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Abstract— We propose a method to efficiently compute the
forward stochastic reach (FSR) set and its probability measure
for nonlinear systems with an affine disturbance input, that is
stochastic and bounded. This method is applicable to systems
with an a priori known controller, or to uncontrolled systems,
and often arises in problems in obstacle avoidance in mobile
robotics. When used as a constraint in finite horizon controller
synthesis, the FSR set and its probability measure facilitate
probabilistic collision avoidance, in contrast to methods which
presume the obstacles act in a worst-case fashion, and gen-
erate hard constraints that cannot be violated. We tailor our
approach to accommodate rigid body constraints, and show
convexity is assured so long as the rigid body shape of each
obstacle is also convex. We extend methods for multi-obstacle
avoidance through mixed integer linear programming (with
linear robot and obstacle dynamics) to accommodate chance
constraints that represent the FSR set probability measure. We
demonstrate our method on a rigid-body obstacle avoidance
scenario, in which a receding horizon controller is designed
to avoid several stochastically moving obstacles while reaching
a desired goal. Our approach can provide solutions when
approaches that presume a worst-case action from the obstacle
fail.

Index Terms— Reachability, obstacle avoidance, model pre-
dictive control, stochastic optimal control, robotic navigation

I. INTRODUCTION

Navigation in stochastic, dynamic environments is a chal-
lenging task in a variety of application domains, including
robotics, autonomous driving, unmanned aerial vehicles, and
other transportation systems. In any realistic environment,
reliable, collision-free navigation is paramount, and must
be implementable in a manner that is amenable to real-
time operation. For an environment with stochastic, dynamic
obstacles, accurate prediction of potential obstacle locations,
as well as likelihood of obstacle occupancy at those locations,
constrains navigation. Further, physical constraints arising
due to, e.g., separation constraints or the geometry of rigid
body (not point-mass) obstacles must also be incorporated.
Synthesizing these constraints into existing frameworks for
robot navigation requires efficient representation of obstacle
avoidance constraints. We propose a method to compute the
forward stochastic reachable (FSR) set and its probability
measure for dynamical systems with affine disturbance input,
motivated by the problem of collision-free navigation in
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an environment with many stochastic, dynamic, rigid-body
obstacles.

A variety of approaches have been proposed for navigation
amidst dynamic obstacles. Some formulations are reactive,
meaning that instead of incorporating predictions of the
obstacle location, they take action according to the current
measurement only [1]. Predictive formulations, in contrast,
anticipate future motion, sometimes through the use of
a constrained finite-horizon optimization framework, with
constraints arising due to robot dynamics and predictions of
obstacle position. These methods involve solving a mixed-
integer linear program [2], [3], a mixed-integer quadratic
program, [4], or using sampling based methods [5], [6].

Predictions of obstacle location are dependent upon as-
sumptions about obstacle dynamics and stochastic properties.
For non-holonomic point-mass obstacles, velocity obstacles
[7] exploit a closed-form solution to approximate the forward
reachable set over a finite horizon, presuming a constant ve-
locity. For probabilistic obstacles with bounded uncertainty, a
variety of approaches compute the set of all possible obstacle
states, but not the likelihood of obstacle occupancy, with
application to robotics [8]–[11], and to automotive vehicles
[10]. These approaches are conservative, in that they rule
out potentially large areas of the state-space, even if obstacle
occupancy is low. Some non-conservative solutions involve
receding horizon controllers to avoid collision at the expected
future location of the obstacles [12], but can still lead to
collision with excessively high variance or with multiple
obstacles.

Strict assurances of safety are possible with backward
reachable sets [13]. A controller is constructed by solving
the Hamilton-Jacobi-Issacs equation [14]–[17] presuming the
worst case realization of the obstacle or disturbance (also re-
ferred to as the ‘min-max’ or robust solution). Methods based
on the backwards reachable set often suffer from computa-
tional complexity that is exponential in the dimensionality of
the state space. Low-dimensional systems in aerospace and
automotive applications have been explored [14], [18]–[21].
However, for stochastic obstacles with bounded input, these
methods can be overly conservative, especially when the
disturbance variance is large, or in scenarios with multiple
moving obstacles, when the collision-free space diminishes
quickly as the time horizon increases. We previously used
backwards reachable sets to weight probabilistic roadmaps
[22] and artificial potential fields [23], but without assurances
of safety, since the sets could only be computed pairwise
between the robot and a single obstacle, due to computational
complexity.
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Accurate predictions are particularly key for dynamic,
stochastic obstacles. Probabilistically safe trajectories [6],
[24]–[26] exploit knowledge of the likelihood of obstacle lo-
cation. Predictions have been accomplished via Monte Carlo
simulations [6], [24], [25] and via Gaussian mixture models
[26]. While these methods have an appealing flexibility and
simplicity, the quality of the prediction of obstacle location
is highly dependent on the number of particles used, and
it is in general difficult to estimate a priori the number of
particles required for a desired quality.

