n have no eigenvalues in R−.
Given K ∈ R, the principal Kth root of X is

X
1
K := exp

(
1

K
Log(X)

)
. (8)

If X ∈ G, then X1/K ∈ G, due to the Lie correspondence
Log : G→ g. We allow only K ≥ 1.

Remark III.3. If X1/K is well-defined, then for K ∈ N,(
X

1
K

)K
= exp

(
K∑
i=1

1

K
Log(X)

)
= exp (Log(X)) = X.

Thus, in this case, X = X1/KX1/K · · ·X1/K (K times),
which is the intuitive notion of a Kth root. The somewhat
indirect definition (8) allows for Kth roots for K ∈ R. N

Throughout this paper, we use an important algebraic
property of the logarithm of a matrix power.

Theorem III.4 ([24, Theorem 11.2]). If X ∈ Cn×n has
no eigenvalues in R−, then for α ∈ [−1, 1], we have
Log(Xα) = αLog(X).

B. Exponential Coordinates and One-Parameter Subgroups

The exponential map exp : g → G can be used to define
coordinates on G. Choose r > 0 so that (7) converges on
{X ∈ G : X = exp (A), ‖A‖ < r}, e.g., r = Log(2). Larger
values of r may be possible for specific groups. The set

U := {X ∈ G : X = exp (A), A ∈ g, ‖A‖ < r}

is an open neighbourhood of I in G in the group topology
in which Log : U → g provides an inverse. Fix a basis
{A1, A2, . . . , Am} for g. Define the isomorphism

∨ : g→ Fm, H 7→
[
t1 t2 · · · tm

]>
,

where t ∈ Fm is the unique vector for which H = t1A1 +
t2A2 + · · ·+ tmAm. We have the mapping diagram

U ⊂ G
Log // Br(0) ⊆ g

∨ // V ⊆ Fm

where Br(0) := {A ∈ g : ‖A‖ < r} is the image of U under
Log. Denote by ψ : U → V the composition ∨ ◦ Log.
The coordinates (t1, . . . , tm) ∈ Fm are the exponential
coordinates of the first kind on G.

Thus, a neighbourhood of the identity in a Lie group G
can be identified with an open subset of the vector space
Fm containing the origin. We hereinafter refer to these
coordinates as simply “exponential coordinates”.

Definition III.5 (One-Parameter Subgroup). Given a Lie
group G, a one-parameter subgroup is a continuous mor-
phism of groups φ : R→ G.

Although this terminology is standard, it is technically the
image of the map φ that is a subgroup of G. The subgroup
H := φ(R) ⊂ G is a one-dimensional manifold and there
exists a unique H ∈ g such that φ(θ) = exp(θH) for all
θ ∈ R [26, Theorem 2.13].

In the case of a one-parameter subgroup H, exponential
coordinates admit a local identification of H∩U with an open
interval of R containing the origin. Fix a basis {A1, . . . , Am}
of g. If H ∈ g, then there exists a unique t ∈ Fm such that
H =

∑
tiAi. Therefore, the exponential coordinate map is

simplified and is given by ψ(X) = θt = θ
[
t1 · · · tm

]>
.

That is, if X ∈ H∩U , then ψ(X) is an element of the one-
dimensional subspace spanR {t} ⊂ Fm. We can therefore
locally identify X ∈ H ∩ U with the parameter θ ∈ R.



IV. SYNCHRONIZATION

Let φ : R → G be a one-parameter subgroup, H = φ(R).
By Assumption 2, for all i, j ∈ NN , Eij ∈ H. If Xi, Xj ∈ H,
then Eij = X−1i Xj ∈ H. Let θij := φ−1(Eij).

Proposition IV.1. Any one-parameter subgroup H ⊂ G, on
which (4) is well-defined, is positively invariant for (6).

Proof. Let H ⊂ G be a one-parameter subgroup generated by
H ∈ g. Let k ∈ Z be arbitrary and suppose that for all i, j ∈
NN , Eij [k] ∈ H. Let q ∈ NN be arbitrary. By elementary
group theory

∏
j∈Nq

Eqj [k] ∈ H and therefore, by hypothe-
sis, its Kth root is well-defined. Thus, by definition of log,
exp (TΩq[k]) ∈ H. Since E+

ij = exp(−TΩi)Eij exp(TΩj),
we have Eij [k+ 1] ∈ H. Induction on the time index proves
positive invariance of H.

