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Abstract— This paper is concerned with the analysis of the
kernel-based algorithm for gain function approximation in the
feedback particle filter. The exact gain function is the solution of
a Poisson equation involving a probability-weighted Laplacian.
The kernel-based method – introduced in our prior work –
allows one to approximate this solution using only particles
sampled from the probability distribution. This paper describes
new representations and algorithms based on the kernel-based
method. Theory surrounding the approximation is improved
and a novel formula for the gain function approximation is
derived. A procedure for carrying out error analysis of the
approximation is introduced. Certain asymptotic estimates for
bias and variance are derived for the general nonlinear non-
Gaussian case. Comparison with the constant gain function
approximation is provided. The results are illustrated with the
aid of some numerical experiments.

I. INTRODUCTION

This paper is concerned with the analysis of the kernel-
based algorithm for numerical approximation of the gain
function in the feedback particle filter algorithm; cf. [11].
The filter represents a numerical solution of the following
continuous-time nonlinear filtering problem:

Signal: dXt = a(Xt)dt + dBt , X0 ∼ p∗0 , (1a)
Observation: dZt = h(Xt)dt + dWt , (1b)

where Xt ∈ Rd is the (hidden) state at time t, the initial
condition X0 has the prior density p∗0 , Zt ∈ R is the obser-
vation, and {Bt}, {Wt} are mutually independent standard
Wiener processes taking values in Rd and R, respectively.
The mappings a(⋅) ∶Rd →Rd and h(⋅) ∶Rd →R are given C1

functions. The goal of the filtering problem is to approximate
the posterior distribution of the state Xt given the time history
of observations (filtration) Zt ∶= σ(Zs ∶ 0 ≤ s ≤ t).

The feedback particle filter (FPF) is a controlled stochastic
differential equation (sde),

FPF:

dX i
t = a(X i

t )dt + dBi
t +Kt(X i

t )○(dZt −
h(X i

t )+ ĥt

2
dt), X i

0 ∼ p∗0 ,

for i = 1, . . . ,N, where X i
t ∈Rd is the state of the ith particle at

time t, the initial condition X i
0 ∼ p∗0 , Bi

t is a standard Wiener
process, and ĥt ∶= E[h(X i

t )∣Zt]. Both Bi
t and X i

0 are mutually
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independent and also independent of Xt ,Zt . The ○ indicates
that the sde is expressed in its Stratonovich form.

The gain function Kt is obtained by solving a weighted
Poisson equation: For each fixed time t, the function φ is the
solution to a Poisson equation,

PDE:
∇⋅(p(x,t)∇φ(x,t)) = −(h(x)− ĥ)p(x,t),

∫ φ(x,t)p(x,t)dx = 0 (zero-mean),
(2)

where ∇ and ∇⋅ denote the gradient and the divergence
operators, respectively, and p denotes the conditional density
of X i

t given Zt . In terms of the solution φ , the gain function
is given by,

Gain Function: Kt(x) = ∇φ(x,t) .

The gain function Kt is vector-valued (with dimension d×1)
and it needs to be obtained for each fixed time t. For the
linear Gaussian case, the gain function is the Kalman gain.

FPF is an exact algorithm: If the initial condition X i
0 is

sampled from the prior p∗0 then

P[Xt ∈ A ∣ Zt] = P[X i
t ∈ A ∣ Zt], ∀ A ⊂Rd , t > 0.

In a numerical implementation, a finite number, N, of parti-
cles is simulated and P[X i

t ∈A ∣ Zt] ≈ 1
N ∑

N
i=1 1[X i

t ∈A] by the
Law of Large Numbers (LLN).

The challenging part in the numerical implementation of
the FPF algorithm is the solution of the PDE (2). This
has been the subject of a number of recent studies: In
our original FPF papers, a Galerkin numerical method was
proposed; cf., [13], [14]. A special case of the Galerkin
solution is the constant gain approximation formula which is
often a popular choice in practice [13], [10], [12], [2]. The
main issue with the Galerkin approximation is to choose the
basis functions. A proper orthogonal decomposition (POD)-
based procedure to select basis functions is introduced in [3]
and certain continuation schemes appear in [8]. Apart from
the Galerkin procedure, probabilistic approaches based on
dynamic programming appear in [9].