We propose an alternative method of prediction, based on
forward stochastic reachable sets, that uses not only the set
of states that the obstacle can reach, but also the likelihood
of occupancy of all possible obstacle locations. We present
an iterative formula for the computation of the FSR set for
nonlinear dynamical systems with affine disturbance input,
which is exact for a bounded, countable disturbance set, and
a method for the computation of the FSR probability mea-
sure. We extend this approach to rigid-body obstacles with
convex geometry through the use of an indicator function
that represents the body geometry. We derive an occupancy
function for a rigid-body obstacle that can be used to generate
an exact set of states that the robot should avoid to avoid
collision with at least a certain likelihood. Superlevel sets
of the occupancy function become inequality constraints for
integer programming based methods for obstacle avoidance
[2]–[4]. For scenarios with multiple obstacles, we use an
over-approximation which can be expressed as the union of
convex sets, since the union of superlevel sets of occupancy
functions for each obstacle is not necessarily convex. Our
results indicate that our method provides feasible solutions
when robust methods that exploit a min-max approach fail.

The main contributions of this paper are: 1) a method
to efficiently compute the forward stochastic reachable set
and probability measure for systems with bounded, affine,
stochastic disturbance, and 2) formulation of occupancy
constraints, based on the FSR probability measure, as the
union of convex sets, to generate probabilistic safe robot
trajectories in presence of multiple stochastic, dynamic,
rigid-body obstacles, using existing integer programming-
based collision avoidance methods.

The paper is organized as follows: Section II describes
the problem formulation and mathematical preliminaries.
Section III formulates the forward stochastic reachability
iteration for nonlinear as well as linear systems. We apply
our methods to the rigid-body obstacle avoidance problem in
Section IV, and provide conclusions and directions for future
work in Section V.

II. PRELIMINARIES AND PROBLEM FORMULATION

Consider the discrete-time time-invariant dynamical sys-
tem,

x[t+ 1] = f(x[t]) + g(w[t]) (1)

with state x[t] ∈ X ⊆ Rn, disturbance w[t] ∈ W ⊆ Rp, and
Borel-measurable functions f : Rn → Rn and g : Rp → Rn.
We define the inital set I, and an initial condition x[0] ∈

I ⊆ X . The disturbance set W is bounded and countable,
and the random vector w[t] is defined in a probability space
(W, σ(W),Pw). We assume the random vector has a known
probability mass function. For a countable sample space, the
probability measure Pw defines a probability mass function
ψw[·] : Rp → [0, 1] such that for z̄ = (z1, z2, . . . , zp) ∈
Rp, Pw{w = z̄} = ψw[z̄]. We define an indicator function
1Y (ȳ) : Rn → {0, 1} such that it takes on the value 1 for
ȳ ∈ Y and 0 otherwise. We use | · | to indicate cardinality.
The p× p identity matrix is denoted Ip.

The dynamics (1) are quite general, and include affine
noise perturbed systems with known state-feedback based
inputs or open-loop controllers. We assume that the distur-
bance process w[t] is an i.i.d. random process with respect
to time. For a known initial condition, the state x[t + 1]
is a random vector due to w[t]. A random initial condition
x[0] is defined in a probability space (I, σ(I),Px[0]) with
probability measure Px[0]{x[0] = z̄} = ψx[0][z̄].