Note that Xi ∈ H for all i ∈ NN is merely a sufficient
condition for Eij ∈ H, for all i, j ∈ NN . Using the
exponential coordinates from Section III-B we identify each
relative error Eij ∈ H ∩ U with their scalar coordinates
θij ∈ R. The map φ is a diffeomorphism in a neighbourhood
of the identity, yielding

θ+ij =

− 1

K

∑
p∈Ni

θip

+ θij +

 1

K

∑
q∈Nj

θjq

 . (9)

For all i, j ∈ NN , Eij = E−11i E1j , so (9) can be rewritten as

θ+ij = θij −
1

K

∑
p∈Ni

(θ1p − θ1i) +
1

K

∑
q∈Nj

(θ1q − θ1j)

= θij +
1

K
(`i − `j)Θ,

where `i and `j are rows i and j, respectively, of the
Laplacian L of the communication graph G. Setting i = 1
and “stacking” the last line for all j, we obtain

Θ+ =

(
I +

1

K
(1N`1 − L)

)
Θ, (10)

where Θ :=
[
θ11 θ12 · · · θ1N

]>
. Thus, the local error

dynamics are linear. The linear dynamics (10) are (exponen-
tially) stable if and only if the matrix I + (1N`1 − L)/K
is Schur. We must therefore establish conditions on the gain
K such that all eigenvalues of I + (1N`1−L)/K are in the
open unit disc.

The Laplacian L of the graph G is positive semidefinite,
with a zero eigenvalue of algebraic multiplicity equal to the
number of connected components in G [27, Lemma 13.1.1];
the eigenvector associated with the 0 eigenvalue is 1N .

Lemma IV.2. The spectrum of 1N`1 − L equals σ(−L).

Proof. Let J be the Jordan form of L and let V ∈ CN×N
be the nonsingular matrix such that J = V −1LV , where the
first column V1 is in the span of 1N . We have

V −1(1N`1 − L)V = V −11N`1V − J. (11)

Since V1 is in the span of 1N and V −1V = I , we have
(V −11N )i = 0 for all i 6= 1. Also because V1 is in the span

of 1N , we have `1V1 = 0, so (V −11N )i = 0 for all i 6= 1.
Therefore, V −11N`1V is strictly upper triangular. Therefore,
the eigenvalues of (11) are its diagonal elements, which are
the diagonal elements of −J , which are the negatives of the
eigenvalues of L.

Lemma IV.3. The spectrum of I + (1N `1 − L)/K is the
image of 1− σ(L)/K.

Proof. The result follows from Lemma IV.2 and applying
the Spectral Mapping Theorem [24, Theorem 1.13] using
the function f : C→ C, f(x) = 1− x/K.

Since the graph is assumed to be connected, L has a simple
eigenvalue at 0. By Lemma IV.3, this eigenvalue gets mapped
to 1 in the spectrum of I + (1N`1 − L)/K.

Let λ be an eigenvalue of L and define the function f(x) =
1− x/K as in the proof of Lemma IV.3, then

f(λ) = 1− |λ|
K

ej]λ =

(
1− |λ|

K
cos(]λ)

)
− j |λ|

K
sin(]λ)

For stability, we require f(λ) to be in the open unit disc.
Since we have already addressed the single eigenvalue at
0, we assume that λ 6= 0. Straightforward arithmetic and
the quadratic formula verify that all all eigenvalues of I +
(1N`1−L)/K, except the simple eigenvalue at 1, are in the
open unit disc if K satisfies

(∀λ ∈ σ(L)\ {0}) K >
|λ|

2 cos(]λ)
=
|λ|2

2Re(λ)
.

It is possible to lower bound K as a function of the number
of agents N , using the properties of the eigenvalues of the
Laplacian of a directed graph [28].

Lemma IV.4. If K > Kmin(N), where

Kmin(N) :=


N
2 N ≤ 9,

1
8 csc2( π

2N ) sec( πN ) 10 ≤ N ≤ 18,

N − 1 N ≥ 19,

(12)

then I + (1N`1 − L)/K has a simple eigenvalue at 1 and
all others in the open unit disc.

Proof. Due to lack of space, we refer the reader to [21].

Remark IV.5. If G is symmetric, then σ(L) ⊂ [0, N ],
thus (12) in Lemma IV.4 simplifies to Kmin(N) = N/2. N

By Lemma IV.4, there is no K for which I+(1N`1−L)/K
is Schur. However, this does not preclude stability of (10),
because the eigenvalue of 1 corresponds to the dynamics of
θ11, the error of agent 1 with itself, which is identically 0.

Theorem IV.6. If the gain K of each agent’s controller (4)
satisfies (12), then the equilibrium Θ = 0N of (10) is locally
exponentially stable.

