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Non-Concave Network Utility Maximization in Connectionless

Networks: A Fully Distributed Traffic Allocation Algorithm✩
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Abstract

This paper considers the optimization-based traffic allocation problem among multiple end points in connectionless

networks. The network utility function is modeled as a non-concave function, since it is the best description of the

quality of service perceived by users with inelastic applications, such as video and audio streaming. However, the

resulting non-convex optimization problem, is challenging and requires new analysis and solution techniques. To

overcome these challenges, we first propose a hierarchy of problems whose optimal value converges to the optimal

value of the non-convex optimization problem as the number of moments tends to infinity. From this hierarchy of

problems, we obtain a convex relaxation of the original non-convex optimization problem by considering truncated

moment sequences. For solving the convex relaxation, we propose a fully distributed iterative algorithm, which

enables each node to adjust its date allocation/ rate adaption among any given set of next hops solely based on

information from the neighboring nodes. Moreover, the proposed traffic allocation algorithm converges to the optimal

value of the convex relaxation at a O(1/K) rate, where K is the iteration counter, with a bounded optimality. At the

end of this paper, we perform numerical simulations to demonstrate the soundness of the developed algorithm.

1. INTRODUCTION

Applications and services supported by modern communication networks have diverse requirements, e.g., high

throughput and low latency. Traffic engineering (TE) has long been used to optimize the utilization of the limited

network resources so that such requirements are fulfilled. This entails developing data rate allocation algorithms and

congestion control protocols capable of maximizing a given network utility subject to network resource constraints

[1]. Many problems of recent interest arising in diverse fields can be cast as an optimization problem, and network

utility maximization (NUM) is no different.

In large-scale networks, the size of the optimization problems rapidly increases as the number of nodes and links

increase. This stimulates the necessity of developing decentralized control algorithms capable of decomposing the

high-dimensional problem into separate moderate-size subproblems that can be solved independently and locally at

various network nodes. The main idea behind such decentralized control algorithms is to distribute the computations

required for the solution of the optimization problem among various nodes [2]-[4]. This approach exploits local

information available at each node. Nevertheless, information exchange among different nodes is inevitable since

distinct data flows share the same network resources. Therefore, distributed optimization approaches not only aim at

decomposing the problem, but also minimizing the communication overhead.
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In the benchmark work by Kelly et. al. [1], the optimization of the utility of a large-scale broadband network

with limited bandwidth resources is considered. The authors propose two classes of rate control algorithms by casting

the NUM problem in both primal and dual forms. In [2], a family of decentralized sending rate control laws are

proposed to steer the traffic allocation to an optimal operating point while avoiding congestion. A non-linear control

theoretic approach is employed in [3] to derive adaptation laws that enable each node to independently distribute its

traffic optimally among any given set of next hops. More recently, reference [4] considers the NUM, derives its dual

problem, and uses a distributed gradient-based approach for its solution. A similar approach appears in [5]. In spite of

the existence of a relatively dense literature on NUM, most available results consider only the optimization of concave

utility functions. However, it has been shown that the reward experienced by the users of real-time applications, such

as video and audio streaming, cannot be accurately modeled using concave functions. Reference [6] shows that the

video quality perceived by users on a mobile device is a non-decreasing and step-like function with respect to the data

rate, because users have almost similar quality of experience on 3 Mbps and 1 Mbps [6]. This observation motivates

considering the optimization of non-concave network utility functions, which constitutes a main focus of this paper.

Non-concave NUM is a non-convex optimization problem; hence, it is difficult to solve. Nevertheless, there exist

some attempts in the literature for deriving algorithms that provide near-optimal solutions. Reference [7] develops a

centralized algorithm that solves the NUM problem with polynomial utilities. Reference [8] determines the conditions

under which the standard distributed dual-based algorithm can still converge to the global optimal solution with non-

concave utilities.

This paper develops a distributed iterative algorithm for the optimization of a generalized class of non-concave

network utility functions that capture a wide variety of real-world applications. In particular, we focus on connection-

less networks, where each node is required to distribute its traffic among a set of next hops without prior arrangement

so that the network utility is maximized. We handle the challenge posed by the non-convexity of the optimization

problem by developing a sequence of convex relaxations whose solution converges to that of the original problem. We

use results on polynomial optimization and moment sequences to derive the convex relaxations [9, 10]. Furthermore,

we propose an iterative primal-dual algorithm [11] that enables each node to distribute its traffic among the set of next

hops. We emphasize on the distributed nature of the algorithm, where each node uses its local information and need

not communicate with other nodes except its direct neighbors.

2. NOTATION

Throughout this paper, the traffic flows are assumed to be described by a fluid flow model, and the only resource

constraint taken into account is link bandwidth. In the remainder of this paper, call and flow will be used interchange-

ably.

Let N denote the set of nodes in the network, and L ⊂ N × N denote the set of links connecting particular

pairs of nodes. We assume that each link l ∈ L has a finite capacity cl > 0. Moreover, let S , {s1, s2, . . . , sn} and

D , {d1, d2, . . . , dn} denote respectively the set of source nodes and the set of destination nodes contained in N such

that S ∩ D = ∅. The intended destination for each source node si is di for i ∈ I , {1, . . . , n}, i.e., without loss of

generality, we assume that there is a one-to-one correspondence between S and D, and I denotes the set of different

flow (call) types in the network. Given source node s ∈ S, letLs denote the set of links connected to it. Let the sending

data rate through link l ∈ Ls be xout
s,l

, and all such sending data rates be xout
s , [xout

s,l
]l∈Ls

. We define the aggregate

sending data rate of s ∈ S be denoted by rs ,
∑

l∈Ls
xout

s,l
. Also, let B , N \ (S ∪D) = {b1, b2, . . . , bm} denote the set

of forwarding nodes contained in N . Given b ∈ B, let Ib be the set of flows visiting node b, and Lb ⊆ L denote the

set of links connected to it. SupposeLout
b,i
⊆ Lb denote the set of outgoing links from b associated with calls (flows) of

type i ∈ Ib. Similarly, let Lin
b,i
⊂ Lb denote the set of incoming links to b associated with calls (flows) of type i ∈ Ib.