By defining a random vector v[t] = g(w[t]) in the
probability space (V, σ(V),Pv), (1) can be simplified to

x[t+ 1] = f(x[t]) + v[t]. (2)

Given an initial condition x̄0 and a sequence of random
vectors {v[t]}t=τt=0 , the trajectory of (2) is completely char-
acterized by a random process defined as x[τ ] = ξ(τ ; x̄0) :
[0, T ] → X . Therefore, the random vector x[τ ] is defined
in the probability space (X , σ(X ),Pτ,x̄0

x ). Here, Pτ,x̄0
x is

induced from the product measure of Pv since v[t] is
an i.i.d random process. When f(·) and g(·) are linear
transformations A ∈ Rn×n and B ∈ Rn×p, respectively,
we have a linear time-invariant system

x[t+ 1] = Ax[t] +Bw[t], (3)

and with v[t] = Bw[t], this becomes

x[t+ 1] = Ax[t] + v[t]. (4)

We are interested in determining those states that can be
reached with non-zero probability, as well as the likelihood
of reaching those states.

For the discrete-time systems defined in (2) and (4), we
define the forward stochastic reach set as

FSReach(τ, I) =
{
ȳ ∈ X |∃x̄0 ∈ I, {z̄[t]}t=τt=0 with

Pv{v[t] = z̄[t]} > 0 ∀t ∈ [0, τ ] s.t. ξ(τ ; x̄0) = ȳ
}
. (5)

Here, {z̄[t]}t=τt=0 is a realization of the random process
{v[t]}t=τt=0 that can occur with non-zero probability and
z̄[·] ∈ Rn. We define the forward stochastic reach probability
measure (FSRPM) at time t as the probability measure
associated with the state at time t, Ptx. For a countable
disturbance set V and ȳ ∈ Rn, the FSRPM is defined by

Ptx{x[t] = ȳ} =
∑
z̄∈I

Pt,z̄x {x[t] = ȳ}Px[0]{x[0] = z̄}. (6)

The existence of a probability mass function for the FSRPM
(6) is guaranteed, since the Borel-measurable functions in
(2) preserve measurability.



Lemma 1. For a countable set V , FSReach(t, I) = {ȳ ∈
X : ψx[ȳ; t] > 0}.

Lemma 1 arises by construction, and asserts that the for-
ward stochastic reach set (5) is the support of the correspond-
ing FSRPM (6). Note that the equality in Lemma 1 would be
almost sure if the additional restriction of Pv{v[t] = z̄[t]} >
0 ∀t ∈ [0, τ ] were not imposed in (5).

Problem 1. Given the affine, stochastic dynamics (2), initial
condition x[0] ∈ I and its distribution ψx[0], disturbance set
V , disturbance probability mass function ψv[·], compute the
forward stochastic reach set FSReach(t, I) and the forward
stochastic reach probability measure ψx[·; t] at time t, in an
iterative fashion.

We are motivated by problems in dynamic, stochastic
obstacle avoidance. Specifically, we wish to describe those
states which are associated with a likelihood of collision with
a rigid-body obstacle that is at or above a level α ∈ [0, 1].
For a single obstacle scenario, this is the α-superlevel set
of the obstacle’s occupancy function, to be defined precisely
later. We require a computationally tractable formulation of
the superlevel set of the occupancy function, that enables
the use of integer programming based methods for obstacle
avoidance. We seek to then generalize this method to handle
multiple dynamic, stochastic obstacles, as well.

Problem 2. Construct a computationally tractable formu-
lation of the superlevel set of the occupancy function for
a rigid-body obstacle with stochastic dynamics and convex
geometry, and known initial position. That is, represent the
α-superlevel set of the occupancy function, or an over-
approximation of the α-superlevel set of the occupancy
function, as a union of convex sets at each instant t ∈ [0, T ].

Problem 3. Reconsider Problem 2 for multiple rigid-body
obstacles with convex geometry, and construct an overap-
proximation of the α-superlevel set of the joint occupancy
function that is a union of convex sets for each obstacle.

III. FORWARD STOCHASTIC REACHABILITY ANALYSIS

A. Nonlinear, affine dynamical system

We assume, without loss of generality, that the empty
set is the only member of the sigma-algebra σ(W) of the
disturbance random vector w[t] to have a zero probability of
occurrence according to the probability measure Pw.

We additionally note that for random vectorsw1,w1 ∈ Rn
with probability densities ψw1

, ψw2
, respectively,

P1) If w = w1 +w2, then ψw = ψw1 ∗ ψw2 , in which ∗
denotes the convolution operation.

P2) If w1 and w2 are independent vectors, then w =
(w1,w2) has probability density ψw = ψw1

ψw2
.