In a recent work, we introduced a basis-free kernel-
based algorithm for approximating the solution of the gain
function [11]. The key step is to construct a Markov matrix
on the N-node graph defined by the N particles {X i

t }N
i=1. The

value of the function φ for the particles, φ(X i
t ), is then

approximated by solving a fixed-point problem involving
the Markov matrix. The fixed-point problem is shown to be
a contraction and the method of successive approximation
applies to numerically obtain the solution.
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The present paper presents a continuation and refinement
of the analysis for the kernel-based method. The contribu-
tions are as follows: A novel formula for the gain function
is derived for the kernel-based approximation. A procedure
for carrying out error analysis of the approximation is intro-
duced. Certain asymptotic estimates for bias and variance
are derived for the general nonlinear non-Gaussian case.
Comparison with the constant gain approximation formula
are provided. These results are illustrated with the aid of
some numerical experiments.

The outline of the remainder of this paper is as follows:
The mathematical problem of the gain function approxima-
tion together with a summary of known results on this topic
appears in Sec. II. The kernel-based algorithm including
the novel formula for gain function, referred to as (G2),
appears in Sec. III. The main theoretical results of this paper
including the bias and variance estimates appear in Sec. IV.
Some numerical experiments for the same appear in Sec. V.

Notation. Z+ denotes the set of positive integers and Zd
+

is the set of d-tuples. For vectors x,y ∈Rd , the dot product
is denoted as x ⋅ y and ∣x∣ ∶= √

x ⋅x. Throughout the paper, it
is assumed that the probability measures admit a smooth
Lebesgue density. A density for a Gaussian random variable
with mean µ and variance Σ is denoted as N(µ,Σ). Ck

is used to denote the space of k-times continuously differ-
entiable functions. For a function f , ∇ f = ∂ f

∂xi
is used to

denote the gradient. L2(Rd ,ρ) is the Hilbert space of square
integrable functions on Rd equipped with the inner-product,
⟨φ ,ψ⟩

L2 ∶= ∫ φ(x)ψ(x)ρ(x)dx. The associated norm is de-
noted as ∥φ∥2

2 ∶= ⟨φ ,φ⟩. The space H1(Rd ,ρ) is the space of
square integrable functions φ whose derivative (defined in
the weak sense) is in L2(Rd ,ρ). For the remainder of this
paper, L2 and H1 is used to denote L2(Rd ,ρ) and H1(Rd ,ρ),
respectively.

II. PRELIMINARIES

A. Problem Statement

The Poisson equation (2) is expressed as,

PDE
−∆ρ φ = h− ĥ,

∫ φρ dx = 0 (zero-mean),
(3)

where ρ is a probability density on Rd , ∆ρ φ ∶= 1
ρ
∇⋅(ρ∇φ).

The gain function K(x) ∶= ∇φ(x).

Problem statement: Given N independent samples
{X1,⋯,X i,⋯,XN} drawn from ρ , approximate the gain
function {K(X1),⋯,K(X i),⋯,K(XN)}. The density ρ is
not explicitly known.

The appropriate function space for the solutions of (3) is
the co-dimension 1 subspace L2

0 ∶= {φ ∈ L2;∫ φρ dx = 0} and
H1

0 ∶= {φ ∈H1;∫ φρ dx = 0}; cf. [7], [13].

B. Existence-Uniqueness

On multiplying both side of (3) by test function ψ , one
obtains the weak-form of the PDE:

∫ ∇φ ⋅∇ψ ρ dx = ∫ (h− ĥ)ψ ρ dx, ∀ψ ∈H1. (4)

The following is assumed throughout the paper:
(i) Assumption A1: The probability density is of the

form ρ(x) = e−V(x) where V ∈C2 with

liminf
x→∞

[−∆V(x)+ 1
2
∣∇V(x)∣2] =∞.