Furthermore, given b ∈ B, for each i ∈ Ib and l ∈ Lout
b,i

, let xout
i,b,l

denote the data rate of call type i ∈ Ib, associated

with si and di, forwarded from node b through link l ∈ Lout
b,i

. The above notation is exemplified in Fig. 1 for the case

of allocating flows associated with two source nodes, s1 and s2, and two destination nodes, d1 and d2.

Given b ∈ B and l ∈ Lb, let Iin
b,l
⊂ I be the set of call types forwarded to node b through link l, and Iout

b,l
⊆ Ib

be the set of call types forwarded from node b through link l. Moreover, given node b ∈ B and link l ∈ Lb, let el(b)

denote the adjacent node to b through link l. We summarize all the notation for the communication network in Table

I for the convenience of the reader.
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Figure 1: Notation example.

Now, given node b ∈ B, let the vector containing all flow rates departing from node b through link l ∈ Lb be

denoted by xout
b,l

, [xout
i,b,l

]i∈Iout
b,l
∈ R

|Iout
b,l
|

+ , where |.| denotes the cardinality of a set.

Given node b ∈ B and l ∈ Lb, let 1b,l ∈ R1×|Iout
b,l
| be the row vector with all elements equal to 1. In a similar way, let

δb,l ∈ R1×|Iin
b,l
| be the row vector with all elements equal to 1 if link l is bidirectional, and 0 otherwise.

Also, let ‖.‖ denote the Euclidean norm. Given a convex set A, let IA(.) denote the indicator function of A, i.e.,

IA(ω) = 0 for ω ∈ A and equal to +∞ otherwise, and let PA(ω) , argmin{‖υ − ω‖ : υ ∈ A} denote the projection

ontoA. Given a closed convex setA, we define the distance function as dA(ω) , ‖PA(ω) − ω‖. Also, In is the n × n

identity matrix.

3. PROBLEM FORMULATION

Consider a communication network consisting of a set of source nodes S. Each source node s ∈ S has a local

utility function Us(rs) : R+ → R+ of its sending data rate rs. For a fixed order ℓ > 0, the utility function is defined as

a general non-concave polynomial-like function in the form

Us(rs) ,

ℓ
∑

j=0

ps, j(rs)
j/ℓ. (1)

This particular form of objective functions is so flexible that it can be used to approximate a wide variety of functions

arising in practical applications such as step functions for the video streaming case [5].

The objective of this paper is to design a data rate allocation algorithm for the communication network such that

the utilization of resources is maximized, while satisfying the network resource constraints. The network resource

constraints considered in this paper include link capacity constraints, Minimum Rate Guaranteed and Upper Bounded

Rate Service (MRGUBRS) requirements, and flow conservation constraints through nodes.

More precisely, for any link l ∈ L, the aggregated flows going through this link should not exceed the link capacity.

For example, in Fig. 1, the bidirectional link l3 is shared by flows belonging to two source nodes. The data rates xout
1,b2,l3

and xout
2,b3,l3

going through this link should satisfy that

xout
1,b2,l3

+ xout
2,b3,l3

≤ cl3 . (2)
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Table 1: LIST OF NOTATION

Notation Desciption

N The set of nodes in the network.

S The set of source nodes.

B The set of forwarding nodes.

el(b) The node connected to node b through link l.

Ls (Lb) The set of links connected to node s (node b).

Lout
b,i

(Lin
b,i

) The set of outgoing (incoming) links from (at) node b

for flows of type i ∈ I.

I The set of different flow types.

Ib The set of flows visiting node b.

Iout
b,l

(Iin
b,l

) The set of flows forwarded from (to) node b through link l.

rs The aggregate data rate of source node s.

xout
s,l

The sending data rate of source node s ∈ I through link l.

xout
s The vector consisting of xout

s,l
for each link l ∈ Ls.

xout
i,b,l

The data rate of flows belonging to source node si forwarded from node b

through link l.

xout
b,l

The vector consisting of xout
i,b,l

for each type of flow i ∈ Iout
b,l

.

For the unidirectional link l2, node b2 forwards data rate xout
2,b2,l2

through this link. Then, xout
2,b2,l2

is upper bounded by

cl2 .

Given flows of type i ∈ I, recall that flows of type i ∈ I is associated with source/destination pairs si/di. For

fixed link l ∈ Lsi
, the corresponding data rate xout

i,l
is determined at source node si ∈ S and multiple paths are available

for transporting these flows. More precisely, each node on these paths divide incoming traffic into available links by

striving to conserve the flows belonging to each source node (i.e., aims at no losses) and to avoid link congestion. In

Fig. 1, node b3 tries to satisfy

xout
1,b2,l3

= xout
1,b3,l4

+ xout
1,b3,l7
. (3)

Finally, flows belonging to each source node s ∈ S is assumed to be of the MRGUBS category, i.e., for some

0 < ξs < ζs and s ∈ S,

ξs ≤ rs ≤ ζs. (4)