The following theorem characterizes the FSR and the
FSRPM using two recursive relations.

Theorem 1. Given the dynamics (2), an initial condition
set I, a probability mass function ψx[0][·] over I, and a

countable disturbance set V = g(W), for every t ∈ [0, T−1],

FSReach(t+ 1, I) = f
(

FSReach(t, I)
)
⊕ V (7)

ψx[ȳ; t+ 1] =
(
ψf(x)[·; t] ∗ ψv[·]

)
[ȳ] (8)

Proof: Equation (7) follows from (5) and the assump-
tion that all non-empty members of σ(V) have non-zero
probability of occurrence. Equation (8) follows from the
observation that f(x[t]) is a random vector for all t ∈ [0, T ]
and Property P1.

Note that (7) is identical to the propagation of reachable
sets as in [27]. When V is bounded, the forward stochastic
reach sets can be computed using existing tools for reacha-
bility, such as the multi-parametric toolbox (MPT) [28] and
ellipsoidal toolbox (ET) [29]. We can also use Lemma 1
to compute these sets from their corresponding probability
measures in (8).

For the probability measure, from the definition of convo-
lution and assumption of a countable disturbance set V , we
expand (8) as

ψx[ȳ; t] =
∑
z̄∈V

ψf(x)[ȳ − z̄; t]ψv[z̄]. (9)

with

ψf(x)[ȳ − z̄; t] =
∑

x̄∈FSReach′

ψx[x̄; t] (10)

and FSReach′ = {x̄ ∈ FSReach(t, I)|f(x̄) = ȳ − z̄}.
Compared to (6), equations (9) and (10) provide a recursive
relation for ψx[·; t]. For a countable disturbance set, (9)
provides the exact FSR set and its probability measure.

We summarize our solution to Problem 1 in Algorithm 1
for the system (2) with a countable disturbance set V .

Algorithm 1 Forward stochastic reachable set and probabil-
ity measure (Problem 1) for a system (2) with a countable
disturbance set V
Input: Dynamics f , Initial set I, Initial probability mass

function ψx[0][·], disturbance set V , disturbance proba-
bility mass function ψv[·], time instant of interest τ

Output: Forward stochastic reach set FSReach(τ, I) and
probability measure ψx[·; τ ]

1: t← 1
2: FSReach(0, I)← I
3: ψx[·; 0]← ψx[0](·)
4: while t ≤ τ do
5: ψx[·; t]← 0 . Initialize FSRPM to zero
6: for all x̄ ∈ FSReach(t− 1, I), z̄ ∈ V do
7: ψx[f(x̄) + z̄; t] ← ψx[f(x̄) + z̄; t] + ψx[x̄; t −

1]ψv[z̄] . Equations (9) and (10)
8: end for
9: FSReach(t, I)← f(FSReach(t− 1, I))⊕ V

10: t← t+ 1 . Update iteration variable
11: end while



B. Comparisons to the dynamic programming approach

The dynamic programming formulation provided in [30]
computes the backward stochastic reachable set for con-
trol objectives involving safety. It allows for calculation
of either stochastic reachable or stochastic viable sets, and
simultaneously constructs an optimal control input. While
Problem 1 can be posed as a backward reach problem when
the dynamics are reversed in time (subject to the existence
of the backward dynamics, when 1) f(·) is invertible, and
2) v[t] is an i.i.d process) [13], the solution to Problem 1
does not require computation of the optimal control action,
significantly simplifying calculation. Algorithm 1 also iter-
ates over only those states for which the FSRPM is positive.
Therefore, at every time instant t, it propagates the dynamics
over a smaller region of the state space FSReach(t, I) as
compared to dynamic programming.

To demonstrate, consider a point mass dynamics dis-
cretized in time with velocities drawn from a truncated
Gaussian distribution,

x[t+ 1] = x[t] +Bex,PMw[t] (11)
w[t] ∼ Ntruncated,W(µ̄,Σ)

with state x[t] ∈ R2, disturbancew[t] is a random vector tak-
ing values in [1, 2]2 following a truncated Gaussian density
with mean µ̄ = [1.5 1.5]> and covariance matrix Σ = 0.1I2
and Bex,PM = I2. We define the initial set as I = [0, 2]2, and
ψx[0] as a uniform distribution over I. We use Algorithm 1 to
compute FSReach(t, I) and ψx[·; t] for t ∈ [0, 10] seconds.
Figure 1a shows the evolution of FSReach(·, I) over time
(plotted using MPT [28]), Figure 1b shows the FSRPM for
the system at t = 10 and Figure 1c compares the runtime of
the Algorithm 1 with the dynamic programming approach,
with gridding of the state-space and disturbance with a grid
size of 0.1 in each dimension.