(ii) Assumption A2: The function h,∇h ∈ L2.
Under the Assumption A1, the density ρ admits a spectral

gap (or Poincaré inequality) ([1] Thm 4.6.3), i.e., ∃λ1 > 0
such that,

∫ f 2
ρ dx ≤ 1

λ1
∫ ∣∇ f ∣2 ρ dx, ∀ f ∈H1

0 .

The Poincaré inequality implies the existence and uniqueness
of a weak solution to the weighted Poisson equation.

Theorem 1: [Theorem 2.2 in [7]]. Assume (A1)-(A2).
Then there exists a unique weak solution φ ∈H1

0 (Rd ;ρ) sat-
isfying (4). Moreover, the gain function K =∇φ is controlled
by the size of the data:

∫ ∣K∣2 ρ dx ≤ 1
λ1
∫ ∣h− ĥ∣2 ρ dx.

There are two special cases where the exact solution can
be found:

(i) Scalar case where the state dimension d = 1;
(ii) Gaussian case where the density ρ is a Gaussian.

The results for these two special cases appear in the follow-
ing two subsections.

C. Exact Solution in the Scalar Case

In the scalar case (where d = 1), the Poisson equation is:

− 1
ρ(x)

d
dx

(ρ(x) dφ

dx
(x)) = h− ĥ.

Integrating twice yields the solution explicitly,

K(x) = dφ

dx
(x) = − 1

ρ(x) ∫
x

−∞
ρ(z)(h(z)− ĥ)dz. (5)

For the particular choice of ρ as the sum of two Gaussians
N(−1,σ2) and N(+1,σ2) with σ

2 = 0.2 and h(x) = x, the
solution obtained using (5) is depicted in Fig. 1.

D. Exact Spectral Solution for the Gaussian Density

Under Assumption (A1), the spectrum is known to be
discrete with an ordered sequence of eigenvalues 0 = λ0 <
λ1 ≤ λ2 ≤ ⋯ and associated eigenfunctions {en} that form a
complete orthonormal basis of L2 [Corollary 4.10.9 in [1]].
The trivial eigenvalue λ0 = 0 with associated eigenfunction



Fig. 1. The exact solution to the Poisson equation using the formula (5).
The density ρ is the sum of two Gaussians N(−1,σ2

) and N(+1,σ2
), and

h(x) = x. The density is depicted as the shaded curve in the background.

e0 = 1. On the subspace of zero-mean functions, the spectral
decomposition yields: For φ ∈ L2

0,

−∆ρ φ =
∞
∑
m=1

λm < em,φ > em.

The spectral gap condition (II-B) implies that λ1 > 0.
The spectral representation (II-D) yields the following

closed-form solution of the PDE (3):

φ =
N

∑
m=1

1
λm

< em,h− ĥ > em.

The spectral representation formula (II-D) is used to
obtain the exact solution for the Gaussian case where the
eigenvalues and the eigenfunctions are explicitly known in
terms of Hermite polynomials.

Definition 1: The Hermite polynomials are recursively
defined as

h̷n+1(x) = 2 h̷n(x)− h̷′n(x), h̷0(x) = 1,

where the prime ′ denotes the derivative.

Proposition 1: Suppose the density ρ is Gaussian (µ,Σ)
where the mean µ ∈Rd and the covariance Σ is assumed to
be a strictly positive definite symmetric matrix. Express Σ =
V DV T where D = diag(σ

2
1 , . . . ,σ

2
d ) and V = [V1∣⋯∣Vj ∣⋯∣Vd]

is an orthonormal matrix with the jth column denoted as
Vj ∈Rd . For n = (n1, . . . ,nd) ∈Zd

+,
(i) The eigenvalues are,

λn =
d

∑
j=1

n j

σ2
j
.

(ii) The corresponding eigenfunctions are,

en(x) =
d

∏
j=1

h̷n j(
Vj ⋅ (x−µ)

σ j
),

where h̷n j is the Hermite polynomial.

Fig. 2. Constant gain approximation: Approximating nonlinear K by its
expected value E[K].