Now, considering the above constrains and assumptions, we can formulate the problem of optimal traffic allocation

as follows:

maximize
∑

s∈S

Us(rs), (5)

subject to the network capacity constraints 5

∑

i∈Iout
b,l

xout
i,b,l +

∑

i∈Iin
b,l

xout
i,el(b),l ≤ cl, l ∈ Lb, b ∈ B,

the flow conservation constraints at each node
∑

l∈Lin
b,i

xout
i,el(b),l −

∑

l̃∈Lout
b,i

xout

i,b,l̃
= 0, i ∈ Ib, b ∈ B,

the non-negativity of forwarded data rates constraints

xout
i,b,l ≥ 0, i ∈ Iout

b,l , l ∈ Lb, b ∈ B,

5Note that the formulation in this paper allows for the existence of bidirectional links.
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and the MRGUBS requirements

(xout
s , rs) ∈ Xs, s ∈ S,

where the set Xs is defined as

Xs ,

{

(xout
s , rs) ∈ R

|Ls |
+ × R+ : ξs ≤ rs ≤ ζs, rs =

∑

l∈Ls

xout
i,l

}

.

Most literature in the context of NUM considers maximizing concave diminishing functions. However, modern

communication networks are dominated by various inelastic applications, such as internet video and audio streaming.

Users’ satisfaction for these applications cannot be modeled with concave functions. It is better to be described as

non-concave functions. For instance, the utility for voice applications is a sigmoidal function [7]. Thus, we consider

users’ perceived qualification of Cost of Service (CoS) and model the utility function as a general class of non-concave

polynomial functions. Moreover, the challenges of attempting to solve the resulting traffic allocation problem (5) are

two-fold. First, the optimization problem obviously constitutes a non-convex problem since its objective function

is non-concave. Second, global information on fast timescale events, as required in the above formulation, is not

generally available. The latter fact stimulates the necessity of developing a distributed algorithm that converges to the

optimal data rate allocation of the non-convex NUM problem.

4. MAIN RESULTS

In this section, we present our approach used to overcome the challenges opposed by the non-convexity of the

optimization problem. In particular, we first present a convex relaxation to the non-convex NUM problem (5). This

convex relaxation is chosen from a hierarchy of optimization problems whose optimal value converges to the optimal

value of problem (5) as the number of moments tends to infinity. For solving the convex relaxation problem, we

propose a distributed primal-dual algorithm (DPDA), which enables all nodes to update their data rate allocation

solely using immediate local information. A salient feature of the proposed algorithm is that the iterate sequence

converges to the optimal solution at a O(1/K) rate, where K is the iteration counter, with a bounded optimality.

4.1. NUM convex relaxation

The non-convexity of the optimization problem (5) opposes challenges for us to analysis and solve the traffic

allocation problem. However, the following proposition provides a hierarchy of optimization problems whose optimal

value converges to the optimal value of the non-convex optimal problem (5). For solving the traffic allocation problem,

we choose a convex one from this hierarchy of problem by truncating the number of moments to the finite case. This

proposition is one of the main results of this paper.

Proposition 1. The solution of the following optimization problem converges to the solution of the non-convex NUM

problem (5) with non-concave user utility functions of the form (1) as the positive parameter α → ∞. Moreover,

problem (6) is convex if α ≤ ℓ.

maximize
x

∑

s∈S

pT
s ms

subject to ms,0 = 1, s ∈ S,

M(0, α,ms) � 0, s ∈ S,

βsM(0, α − 2,ms) −M(2, α,ms) � 0,

ms, j ≤ (rs)
j/ℓ, j ∈ {1, . . . , α}, s ∈ S,

xout
s,l ≤ cl, l ∈ Ls, s ∈ S,

1b,lx
out
b,l + δb,lx

out
el(b),l ≤ cl, l ∈ Lb, b ∈ B,

Bx = 0,

(xout
s , rs) ∈ Xs, s ∈ S,

xout
b,l � 0, l ∈ Lb, b ∈ B.

(6)
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The objective function is a linear function of variables ms = [ms, j] j∈{0,...,α} with parameters ps = [ps, j] j∈{0,...,α}. The

decision variable x of problem (6) is a vector consisting of the data rate xout
s,l

, rs and ms for each s ∈ S, and the sending

data rate xout
b,l
, b ∈ B for each l ∈ L. More precisely, the dimension of vector x is

∑

s∈S(|Ls|+α+2)+
∑

b∈B

∑

i∈Ib
|Lout

b,i
|.

In the constraints, B ∈ R(
∑

b∈B |Ib|)×
(

∑

s∈S(|Ls |+α+2)+
∑

b∈B

∑

i∈Ib
|Lout

b,i
|
)

denotes the edge-node-like incidence matrix, i.e., the

entry B(s,b,l),ω, corresponding to flow-node-link triplet (s, b, l) ∈ S × B × L and ω ∈ x, equal to 1 if the data rate ω of

flows belonging to source node s is forwarded from node b through link l, −1 if the the data rate ω is received at node

b, and 0 otherwise. βs is a known upper bound on the aggregate data rate of source s ∈ S, and the moment matrices

M ∈ Rh+1 × Rh+1 are of the form

M(k, k + 2h,ms) =





























ms,k ms,k+1 ... ms,k+h

ms,k+1

...
... ms,k+h+1

...
...
...
...

ms,k+h ... ... ms,k+2h





























. (7)

Proof. The proof is shown in Appendix A.

Hereafter, we use α = ℓ. It is worth mentioning that the result of Proposition 1 holds for the even order ℓ. Nonethe-

less, similar results can be derived for the odd ℓ, which is omitted for brevity. The proposed problem (6) constitutes a

convex optimization problem, because it maximizes the sum of linear functions subject to convex constraints. There-

fore, it can be easily solved if global information is available. Nevertheless, the objective of this paper is to solve this

problem in a distributed fashion that leverages per hop information available at each node.