All computations in this paper were performed using
MATLAB on an Intel Core i7 CPU with 2.10GHz clock
rate and 8 GB RAM.

C. Rigid body obstacles

We first extend the FSR set from point-mass obstacles
(Subsection III-A) to rigid body obstacles.

Presume that the center of mass (referred to as the center,
in shorthand) of the rigid body obstacle is described by x[·].
The set O(x[t]) ⊆ X describes set of states occupied by the
obstacle at time t when the obstacle’s center is x[t], that is,
O(x[t]) = {y |h(y−x) ≥ 0} for some function h : Rn → R
which implicitly describes the geometry of the obstacle. For
example, for a unit square obstacle, one possible geometry
function is h(z) = 1− ‖z‖∞.

We define an occupancy function of an obstacle φrx(ȳ; t) :
X × [0, T ] → [0, 1] to evaluate the probability of a point
ȳ ∈ X being covered by the rigid body obstacle.

φrx(ȳ; t) = ψx[{z̄ ∈ FSReach(t, I)|ȳ ∈ O(z̄)} ; t]

=
∑

z̄∈FSReach(t,I)

ψx[z̄; t]1O(z̄)(ȳ). (12)

The description (12) follows from the inclusion-exclusion
principle and the observation that the states of the rigid body
centers are mutually exclusive events.

The occupancy function provides the collision probability
with the rigid body obstacle. Note that the occupancy func-
tion is not a probability measure since

∑
ȳ∈X φ

r
x(ȳ; t) 6= 1.

Also, the occupancy function lies in the interval [0, 1] since
it is a sum of nonnegative numbers, and it is upper bounded
by
∑
z̄∈FSReach(t,I) ψx[z̄; t] = 1.

We denote the α-superlevel set of the occupancy function
as

Sα(t;φrx) = {ȳ ∈ X |φrx(ȳ; t) ≥ α} (13)

For α > 0, Sα(t;φrx) is the “avoid” set for obstacle
avoidance problems when probabilistic safety must be as-
sured with at least likelihood α. Note that S0(t;φrx) is
equivalent to the conservative avoid set generated by worst-
case reachability formulations [8]–[11].

To utilize existing integer-programming based obstacle
avoidance methods, we must have α-superlevel sets of the
occupancy function to be convex, or a union of convex sets.

We first define a function Dj(α, t) which describes the
underlying cause of an occupancy function taking a value
above the threshold α. Given FSReach(t, I), let

Dj(α, t) = {z̄k ∈ FSReach(t, I) :
∑
k

ψx[z̄k; t] > α

and ∩k O(z̄k) 6= ∅} (14)

j ∈ {1, 2, 3...2|FSReach(t,I)|}

be a set of possible rigid body centers, whose corresponding
rigid bodies create overlap with an associated probability of
obstacle occupancy greater than α (12). We denote Dz(α, t)
the collection of all such sets at time t.

To demonstrate, consider the scenario shown in Figure
2. Overlap in possible obstacle positions z̄1, z̄2 generates a
region of the state-space where likelihood of collision is
higher than α, even though ψx[z̄1; t], ψx[z̄2; t] < α. We
denote this region, as well as other regions (e.g., ψx[z̄3; t])
with likelihood higher than α through D1(α, t) = {z̄1, z̄2}
and D2(α, t) = {z̄3}. Essentially, Dj(α, t) identifies the
relevant obstacles through their centers.

Proposition 1. For a single rigid body O(·) that is convex,
the α-superlevel sets of the occupancy function φrx[ȳ; t] (12)
is a union of convex sets.

Proof: Define regions of overlap described by (14) for
a given likelihood α and FSRPM ψx[ȳ; t]. Then,

Sα(t;φrx) =
⋃

Dj(α,t)∈Dz(α,t)

⋂
z̄∈Dj(α,t)

O(z̄) ⊆ X (15)

for z̄ ∈ X . The proof is complete with the observation that
intersection preserves convexity.
Hence Proposition 1 solves Problem 2.