An immediate corollary is that the first non-zero eigen-
value is 1

σ2
max

and the corresponding eigenfunction is ψ(x) =
Vmax ⋅ (x− µ), where σ

2
max is the largest eigenvalue of the

covariance matrix and Vmax ∈Rd is the corresponding eigen-
vector.

Example 1: Suppose the density ρ is a Gaussian (µ,Σ).

(i) The observation function h(x) = H ⋅x, where H ∈Rd .
Then, φ = ΣH ⋅ x and the gain function K = ΣH is the
Kalman gain.

(ii) Suppose d = 2, µ = [0,0], Σ = [σ
2
1 0

0 σ
2
2
], and the

observation function h(x1,x2) = x1 x2. Then,

φ(x) = 1
1

σ2
1
+ 1

σ2
2

x1x2 and K(x1,x2) =
1

1
σ2

1
+ 1

σ2
2

[x2
x1

] .

In the general non-Gaussian case, the solution is not
known in an explicit form and must be numerically approxi-
mated. Note that even in the two exact cases, one may need
to numerically approximate the solution because the density
is not given in an explicit form. A popular choice is the
constant gain approximation briefly described next.

E. Constant gain approximation

The constant gain approximation is the best – in the least-
square sense – constant approximation of the gain function
(see Fig. 2). Precisely, consider the following least-square
optimization problem:

κ
∗ = arg min

κ∈Rd
Eρ[∣K−κ ∣2].

By using a standard sum of square argument, κ
∗ = Eρ[K].

The expected value admits an explicit formula: In the weak-
form (4), choose the test functions to be the coordinate
functions: ψk(x) = xk for k = 1,2,⋯,d. Writing ψ(x) =
(ψ1,ψ2,⋯,ψd)T = x,

κ
∗ = Eρ[K] = Eρ[(h− ĥ)ψ] = ∫

Rd
(h(x)− ĥ) x ρ(x)dx.



On computing the integral using only the particles, one
obtains the formula for the gain function approximation:

K ≈ 1
N

N

∑
i=1

(h(X i)− ĥ(N)) X i,

where ĥ(N) = N−1∑N
i=1 h(X i). This formula is referred to

as the constant gain approximation of the gain function;
cf., [13]. It is a popular choice in applications [13], [10],
[12], [2]..

III. KERNEL-BASED APPROXIMATION

Semigroup: The spectral gap condition (II-B) implies that
λ1 > 0. Consequently, the semigroup

et∆ρ φ ∶=
∞
∑
m=1

e−tλm < em,φ > em (6)

is a strict contraction on the subspace L2
0. It is also easy to

see that µ is an invariant measure and ∫ et∆ρ φ(x)dµ(x) =
∫ φ(x)dµ(x) = 0 for all φ ∈ L2

0.

The semigroup formula (6) is used to obtain the solution
of the Poisson equation (3) by solving the following fixed-
point equation for any fixed positive value of t:

φ = et∆ρ φ +∫
t

0
es∆ρ (h− ĥ)ds. (7)

A unique solution exists because et∆ρ is a contraction on L2
0.

Kernel-based method: In the kernel-based algorithm, one
approximates the solution of the fixed point problem (7) by
approximating the semigroup by an integral operator for t = ε .
The approximation, introduced in [11], has three main steps:

Exact ∶ φ = eε∆ρ φ +∫
ε

0
es∆ρ (h− ĥ)ds (8)

Kernel approx: φε = Tε φε +∫
ε

0
Ts(h− ĥ)ds (9)

Empirical approx: φ
(N)
ε = T (N)ε φ

(N)
ε +∫

ε

0
T (N)s (h− ĥ)ds

(10)

The justification for these steps is as follows:

(i) A solution of the Poisson equation (3) is also a
solution of the fixed-point problem (8) where ε > 0
is arbitrary. A unique solution exists because eε∆ρ is
contraction on L2

0.