Before moving on, we introduce some notation that renders the formulation of (6) conveniently compact. For

every s ∈ S, let the setAs be defined as

As = {(x
out
s ,ms, rs) ∈ R

|Ls |
+ × Rℓ+1 × R+ : ms,0 = 1,

M(0, ℓ,ms) � 0, βsM(0, ℓ − 2,ms) −M(2, ℓ,ms) � 0,

xout
s,l ≤ cl, l ∈ Ls,ms, j ≤ (rs)

j/ℓ, j ∈ {1, . . . , ℓ}, (xout
s , rs) ∈ Xs}.

(8)

4.2. Algorithm DPDA

The constrains set of convex relaxation (6) consists of local constraints, e.g., capacity constraints and global

constraints, e.g., flow conservation constraints through nodes. The existence of global constraints renders difficulty

for us to solve problem (6) in a distributed fashion. However, the primal-dual method, proposed by Chambolle and

Pock in [14] for solving convex-concave saddle point problems makes it possible. This algorithm can be adapted to

solve the multi-agent consensus optimization problem as discussed in [11]. We also use the distributed primal-dual

algorithm in [11] to solve our traffic allocation problem (6). We present the resulting iterative algorithm, i.e., DPDA,

of which iterate sequence converges to the solution of (6). The details of developing DPDA can be found in Appendix

B.

The suboptimality and feasibility of the DPDA iterate sequence can be bounded as in the following theorem.

Theorem 1. Given the communication network and the convex optimization problem (6). Let ds > 0, s ∈ S and

di,b,l > 0, i ∈ Iout
b,l
, l ∈ Lb, b ∈ B be given (sufficiently large) constants. Recall that the decision variable x of problem

(6) is a vector consisting of the data rate xout
s,l

, rs and ms for each s ∈ S, and the sending data rate xout
b,l
, b ∈ B for each

l ∈ L. Also recall that vector variables λ, θ are the dual variables associated with the capacity constraints and the

flow conservation constraints at nodes, respectively. Let (x⋆, λ⋆, θ⋆) be an arbitrary saddle-point for the Lagrange

function of problem (6), and {xk}k≥0 be the iterate sequence generated using Algorithm DPDA, initialized from an

arbitrary x0 and [λ0
b,l

]l∈Lb,b∈B = 0. Let the primal-dual step sizes [τs]s∈S, [τi,b,l]i∈Iout
b,l
,l∈Lb,b∈B and γ be positive constants

satisfying the following inequalities
1

τs

− γ(4 + ds) ≥ 0, (9)

for all s ∈ S, and
1

κb, l

(

1

τi,b,l

− γ(4 + di,b,l)

)

≥ ml + 1, (10)
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Algorithm 1: DPDA

γ, [κb,l]l∈Lb,b∈B, [τs]s∈S, [τi,b,l]i∈Iout
b,l
,l∈Lb,b∈B, [λ

0
b,l

]l∈Lb,b∈B,

xout,0
s = [xout,0

s,l
]l∈Ls
, r0

s ,m
0
s ,

x
out,0

b,l
= [x

out,0

i,b,l
]i∈Iout

b,l
,l∈Lb,b∈B

1 Initialization z0
s,l
← xout,0

s,l
, ∀l ∈ Ls, s ∈ S, z0

i,b,l
← xout,0

i,b,l
, ∀i ∈ Iout

b,l
, l ∈ Lb, b ∈ B

2 for k ≥ 0 do

3 /* Each source node s ∈ S updates its desired rate by solving a convex semidefinite program.*/

(xout,k+1
s , mk+1

s , rk+1
s )← PAs

(

[xout,k

s,l
− γτs(z

k
s,l
−
∑

l̃∈Lel (s)

zk

i,el(s),l̃
)]l∈Ls

, mk
s + τsps, rk

s

)

4 /*Each forwarding node b ∈ B updates its desired sending data rate.*/

x
out,k+1

i,b,l
← PR+

(

x
out,k

i,b,l
− τi,b,l(λ

k
b,l
+ γ(zk

i,b,l
+ uk

i,b,l
− uk

i,el(b),l
)

)

, ∀i ∈ Iout
b,l
, l ∈ Lb, b ∈ B, where

uk
i,b,l
=
∑

l̃∈Lout
b,i

zk

i,b,l̃
−
∑

l̄∈Lin
b,i

zk

i,el̄(b),l̄
and uk

i,el(b),l
=
∑

l̂∈Lout
el (b),i

zk

i,el(b),l̂
−
∑

l̆∈Lin
el (b),i

zk

i,el̆(el(b)),l̆

5 /*Each link l ∈ L updates its link price.*/

λk+1
b,l
← PR+

(

λk
b,l
+ κb,l(1b,l(2xout,k+1

b,l
− xout,k

b,l
) +δb,l(2xout,k+1

el(b),l
− xout,k

el(b),l
) − cl)

)

, ∀b ∈ B

6 /*The following local variables are communicated among neighboring nodes.*/

zk+1
s,l
← zk

s,l
− xout,k

s,l
+ 2xout,k+1

s,l
, ∀l ∈ Ls, s ∈ S

zk+1
i,b,l
← zk

i,b,l
− x

out,k

i,b,l
+ 2x

out,k+1

i,b,l
, ∀i ∈ Iout

b,l
, l ∈ Lb, b ∈ B

for all i ∈ Iout
b,l
, l ∈ Lb, b ∈ N , where ml is the total number of sources using link l to transport flows. Denote the

average of sending data rates by x̄K , 1
K

K
∑

k=1

xk, where K ≥ 1. Then, {x̄K } converges to the maximum of the utility

function of the problem (6) subject to the resource allocation constraints. In particular, the average of the iterative

sequence asymptotically converges to the feasible solution, i.e.,

‖θ⋆‖‖Bx̄K‖ +
∑

b∈B

∑

l∈Lb

‖λ⋆b,l‖h(x̄out
b,l , x̄

out
el(b),l) ≤

Θ1

K
,∀K ≥ 1. (11)

It also asymptotically maximizes the utility function of the problem (6), i.e.,

|
∑

s∈S

pT
s (m̄s −m⋆s )| ≤

Θ1

K
,∀K ≥ 1, (12)

where the notation h(x̄out
b,l
, x̄out

el(b),l
) and Θ1 is defined in Appendix C.