Since the indicator function for the obstacle geometry in
(12) can be equivalently expressed as 1O(z̄)(ȳ) = 1O(0)(ȳ−



Fig. 2: The shaded region has a likelihood of collision
greater than α. Consider a rigid-body obstacle, with pos-
sible obstacle locations z̄1, z̄2, z̄3 at time t. Presume that
ψx[z̄1; t] < α, ψx[z̄2; t] < α, ψx[z̄3; t] ≥ α. Note that
overlap between obstacles with centers z̄1 and z̄2 creates
a likelihood greater than α for O(z̄1) ∩ O(z̄2), so that
Dz(α, t) = {D1(α, t), D2(α, t)} with D1(α, t) = {z1, z2}
and D2(α, t) = {z3}. Thus, Sα(t;φrx) = (O(z̄1)∩O(z̄2))∪
O(z̄3).

z̄), the occupancy function (12) can be re-written as

φrx(ȳ; t) =
∑

z̄∈FSReach(t,I)

ψx[z̄; t]1O(0)(ȳ − z̄)

=
(
ψx[·; t] ∗ 1O(0)(·)

)
(ȳ) (16)

Equation (16) is similar to the concept of blurring in image
processing, in which an image (in our case, ψx[·; t]), is
convoluted with a shift-invariant point spread function, (in
our case, 1O(0)(·)). Such a formulation enables potential use
of tools from image processing for the computation of φrx[·; t]
and its support for rigid body obstacles.

Now, we analyze the convexity property of (13) for multi-
ple moving obstacles. For Nobs homogeneous obstacles, we
denote the concatenated random vector of obstacle centers
as X = [x1 x2 . . . xNobs

] ∈ XNobs . We presume that
the obstacles do not interact with each other, and hence are
stochastically independent. For a given obstacle characteri-
zation Z = [z̄1 z̄2 . . . z̄Nobs

] ∈ XNobs , the forward reach
set and the probability measure of the obstacle configuration
are described by

FSReachX(t, I) =
Nobs×
i=1

FSReachxi(t, I) (17)

ψX [Z; t] =

Nobs∏
i=1

ψxi [z̄i; t]. (18)

Computation of (17), (18) relies on Algorithm 1 to compute
(9), (10) for each obstacle individually.

We then define the joint occupancy function φrX(ȳ, t) :
X×[0, T ]→ [0, 1] for a group of obstacles as the probability
of any obstacle in the group occupying a state ȳ. Because
of the mutual exclusivity of the configurations, the joint

occupancy function is described by

φrX(ȳ; t) =
∑

Z∈FSReachX(t,I)

ψX [Z; t]1O(Z)(ȳ) (19)

with O(Z) = ∪Nobs
i=1 O(z̄i). Similarly to (14), we

define D̄j(α, t) as the sets of configurations, j ∈
{1, 2, 3, ..., 2|FSReachX(t,I)|}, whose probability of occur-
rence is greater than α and the resulting overlap is non-
empty, and define DZ(α, t) as the collection of such sets for
a given time t in the configuration space Z.

Using an approach similar to that of Proposition 1, we can
show that the α superlevel set of φrX(ȳ; t) is

Sα(t;φrX) =
⋃

D̄j(α,t)∈DZ(α,t)

⋂
Z∈D̄j(α,t)

Nobs⋃
i=1

O(z̄i). (20)

Note that for Nobs = 1, (20) reduces to (15), as expected.
We see from (20) that the avoid set for multiple moving
obstacles is in general non-convex, and cannot be expressed
as a union of convex avoid sets. Thus, to utilize integer
programming based methods, the sets Sα(t;φrX) at every
t must be overapproximated as a union of convex sets.
Although this is typically computationally expensive, we
provide one such method in the next Section.

An alternative interpretation of (19) can be given by using
events Ei, which occur when 1O(xi)(ȳ) = 1. Essentially, the
event Ei corresponds to the ith obstacle occupying the state
ȳ ∈ X . Note that the event Ei depends only on the state of
ith obstacle center, and does not provide any restrictions on
the centers of other obstacles in the configuration. Equation
(19) can be rewritten as

φrX(ȳ; t) = EtX
[
1O(Z)(ȳ)

]
= PtX

{
Nobs⋃
i=1

Ei

}
(21)

where PtX denotes the joint probability measure associated
with the configuration of the obstacles. Such a formulation
is important for constructing an overapproximation of avoid
set (and hence under-approximation of the collision-free set)
that can be represented as the union of convex sets.