(ii) The Kernel approximation (9) involves approximat-
ing the semigroup eε∆ρ by an integral operator Tε ,

Tε f ∶= ∫
Rd

kε(x,y) f (y)ρ(y)dy (11)

where the exact form of kε appears in the Appendix,
where it is also shown that eε∆ρ ≈ Tε as ε ↓ 0. The
approximation of the semigroup by the integral operator
appears in [4], [5].

(iii) The empirical approximation (10) involves approxi-
mating the integral operator empirically in terms of the
particles,

T (N)ε f (x) ∶= 1
N

N

∑
i=1

k(N)ε (x,X i) f (X i), (12)

justified by the LLN.

The gain K
(N)
ε is computed by taking the gradient of the

fixed-point equation (10). For this purpose, denote,

∇T (N)ε f (x) ∶= 1
N

N

∑
j=1
∇k(N)ε (x,X j) f (X j)

= 1
2ε

[ 1
N

N

∑
i=1

k(N)ε (x,X i)X i f (X i)

−( 1
N

N

∑
i=1

k(N)ε (x,X i)X i)( 1
N

N

∑
i=1

k(N)ε (x,X i) f (X i))].
(13)

Next, two approximate formulae for K
(N)
ε are presented

based on two different approximations of the integral

∫
ε

0 T (N)s (h− ĥ)ds:

Approximation 1: The integral term is approximated by
ε(h− ĥ) and the resulting formula for the gain is,

(G1) K(N)ε (x) ∶= ∇T (N)ε φ
(N)
ε (x)+ε∇h(x). (14)

By approximating the integral term differently, one can
avoid the need to take a derivative of h.

Approximation 2: The integral term is approximated by
T (N)ε (h− ĥ). The resulting formula for the gain is,

(G2) K(N)ε (x) ∶= ∇T (N)ε φ
(N)
ε (x)+ε∇T (N)ε (h− ĥ)(x).

(15)

Remark 1: Although ∇T (N)ε and K(N)ε are ultimately im-
portant in the numerical algorithm (described next), it is
useful to introduce the limiting (as N →∞) variables ∇Tε

and Kε . The operator ∇Tε is defined as follows:

∇Tε f (x) = ∫
Rd
∇xkε(x,y) f (y)ρ(y)dy

= 1
2ε

[Tε(e f )−Tε(e)Tε( f )](x)
(16)

where e is the identity function e(x) = x.
In terms of ∇Tε , the gain function Kε is defined by taking

of the gradient of the fixed-point equation (9). This leads to
the limiting counterpart of the approximation (G1) and (G2).
In particular, analogous to (G2),

Kε(x) ∶= ∇Tε φε(x)+ε∇Tε(h− ĥ)(x),

where φε is the solution of the fixed-point equation (9).

Numerical Algorithm: A numerical implementation in-
volves the following steps:



(i) Assemble a N×N Markov matrix to approximate the
finite rank operator T (N)ε in (12). The (i, j)-entry of the
matrix is given by,

Ti j =
1
N

N

∑
j=1

k(N)ε (X i,X j).

(ii) Use the method of successive approximation to solve
the discrete counterpart of the fixed-point equation (10),

Φ =TΦ+ε(h− ĥ(N)) (17)

where Φ ∶= [φ (N)ε (X1), . . . ,φ (N)ε (XN)] ∈RN is the (un-
known) solution, h ∶= [h(X1), . . . ,h(XN)] ∈RN is given,
and ĥ(N) = 1

N ∑
N
i=1 h(X i). In filtering applications, the

solution from the previous time-step is typically used
to initialize the algorithm.

(iii) Once Φ has been computed, the gain function
{K(X1),⋯,K(X i),⋯,K(XN)} is obtained by using ei-
ther (G1) or (G2). Note that the discrete counterpart of
∇T (N)ε is obtained using the Markov matrix T.

The overall algorithm is tabulated as Algorithm 1 where
(G2) is used for the gain function approximation.

Algorithm 1 Kernel-based gain function approximation

Input: {X i}N
i=1, H ∶= {h(X i)}N

i=1,Φ0 ∶= {φ0(X i)}N
i=1

Output: Φ ∶= {φ(X i)}N
i=1, {∇φ(X i)}N

i=1

Calculate gi j ∶= exp(−∣X i−X j ∣2/4ε) for i, j = 1 to N.