Proof. Since E11(t) = X−11 (t)X1(t) ≡ I , it immediately
follows that θ11(t) ≡ 0. Therefore the N − 1 dimensional
subspace V :=

{
Θ ∈ RN : θ11 = 0

}
is invariant under the

dynamics (10). As a result, we have

σ(I + (1N `1 − L)/K) = σ(I + (1N`1 − L)/K| V) t {1}



where I+ (1N`1 − L)/K| V is the restriction of the system
matrix in (10) to the subspace V . If the gain K of each
agent’s controller (4) satisfies (12), then by Lemma IV.4 I+
(1N `1 − L)/K| V is Schur.

Remark IV.7. Theorem IV.6 implies that there exists a
positively invariant set in H ∩ U containing the identity. N

We emphasize that Theorem IV.6 does not rely on (Ja-
cobian) linearization of the nonlinear dynamics E+

ij . The
system in exponential coordinates evolves according to linear
dynamics. The locality of the result stems from the fact that
the chart corresponding to exponential coordinates does not
cover the entire manifold G nor the submanifold H.

V. EQUILIBRIA

Since we consider kinematic models, the system is at
equilibrium if and only if every agent’s input is zero, i.e., for
all i ∈ NN , Ωi = 0n×n. We provide a characterization of all
equilibria and show that they are isolated. As in Section IV,
we can perform our analysis in the one-parameter coordinates
induced by the map φ : R→ G. By definition, φ is surjective
onto its image H, but it is not necessarily injective. However,
the restriction φ : R/ ker(φ)→ H is bijective. Let [θ] denote
the equivalence class defined by θ ∼ θ+k, for all k ∈ ker(φ).

Proposition V.1. If the controller (4) is well-defined, then the
equilibria of (6) are

(
φ−1(E11), . . . , φ−1(E1N )

)
∈ [0N ].

Proof. The sampled dynamics of each agent are given by (5).
Therefore, the system is at equilibrium if and only if for all
i ∈ NN , exp(TΩi) = I . On a one-parameter subgroup H, by
commutativity and Definition III.2, this condition becomes

I = exp(TΩi) =

∏
j∈Ni

Eij

 1
K

=
∏
j∈Ni

E
− 1

K
1i E

1
K
1j .

In one-parameter coordinates, we have

φ−1(I) =
∑
j∈Ni

(
φ−1

(
E
− 1

K
1i

)
+ φ−1

(
E

1
K
1j

))
[0] =

1

K

∑
j∈Ni

([θ1j ]− [θ1i]) =
1

K
`i[Θ],

where Θ :=
(
φ−1(E11), . . . , φ−1(E1N )

)
.

As in Section IV, we “stack” the inputs for all i, yielding

L[Θ] = [0N ]. (13)

Since G is connected, L ∈ ZN×N has rank N − 1 and its
kernel is spanned by 1N . Since (13) is homogeneous, [Θ] =
[0] is a solution. Thus all solutions to (13) are given by
[Θ] = a[1N ], a ∈ R. But, [θ11] = [0], so a = 0 (mod ker(φ)).
Therefore, the equilibria are given by Θ ∈ [0N ].

Proposition V.2. All equilibria are isolated.

Proof. If ker(φ) = {0}, then R \ ker(φ) ∼= R. Thus, [Θ] =
[0N ] simplifies to Θ = 0N .

If ker(φ) 6= {0}, then let d > 0 be the generator of ker(φ).
Then for every r ∈ [0], there exists a q ∈ Z, such that r = qd.
Therefore, if Θ,Θ′ ∈ [0N ], Θ 6= Θ′, then ‖Θ−Θ′‖ ≥ d.

VI. PERFORMANCE WITH A COMPLETE GRAPH

Proposition VI.1. If G is complete, then the ε settling time,
where ε ∈ (0, 1), is

Ts =

 Log ε

Log
(
|K−N |
K

)
 .

Proof. Using the fact that on U , we have θij + θjk = θik, if
G is complete, then the local error dynamics (9) simplify to

θ+ij =
K −N
K

θij . (14)

Therefore, the ε settling time is computed thus∣∣∣∣K −NK

∣∣∣∣k = ε =⇒ k =
Log ε

Log
(
|K−N |
K

)
Since k is a time-step, we round up to the nearest integer.

The derivative of the settling time with respect to K is

∂Ts
∂K

=
−Log(ε)N

K(K −N)
(

Log
(
|K−N |
K

))2 . (15)

If K > N , then (15) is positive, so increasing K, i.e.,
reducing the gain 1/K, delays synchronization, which agrees
with intuition. But, interestingly, if K < N , then (15) is
negative, so increasing K hastens synchronization.

Proposition VI.2. If G is complete and K = N , then
synchronization is achieved at time-step k = 1.

Proof. Setting K = N in (14), we have θ+ij = 0.