We define “safety” as ensuring that the probability of
collision of the robot with any of the obstacles at any given
time t ∈ [0, T ] is less than a specified threshold, α ∈ [0, 1].
We define the safe set SafeSet[t;α] as the complement of
the set Sα(t;φrX), such that

SafeSet[t;α] = {ȳ ∈ X |φrX(ȳ) < α} = X \ Sα(t;φrX).
(22)

Note that (22) is not guaranteed to be convex even if the
obstacles are convex. Convexification methods [31] for eval-
uation of (20) and (22) would need to be implemented online,
and are computationally expensive. Hence, for computational
tractability, at each time step t, we underapproximate (22)
using the definition of φrX in (21),

SafeSet[t;α] =

Nobs⋂
i=1

{
ȳ ∈ X

∣∣∣∣PtX(Ei) <
α

Nobs

}
. (23)



Since P(∪iEi) ≤
∑
i P(Ei),

SafeSet[t;α] ⊆ SafeSet[t;α]. (24)

By construction, Ei restricts the state of the ith obstacle
alone. Therefore, (23) can be computed using (15) as

SafeSet[t;α] =

Nobs⋂
i=1

(
X \ Si α

Nobs

(t;φrx)
)
. (25)

= X \
Nobs⋃
i=1

(
Si α
Nobs

(t;φrx)
)

(26)

Hence Problem 3 is solved, since ∪Nobsi=1 S
i
α

Nobs

(t;φrx) in (26)
is an overapproximation that can be written as a union of
convex sets. Here, Si α

Nobs

is the
(

α
Nobs

)
-superlevel set of the

occupancy function of the ith obstacle at time t. Note that
Si α
Nobs

(·, t) for every t = [0, 1, · · · , T ] and for every obstacle
i can be computed offline, and hence any form of online
convexification is avoided with this overapproximation.

The particular under-approximation will be specific to
the problem at hand. In general, integer variables must
be introduced to accommodate each obstacle, and the sets
in (20) approximated via a set of linear constraints. We
demonstrate this approach in the next Section.

IV. APPLICATION TO OBSTACLE AVOIDANCE

We now consider the specific problem of robot navigation
in an environment with Nobs rigid body obstacles moving
in straight lines with stochastic velocities. We use integer
programming [2], [4] in a receding horizon control frame-
work to drive the robot to the desired goal x̄G ∈ X in finite
time, while ensuring a probabilistic guarantee of safety. We
presume that robot and obstacle positions are known at each
instant.

We model the robot as a point mass under state-feedback
control

x̄R[t+ 1] = x̄R[t] +BRu[t] (27)

with state x̄R[t] ∈ X = R2×1 that represents robot position
and input u[t] ∈ U ⊆ R2. The input matrix is BR = TsI2,
with sampling time Ts.

The obstacles have identical dynamics and do not interact
with each other, and have rigid bodies that are unit boxes
with fixed heading. In the absence of any rotation, the ob-
stacle position is completely characterized by the dynamics
of the center. The dynamics of the center of the kth obstacle
is described

xko [t+ 1] = xko [t] +Bow
k[t] (28)

with state xko [t] ∈ X , stochastic velocity wk[t] ∈ W2
o,d

described by an i.i.d. process, and disturbance matrix Bo =
BR. The disturbance set Wo,d ⊆ R describes possible ob-
stacle velocities. We define the probability mass function of
the velocity vector wk to be ψwk [z], hence the state xko [t] is
a random vector in the probability space (X , σ(X ),Pt,x̄o,kxo )
for a given initial position x̄o ∈ X . The probability measure

associated with kth obstacle Pt,x̄o,kxo is induced from the
product measure associated with ψwk and depends on the
initial position x̄0 and time t.

We wish to solve Problem Prob A. The control policy
π(t, x̄R[t],X[t]) : [0, T − 1] × X 1+Nobs → U is a state-
feedback control with the set of feasible policies π(·) denoted
by M. Here, Q and Ru are symmetric positive definite
matrices of appropriate dimensions.