Calculate ki j ∶=
gi j√

∑l gil
√
∑l g jl

for i, j = 1 to N.

Calculate Ti j ∶=
ki j
∑l kil

for i, j = 1 to N.
Calculate ĥ(N) = 1

N ∑
N
i=1 Hi.

for t = 1 to T do
Solve Φt = T Φt−1+ε(H − ĥ).

Φt =Φt − 1
N ∑

N
i=1 Φt,i

end for
Calculate

K(X i) = 1
2ε

N

∑
j=1

[Ti j(Φ j +ε(H j − ĥ))(X j −
N

∑
k=1

TikXk)]

IV. ERROR ANALYSIS

The objective is to characterize the approximation error
E[∥K(N)ε −K∥2]. Using the triangle inequality,

E[∥K(N)ε −K∥2] ≤ E[∥K(N)ε −Kε∥2]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Variance

+ ∥Kε −K∥2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Bias

, (18)

where K = ∇φ denotes the exact gain function, and Kε(x) =
∇φε(x) and K

(N)
ε (x) = ∇φ

(N)
ε (x) are defined by taking the

gradient of the fixed-point equation (9) and (10), respectively.
The following Theorem provides error estimates for the

gain function in the asymptotic limit as ε ↓ 0 and N →∞.
These estimates apply to either of the two approximations,

Fig. 3. The figure shows explicit error ∥Kε −K∥2

(G1) or (G2), used to obtain the gain function. A sketch of
the proof appears in the Appendix.

Theorem 2: Suppose the assumptions (A1)-(A2) hold for
the density ρ and the function h, with spectral gap constant
λ1. Then

1) (Bias) In the asymptotic limit as ε ↓ 0,

∥Kε −K∥2 ≤ Cε +h.o.t., (19)

2) (Variance) In the asymptotic limit as ε ↓ 0 and N→∞,

E[∥Kε −K(N)ε ∥2] ≤
C

N1/2ε1+d/4 +h.o.t., (20)

where the constant C depends upon the function h.

A. Difference between (G1) and (G2)

In the asymptotic limit as ε ↓ 0, the two approximations
(G1) and (G2) yield identical error estimates. The difference
arises as ε becomes larger. The following Proposition pro-
vides explicit error estimates for the bias in the special linear
Gaussian case.

Proposition 2: Suppose the density ρ is a Gaussian
N(0,σ2I) and h(x) = H ⋅ x. Then the bias for the two ap-
proximations is given by the following closed-form formula:

Bias for (G1): ∥Kε −K∥2 = ε
σ

2−4ε

σ2+4ε
∣H ∣, (21)

Bias for (G2): ∥Kε −K∥2 = ε
σ

6

(σ2+4ε)(σ4+3εσ2+4ε2) ∣H ∣.
(22)

Note that the bias has the same scaling, ∼ ε ∣H ∣, as ε ↓ 0.
However as ε gets larger, the two approximations behave
very differently. For (G1), the bias grows unbounded as ε →
∞. Remarkably, for (G2), the bias goes to zero as ε →∞.
Figure 3 depicts the bias error for a scalar example where
σ

2 = 1 and H = 1.
The following Proposition shows that the limit ε →∞ is

well-behaved for the (G2) approximation more generally. In
fact, one recovers the constant gain approximation in that
limit.



(a) (b)

Fig. 4. Numerical gain function approximation (G2) for a range of ε . The dimension d = 1 and the number of particles N = 200.

Proposition 3: Consider the gain approximation (G2)
given by (15). Then,

lim
ε→∞

Kε = E[K],

lim
ε→∞

K
(N)
ε = 1

N

N

∑
i=1

(h(X i)− ĥ(N))X i.

V. NUMERICS

Suppose the density ρ is a mixture of two Gaussians,
1
2N(−µ,σ2I) + 1

2N(+µ,σ2I), where µ = [1,0, . . . ,0] ∈ Rd ,
and σ

2 = 0.2. The observation function h(x) = x1. In this case,
the exact gain function K(x) = [K1(x),0, . . . ,0] where K1(⋅)
is obtained using the explicit formula (5) as in the scalar
case.