Proof. The proof is presented in Appendix C.

Algorithm DPDA is a fully distributed traffic allocation algorithm. This point can be verified by looking through

the implementation procedure. The step-size parameters are decided before implementing the algorithm. It is given in

Theorem 1 that those parameters satisfy conditions (9) and (10), both of which are local conditions. Thus, choosing

the parameters requires no global information. In the first step, the variables zs,l, l ∈ Ls, s ∈ S and zi,b,l, i ∈ Iout
b,l
, l ∈

Lb, b ∈ B are local variables respectively introduced for each source node and each forwarding node. It is worth

noting that giving the initial state value of xout
s,l
, l ∈ Ls, s ∈ S and xout

i,b,l
, i ∈ Iout

b,l
, l ∈ Lb, b ∈ B to those introduced

variables is also a local operation. For the first iteration, i.e., K = 1, in steps 3 and 4, DPDA enables all nodes to

update their sending data rates in parallel. Each node solely uses immediate information from its neighboring nodes

to perform all computations. In step 5, the link price λk+1
b,l
, l ∈ Lb, b ∈ B is updated with new local data rate allocation

solution. This step can be performed at both end points that each link connects, which just uses their local information.

Step 6 updates the introduced local variables with the new local data rate allocation solution. The iterative procedure

continues until the iterate sequence converges to the optimal solution.
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Table 2: ROUTING DECISIONS BY SOURCE NODES OF FLOWS

b1 b2 b3 b4 b5 b6 b7 b8

s1 b2, b7 b7, b8 b4 d1 – – b8 b3, b4

s2 b2, b7 b7, b8 – – d2 – b5 b5, b7

s3 b2, b7 b7, b8 b4 d3 – – b8 b3, b4

s4 b2, b7 b7, b8 – – d4 – b5 b5, b7

s5 b7 b1, b7, b8 b4, b8 b8 b7 d5 b6 b5, b7

s6 b7 b1, b7, b8 b4, b8 b8 b7 d6 b6 b5, b7

s7 b2, b7 d7 – – – – b2, b8 b2

s8 b2, b7 b7, b8 b4 d8 – – b8 b3, b4

Remark 1. It follows from inequalities (11) and (12) that DPDA converges at the rate of O(1/K), where K is the

number of iterations.

Remark 2. If the problem (6) has a unique solution, then the sequence of sample averages converges to that solution.

5. SIMULATION RESULTS

In this section, we present some simulation results which exemplify the behavior of the proposed algorithm, i.e.,

Algorithm DPDA. The simulations show that the final data rate allocation results in a value of the utility function

barely distinguishable from the optimal one.

We consider the network model shown in Fig. 2, where we also show all the links’ bandwidths, and source-

destination pairs. The network model allows for multiple paths available for flows belonging to each source node. We

consider a total of 8 different combinations of source/destination nodes. Moreover, we list the prescribed next hops

for all forwarding nodes bi, i = 1, . . . , 8, in Table II. For example, the upper left cell means that node b1 forwards the

data of source s1 to nodes b2 and b7.

The objective throughout the simulation is to maximize the sum utility of source nodes, where source si, i =

1, . . . , 8, has the utility function given by

Usi
(rsi

) =1.763(rsi
)1/6 − 20.718(rsi

)2/6 + 88.568(rsi
)3/6

− 169.102(rsi
)4/6 + 145.167(rsi

)5/6 − 44.677(rsi
)6/6.

Usi
(rsi

) is a step-like non-concave polynomial-like function. We consider to optimize a step-like non-concave function,

because it is more likely to describe the video quality perceived by a user in a video streaming application [5].

Moreover, we obtain the resource constraints information from Fig. 2 and Table. II, and impose the lower and upper

bounds on the aggregate data rate of each user as ξsi
= 0 and ζsi

= 10, i = 1, . . . , 8, respectively.

Given the network topology shown in Fig. 2, we choose the step-size parameters to satisfy the convergence con-

dition set forth by Theorem 2. All step-size parameters are chosen locally using local information. Fig. 3 shows the

performance of Algorithm DPDA for these step-size parameters. It can be seen that the utility function converges to

the optimal one, which is obtained by using Genetic Algorithm while assuming the availability of global information.

Although all the computations of DPDA are performed locally at each node, it attains almost the same network utility

obtained by a centralized optimization algorithm. This implies that the iterate sequence of Algorithm DPDA can

indeed converge to the optimal traffic allocation.

Fig. 4 shows the representative data rate trajectories for MRGUBS flows belonging to source nodes s3 and s4.

Both data rate sequences are generated by DPDA. It can be seen from Fig. 4 that the MRGUBS requirements are

satisfied.
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Figure 2: Topology of the communication network.
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Figure 3: Value of utility function obtained by DPDA and Genetic Algorithm.