A conservative solution to Problem Prob A can be found
by solving the following optimization problem:

Prob B:

minimize J(π; x̄R[0],X[·])

subject to

 x̄R[t] by (27) with π ∀t
x̄R[t] ∈ SafeSet[t;α] ∀t

π ∈M
We replace the constraint xR[t] ∈ SafeSet[t;α] in Prob-

lem Prob B by defining

Ki = {ȳ ∈ X |Piȳ ≤ q̄i, Pi ∈ Rni×2, q̄i ∈ Rni} (29)

such that X \ (∪Nsi=1Ki) ⊆ SafeSet[t;α], resulting in the
following constraint set for i = 1, . . . , Ns:

δi,l ∈ {0, 1}, l = 1, . . . , ni (30a)

−p̄i,l[t]>x̄R[t] < −qi,l[t] +Mbigδi,l (30b)
ni∑
l=1

δi,l ≤ (ni − 1) (30c)

Here, p̄i,l[t] and qi,l[t] are the lth row of matrix Pi[t] and
lth element of vector q̄i[t] respectively. The term Mbig is
a large number that facilitates the constraint satisfaction.
The constraint (30c) ensures that at least one of the binary
variables δi,l = 0 for every i. This formulation ensures the
robot avoids every avoid set i = 1, 2, · · · , Ns.

We implement the problem with the following param-
eters: Ts = 0.2, T = 50, the stochastic speed set
Wo,d = {3, 2.5, 1.5, 2, 1, 0.8, 0.5, 0.1} m/s with probabilities
ψwk [z] ∈ {0.05, 0.05, 0.30, 0.20, 0.25, 0.10, 0.04, 0.01}.

The input space for the robot is U = [−0.2, 1]×[0.1, 1], so
that it cannot stop in the y-direction. Note that the average
velocity of each obstacle is 1.476 m/s while the maximum
robot velocity in both directions is 1 m/s, which is about
two-thirds the obstacle’s maximum velocity. The robot is
disadvantaged because it is slower than the obstacles.

To compute the forward stochastic reach sets and occu-
pancy function, we discretize the state space with a resolution
of 0.05 and follow Algorithm 1. We use YALMIP [32] with
the Gurobi [33] solver to solve Problem Prob B with the
constraint in (30). The computation took approximately 0.04
seconds to complete.

Results are shown in Figure 3 from a single initial
obstacle-robot configuration. We compare our probabilistic
approach with the case in which α = 0, which is equiv-
alent to the result from the conservative min-max solution
in [8]–[11], [14]. Note that the min-max solution becomes
infeasible at approximately 1.8 seconds (10 time steps). With
α = 0.045, meaning that obstacles should be avoided with
likelihood of 0.95, feasible solutions are found for the entire
time horizon.



V. CONCLUSIONS AND FUTURE WORK

This paper provides a method for computing the forward
stochastic reachable set and probability measure, with ap-
plication to obstacle avoidance. The method handles un-
controlled nonlinear systems, or systems with a known
controller, as well as an affine disturbance that captures
the stochastic element. We have described how the forward
stochastic reachable set and probability measure can be used
to generate an occupancy constraint that can be written as a
union as convex sets, and hence is amenable to use in existing
integer programming based methods for collision avoidance
over a finite horizon.

Future work includes the extension to problems with an
uncountable sample space, and development of computa-
tionally efficient online control methods. We also anticipate
application of these techniques to (dynamic) target reaching
problems.
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Fig. 3: Snapshots of stochastically moving obstacles and
robots and their trajectories. The red robot’s trajectory is
indicated by the blue line, and the pink robot’s trajectory is
indicated by the cyan line. The red robot uses α = 0.045
while the pink robot uses α = 0 (the min-max problem).



(a) (b) (c)

Fig. 1: (a) Forward stochastic reach sets over time, (b) forward stochastic reach probability measure at t = 10, (c) comparison
of run times for Algorithm 1 and the dynamic programming approach. The analysis was done for the system given in (11).

Prob A:

minimize
π

J(π; x̄R[0],X[·]) =
∑T
t=0

{
(x̄R[t]− x̄G)>Q(x̄R[t]− x̄G) + π(t, x̄R[t],X[t])TRu(t, x̄R[t],X[t])

}
subject to

 x̄R[t] = x̄R[t− 1] +BRπ(t, x̄R[t− 1],X[t]) t = 1, . . . , T,
x̄R[t] ∈ SafeSet[t;α] t = 1, . . . , T
π(·) ∈M
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