VII. SIMULATION

The Lie group SO(2) is one dimensional, thus, it is a
one-parameter subgroup of SO(n) for any n ≥ 2. SO(2) is
the group of rotations in the plane, which can be interpreted
locally as a position on the circumference of a circle. Given
an element R ∈ SO(2), its local coordinate θ ∈ R is often
called the “phase” or “angle”. The Kuramoto oscillator is a
popular model of synchronization of networks of oscillators.
We can view a Kuramoto network of N agents as a control
system, where agent i has phase θi ∈ R with dynamics

θ̇i = ui, ui = −
∑
j∈Ni

aij sin(θi − θj), (16)

where aij ∈ R is the coupling strength between agents i and
j. System (16) can be modelled as a system on a Lie group
in the form of (1), where

Ri = φ(θ) =

[
cos(θ) − sin(θ)

sin(θ) cos(θ)

]
, Ṙi = Ri

[
0 −1

1 0

]
ui.

We simulate using N = 3 and aij = 1 for all i, j ∈ NN . It
can be shown that with these parameters, that (16) achieves
phase synchronization [5]. Sampling with period T = 0.8,
we see in Figure 2 that synchronization is destroyed.
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Fig. 2: Phases of sampled Kuramoto network with T = 0.8.
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Fig. 3: Phases using proposed controller with T = 0.8.

Guided by Theorem IV.6, we simulate this network again,
with T = 0.8, using the proposed controller (4) with K =
2 > N/2 = 1.5. Figure 3 illustrates that synchronization is
achieved at T = 0.8, whereas it was lost using the naı̈vely
discretized Kuramoto coupling.

VIII. FUTURE WORK

Future work includes extending our results to agents with
dynamic models and relaxing the assumption that the agents
are fully actuated. The latter could first be addressed by
assuming that the inputs generate the Lie algebra g.

REFERENCES

[1] A. Roza and M. Maggiore, “A Class of Position Controllers for
Underactuated VTOL Vehicles,” IEEE Transactions on Automatic
Control, vol. 59, no. 9, pp. 2580–2585, 2014. 1

[2] E. Justh and P. Krishnaprasad, “Equilibria and steering laws for planar
formations,” Systems & Control Letters, vol. 52, no. 1, pp. 25–38,
2004. 1

[3] C. Altafini and F. Ticozzi, “Modeling and Control of Quantum
Systems: An Introduction,” IEEE Transactions on Automatic Control,
vol. 57, no. 8, pp. 1898–1917, 2012. 1

[4] F. Albertini and D. D’Alessandro, “Minimum time optimal synthesis
for two level quantum systems,” Journal of Mathematical Physics,
vol. 56, no. 1, 2015. 1

[5] F. Dörfler and F. Bullo, “Synchronization in complex networks of
phase oscillators: A survey,” Automatica, vol. 50, no. 6, pp. 1539–
1564, 2014. 1, 5

[6] V. Jurdjevic and H. J. Sussmann, “Control systems on Lie groups,”
Journal of Differential Equations, vol. 12, no. 2, pp. 313–329, 1972.
1

[7] R. Brockett, “System Theory on Group Manifolds and Coset Spaces,”
SIAM Journal on Control, vol. 10, no. 2, pp. 265–284, 1972. 1

[8] Y. Sachkov, “Control theory on Lie groups,” Journal of Mathematical
Sciences, vol. 156, no. 3, pp. 381–439, 2009. 1

[9] J. Park and K. Kim, “Tracking on Lie group for robot manipulators,”
in International Conference on Ubiquitous Robots and Ambient Intel-
ligence. Kuala Lumpur: IEEE, 2014, pp. 579–584. 1

[10] J. R. Forbes, “Passivity-Based Attitude Control on the Special Orthog-
onal Group of Rigid-Body Rotations,” Journal of Guidance, Control,
and Dynamics, vol. 36, no. 6, pp. 1596–1605, 2013. 1

[11] O. Egeland and J.-M. Godhavn, “Passivity-based adaptive attitude con-
trol of a rigid spacecraft,” IEEE Transactions on Automatic Control,
vol. 39, no. 4, pp. 842–846, 1994. 1

[12] Y. Igarashi, T. Hatanaka, M. Fujita, and M. W. Spong, “Passivity-based
attitude synchronization in SE(3),” IEEE Transactions on Control
Systems Technology, vol. 17, no. 5, pp. 1119–1134, 2009. 1

[13] A. Sarlette, S. Bonnabel, and R. Sepulchre, “Coordinated Motion
Design on Lie Groups,” IEEE Transactions on Automatic Control,
vol. 55, no. 5, pp. 1047–1058, 2010. 1

[14] M. A. Lohe, “Non-Abelian Kuramoto models and synchronization,”
Journal of Physics A: Mathematical and Theoretical, vol. 42, no. 39,
395101, 2009. 1
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