6. CONCLUSIONS AND DIRECTIONS FOR FUTURE RESEARCH

In this paper, we proposed a distributed traffic allocation algorithm, i.e., DPDA, to allow distributed optimal traffic

engineering in a connectionless autonomous network. DPDA is distributed and converges at a O(1/K) rate, where K

is the number of iterations. Moreover, numerical simulation results showed that the behavior of DPDA mimics the

optimal traffic distribution.

The results presented in this paper are just the first step towards the implementation of an optimal fast distributed

algorithm for traffic engineering. There are many issues that need further consideration. In particular, efforts should

be put on testing the implementation in large-scale network settings.

APPENDIX A. PRELIMINARY RESULTS AND PROOF OF PROPOSITION 1

In this Appendix, we include some results from real analysis theory and the main steps of proving Proposition 1.

6.1. Preliminary results

In this subsection, we first recall some results from real analysis theory which are fundamental for the traffic

allocation in connectionless networks.
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Figure 4: The data rate trajectory for MRGUBS flows belonging to source nodes s3 and s4.

Lemma 1. Let f be an arbitrary real-valued function, F be a compact set, not necessarily convex, and µ be a

probability measure. Then,

inf
x
{ f (x) : x ∈ F } = inf

µ

{∫

f dµ : supp(µ) ⊂ F

}

, (13)

where supp(µ) denotes the support of the measure µ.

Proof. For the sake of completeness, we briefly mention the main steps of this well-known fact. Let x⋆ ∈ F be a

minimizer of f such that f (x) ≥ f (x⋆) for every x ∈ F . Then, we have
∫

f dµ ≥ f (x⋆) hold for every probability

measure µ with supp(µ) ⊂ F . That is to say, we have the following inequality hold

inf
x
{ f (x) : x ∈ F } ≤ inf

µ

{∫

f dµ : supp(µ) ⊂ F

}

. (14)

On the other hand, we have
∫

f dδx⋆ = f (x⋆), where δx⋆ is the Dirac measure of x⋆ on the set F . Since δx⋆ is a

particular probability measure with supp(δx⋆) ⊂ F and
∫

f dδx⋆ = f (x⋆), we have

inf
x
{ f (x) : x ∈ F } ≥ inf

µ

{
∫

f dµ : supp(µ) ⊂ F

}

. (15)

In conclusion, the result of Lemma1 is established by (14) and (15).

We proceed with the following theorem [12] that provides necessary and sufficient conditions for the existence of

Borel measures whose support is included in bounded symmetric intervals of the real line.

Theorem 2. Given a sequence t , {t j}
ℓ
j=1

and a scalar ǫ > 0, there exists a Borel measure µ(.) with support contained

in Y
.
= [−ǫ, ǫ] such that µ(Y) = 1 and t j = Eµ[y

j] =
∫

Y
y jµ(dy) is true if and only if

• when ℓ = 2k + 1 (odd case), the following holds

ǫM(0, 2k, t) �M(1, 2k + 1, t) (16)

M(1, 2k + 1, t) � −ǫM(0, 2k, t), (17)

• when ℓ = 2k (even case), the following holds

M(0, 2k, t) � 0 (18)

ǫ2M(0, 2k − 2, t) �M(2, 2k, t), (19)
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where M(k, k + 2h, t) ∈ R(h+1)×(h+1) is a Hankel matrix of the form

M(k, k + 2h, t) =





























tk tk+1 ... tk+h

tk+1

...
... tk+h+1

...
...
...
...

tk+h ... ... tk+2h





























. (20)

and t0 = 1.

Proof. Direct application of Theorem III.2.3 and Theorem III.2.4 in [13].

6.2. Proof of Proposition 1

Proof. We note that the problem can be converted into a polynomial optimization form with a change of variables

ys = (rs)
(1/ℓ). The equivalent problem is stated as follows.

maximize
x

∑

s∈S

ℓ
∑

j=0

ps, j(ys)
j

subject to ys ≤ (rs)
(1/ℓ), s ∈ S,

∑

i∈Iout
b,l

xout
i,b,l +

∑

i∈Iin
b,l

xout
i,el(b),l ≤ cl, l ∈ Lb, b ∈ B,

∑

l∈Lout
b,i

xout
i,b,l −

∑

l̃∈Lb

xout

i,el̃(b),l̃
= 0, i ∈ Ib, b ∈ B,

(xout
s , rs) ∈ Xs, s ∈ S,

xout
i,b,l ≥ 0, i ∈ Iout

b,l , l ∈ Lb, b ∈ B.

(21)

Note that the feasible set in (21) is convex. However, the equivalent problem is still a non-convex problem, because of

the non-concavity of the utility function. Then, instead of working with ys, we optimize over moments of probability

distributions in the space of ys. More precisely, suppose ys is a random variable and we denote by ms, j the j-th moment

of ys for some probability measure µ, i.e., ms, j = Eµ[y
j
s].

Now, we consider transforming problem (21) into an optimization problem over the space of probability measures

of ys with a support contained in the feasible set of (21).

1. Based on Lemma 1, the objective function becomes

∫

∑

s∈S

ℓ
∑

j=0

ps, j(ys)
jdµi =

∑

s∈S

pT
s ms. (22)

2. The first three constraints in (6) are justified by Theorem 1.

3. We use the set of constraints

ms, j ≤ r
j/ℓ
s , j ∈ {1, . . . , α} (23)

to approximate the constraint ys ≤ (rs)
(1/ℓ).

4. The left hand of each constraint
∑

i∈Iout
b,l

xout
i,b,l
+
∑

i∈Iin
b,l

xout
i,el(b),l

≤ cl for l ∈ Lb, b ∈ B, is written as 1b,lx
out
b,l
+ δb,lx

out
el(b),l

.

In a similar way, we rewrite constrains
∑

l∈Lout
b,i

xout
i,b,l
−
∑

l̃∈Lout
b,i

xout

i,el̃(b),l̃
= 0, i ∈ Ib, b ∈ B in a matrix form, i.e., Bx = 0.

In conclusion, Lemma 1, Theorem 1 and (23) establish the result of Proposition 1.
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APPENDIX B. DERIVATION OF DPDA

The constrains set of convex relaxation (6) consists of local constraints, e.g., capacity constraints and global

constraints, e.g., flow conservation constraints through nodes. The existence of global constraints renders difficulty

for us to solve problem (6) in a distributed fashion. However, the primal-dual method, proposed by Chambolle and

Pock in [14] for solving convex-concave saddle point problems makes it possible. This algorithm can be adapted

to solve the multi-agent consensus optimization problem as discussed in [11]. We also use the distributed primal-

dual algorithm in [11] to solve our traffic allocation problem (6). This Appendix aims at developing the distributed

algorithm that converges to the solution of (6).

The optimization problem (6) can be compactly stated as

maximize
x

∑

s∈S

pT
s ms

subject to 1b,lx
out
b,l + δb,lx

out
el(b),l − cl ≤ 0, l ∈ Lb, b ∈ B

Bx = 0,

(xout
s , ms, rs) ∈ As, s ∈ S,

xout
b,l � 0, l ∈ Lb, b ∈ B,

(24)

whereAs are the set of local constraints for each source node s ∈ S, as defined in (8).

We introduce the convex-concave saddle-point form of the primal problem (24),

min
x

max
λ, θ

L(x, λ, θ), (25)

where L(x, λ, θ) is the Lagrangian function given by

L(x, λ, θ) = −
∑

s∈S

(pT
s ms − IAs (x

out
s , ms, rs))

+
∑

b∈B

∑

l∈Lb

I
R
|Iout

b,l
|

+

(xout
b,l ) −

∑

b∈B

∑

l∈Lb

IR+ (λb,l)

+
∑

b∈B

∑

l∈Lb

〈

1b,lx
out
b,l + δb,lx

out
el(b),l − cl, λb,l

〉

+ 〈Bx, θ〉 .

(26)

θ ∈ R

∑

b∈B

|Ib |

is the vector of dual variables associated with the flow conservation constraint at nodes Bx = 0. Given

l ∈ Lb and b ∈ B, the dual variable λb,l is introduced for the capacity inequality constrains 1b,lx
out
b,l
+ δb,lx

out
el(b),l

≤ cl.

Moreover, λ = [λb,l]l∈Lb,b∈B.

Now, given the initial iterates x0, λ0, θ0 and parameters γ > 0, τs > 0 for all s ∈ S, τi,b,l > 0, κb,l > 0 for all

12



i ∈ Iout
b,l

, l ∈ Lb and b ∈ B, we present the following primal-dual iterations to solve (25):

xk+1 ←argmin
x

−
∑

s∈S

(pT
s ms − IAs (x

out
s , ms, rs))

+
∑

b∈B

∑

l∈Lb

I
R
|Iout

b,l
|

+

(xout
b,l )

+
∑

b∈B

∑

l∈Lb

〈

1b,lx
out
b,l + δb,lx

out
el(b),l − cl, λ

k
b,l

〉

+
〈

Bx, θk
〉

+
∑

b∈B

∑

l∈Lb

∑

i∈Iout
b,l

1

2τi,b,l

(xout
i,b,l − x

out,k

i,b,l
)2

+
∑

s∈S

1

2τs

((xout
s,l − xout,k

s,l
)2 + ‖ms −mk

s‖
2
2 + (rs − rk

s )2
2);

λk+1
b,l ←argmax

λb,l

− IR+ (λb,l) + 〈1b,l(2x
out,k+1

b,l
− x

out,k

b,l
)

+ δb,l(2xout,k+1

el (b),l
− xout,k

el(b),l
) − cl, λb,l〉

−
1

2κb,l
(λb,l − λ

k
b,l)

2, l ∈ Lb, b ∈ B;

θk+1 ←argmax
θ

〈

B(2xk+1 − xk), θ
〉

−
1

2γ
‖θ − θk‖22

= θk + γB(2xk+1 − xk).

(27)

Although the convergence to the optimal traffic allocation is guaranteed under the primal-dual method, it is still

not a distributed algorithm. In fact, solving the optimization problem involved in the primal variables xk+1 update rule

requires global information about the network due to the presence of the term
〈

Bx, θk
〉

, which is associated with the

flow conservation constraints at nodes. Moreover, computing the term
〈

1b,lx
out
b,l
+ δb,lx

out
el(b),l

− cl, λ
k
b,l

〉

, l ∈ Lb, b ∈ B

forces neighboring nodes to exchange information, because bidirectional links are allowed to exist in the model. This

fact hinder us from directly implementing the primal-dual iterations. Nevertheless, we exploit the structure of the inner

product
〈

Bx, θk
〉

and note that this term is a summation of local linear functions of the local variables. In addition,

the sending data rates of neighboring nodes is local information. These observations indicates that it is possible to

develop an optimal decentralized traffic allocation algorithm.

Using recursion in θ update rule in (27), we can write θk+1 as a partial summation of previous primal variable xk

iterations, i.e., θk = θ0 + γ
k−1
∑

n=0

B(2xn+1 − xn). Let θ0 be γBxout,0, z0 be x0 and zk , xk +
k
∑

n=1

xn for k ≥ 1. Then we get

〈

Bx, θk
〉

=γ
〈

xout, BT Bzk
〉

=γ
∑

b∈N

∑

l∈Lb

∑

i∈Iout
b,l

xout
i,b,l(
∑

l̃∈Lout
b,i

zk

i,b,l̃
−
∑

l̄∈Lb

zk

i,el̄ (b),l̄
). (28)

The quadratic operation for updating λk+1
b,l

in (27) entails solving the following projection problem:

λk+1
b,l ← PR+

(

λk
b,l + 1b,l(2xout, k+1

b,l
− xout, k

b,l
) + δb,l(2xout, k+1

el(b),l
− xout, k

el(b),l
) − cl

)

. (29)

Substituting (28) and (29) into (27) yields a distributed traffic allocation algorithm shown in Algorithm 1.

APPENDIX C. PROOF OF THEOREM 2

In this section, we present the Proof of Theorem 2.

Proof. Due to space limitations, we only prove that if conditions (9) and (10) hold, the following inequality is true:

Q(A, B) ,

[

Dτ −AT −BT

−A Dκ 0
−B 0 Dγ

]

� 0 (30)
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where Dκ , diag([ 1
κb, l

]l∈Lb, b∈B), Dγ , 1
γ

I ∑
b∈N

|Ib |, and Dτ , diag([vT
sτ, v

T
bτ

]T ) where vsτ , [ 1
τs

1(|Ls|+ℓ+2)×1]s∈S and

vbτ = [ 1
τi,b,l

]i∈Iout
b,l
, l∈Lb,b∈B. Moreover, A , diag([Al]l∈Lb, b∈B), where Al is a row vector with the same dimension as

vector variable x, and the i-th entry of vector Al, equals to 1 if the data rate denoted by the i-th element is transported

through link l, 0 otherwise.

Based on “Schur complement Lemma”, we have Q(A, B) � 0 holds if and only if

[

Dτ −AT

−A Dκ

]

− γ
[

BT B 0
0 0

]

� 0. (31)

Moreover, since Dκ � 0, again using “Schur complement Lemma”, one can conclude that (31) holds if and only if

Dτ − γBT B − AT D−1
κ A � 0. (32)

Denote matrix BT B by Ω, and we can write Ω into the sum of two matrices, i.e.,

Ω = diag([ωi,b,l]i∈Iout
b,l
, l∈Lb, b∈N ) + E, (33)

where ωi,b,l = 1 if node b ∈ S
⋃

Be where Be is the set of nodes that forward traffic to destination nodes, ωi,b,l = 2 if

b ∈ B
⋂

Bc
e where Bc

e is the complement of Be, otherwise 0. Also, all the diagonal elements of matrix E are equal to

0, and the non-diagonal element E(i,b1,l1),( j,b2,l2), corresponding to data rates xout
i,b1,l1

∈ x and xout
i,b2,l2

∈ x, equals to 1 if both

data rates belong to the same source node and they are forwarded from the same node, i.e., i = j ∈ I and b1 = b2 ∈ N ,

−1 if both data rates belong to the same source node and nodes b1 and b2 are neighboring, and 0 otherwise. Based on

“Gershgorin Circle Theorem” [15], we have

diag([ωi,b,l]i∈Iout
b,l
, l∈Lb, b∈N ) + diag([di,b,l]i∈Iout

b,l
, l∈Lb, b∈N ) − E � 0, (34)

since di,b,l is chosen to be large enough. Therefore,

Ω � 2diag([ωi,b,l]i∈Iout
b,l
, l∈Lb, b∈N ) + diag([di,b,l]i∈Iout

b,l
, l∈Lb, b∈N ) (35)

Moreover,

Ω � diag([4 + di,b,l]i∈Iout
b,l
, l∈Lb, b∈N ). (36)

Hence, it is sufficient to have

τ − γdiag([4 + di,b,l]i∈Iout
b,l
, l∈Lb, b∈N ) − AT D−1

κ A � 0, (37)

and this condition holds if the inequalities (9) and (10) in the statement of Theorem 1 are true.

Let (x⋆, λ⋆, θ⋆) be an arbitrary saddle-point for the Lagrange function of problem (6), and {xk}k≥0 be the iterate

sequence generated using Algorithm DPDA, initialized from an arbitrary x0 and [λ0
b,l

]l∈Lb,b∈B = 0. Denote the average

of sending data rates by x̄K , 1
K

K
∑

k=1

xk, where K ≥ 1. Then, following the proof in [11], we have that {x̄K} converges

to the maximum of the utility function of the problem (6) subject to the resource allocation constraints. In particular,

the following error bounds hold for all K ≥ 1:

‖θ⋆‖‖Bx̄K‖+
∑

b∈B

∑

l∈Lb

‖λ⋆b,l‖h(x̄out
b,l , x̄

out
el(b),l) ≤

Θ1

K
,

|
∑

s∈S

pT
s (m̄s −m⋆s )| ≤

Θ1

K
,

(38)

where h(x̄out
b,l
, x̄out

el(b),l
) denotes the distance function dR−(1b,lx̄

out
b,l
+ δb,lx̄

out
el(b),l

− cl), and Θ1 , 2
γ
‖θ⋆‖2 −

γ

2
‖Bx̄0‖2 +

∑

b∈B

∑

l∈Lb
(
∑

i∈Iout
b,l

1
2τi,b,l

(x
out,⋆

i,b,l
− x

out,0

i,b,l
)2 + 1

2κb,l
(λ⋆

b,l
)2) +

∑

s∈S
1

2τs
(‖m⋆s −m0

s‖
2 + (r⋆s − r0

s )2 +
∑

l∈Ls
(x

out,⋆

s,l
− x

out,0

s,l
)2).
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