Figure 4 depicts a comparison between the exact solution
and the approximate solution obtained using the kernel
approximation formula (G2). The dimension d = 1 and the
number of particles N = 200.

● The part (a) of the figure depicts the gain function for
a range of (relatively large) ε values {0.1,0.2,0.4,0.8}
where the error is dominated by the bias. The constant
gain approximation is also depicted and, consistent with
Proposition 3, the (G2) approximation converges to the
constant as ε gets larger.

● The part (b) of the figure depicts a comparison for a
range of (very small) ε values {0.01,0.001}. At N = 200
particles, the error in this range is dominated by the
variance. This is manifested in a somewhat irregular
spread of the particles for these ε values.

In the next study, we experimentally evaluated the error
for a range of ε and d, again with a fixed N = 200. For a
single simulation, the error is defined as

Error ∶=
¿
ÁÁÀ 1

N

N

∑
i=1

∣K(N)ε (X i)−K(X i)∣2.

Figure 5(a) and 5(b) depict the averaged error obtained from
averaging over M = 100 simulations. In each simulation, the
parameters ε and d are fixed but a different realization of
N = 200 particles is sampled from the density ρ .

● Figure 5(a) depicts the averaged error as ε and d are
varied. As ε becomes large, the kernel gain converges
the constant gain formula. For relatively large values of
ε , the error is dominated by bias which is insensitive to
the size of dimension d.

● Figure 5(b) depicts the averaged error for small values
of ε . The logarithmic scale is used to better assess
the asymptotic characteristics of the error as a function
of ε and d. Recall that the estimates in Theorem 2
predict that the error scales as ε

−1−d/4 for the small
ε large N limit. To verify the prediction, an empirical
exponent was computed by fitting a linear curve to
the error data on the logarithmic scale. The empirical
exponents together with the error estimates predicted by
Theorem 2 are tabulated in Table I. It is observed that
the empirical exponents are smaller than the predictions.
The gap suggests that the error bound may not be tight.
A more thorough comparison is a subject of continuing
investigation.

d 1 2 3 4
1+d/4 1.25 1.5 1.75 2.0

α 0.83 1.12 1.36 1.56

TABLE I
COMPARISON OF EMPIRICALLY OBTAINED EXPONENTS (α ) WITH THE

THEORETICAL EXPONENTS 1+d/4. EMPIRICAL EXPONENTS ARE

OBTAINED BY CURVE FITTING THE DATA IN FIG. 5(B).
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APPENDIX

A. Kernel-based algorithm

This section provides additional details for the kernel-
based algorithm presented in Sec. III. We begin with some
definitions and then provide justification for the three main
steps, fixed-point equations (8)-(10).

Definitions: The Gaussian kernel is denoted as gε(x,y) ∶=
exp(− ∥x−y∥2

4ε
). The approximating family of operators {Tε ,ε ≥

0} are defined as follows: For f ∶Rd →R,

Tε f (x) ∶= ∫
Rd

kε(x,y) f (y)ρ(y)dy, (23)

where
kε ∶ (x,y) = 1

nε(x)
gε(x,y)√

∫ gε(y,z)ρ(z)dz
,

and nε is the normalization factor, chosen such that
∫ kε(x,y)ρ(y)dy = 1. The finite-N approximation of these
operators, denoted as {T (N)ε }ε≥0,N∈N, is defined as,

T (N)ε f (x) ∶= 1
N

N

∑
i=1

k(N)ε (x,X i) f (X i), (24)

where

k(N)ε (x,y) ∶= 1

n(N)ε (x)
gε(x,y)√
∑N

j=1 gε(y,X j)
, (25)

and n(N)ε is chosen such that 1
N ∑

N
i=1 kε(x,X i) = 1.

Justification of the fixed-point equations (8)-(10):

(i) Definition of the semigroup eε∆ρ implies:

eε∆ρ f = f +∫
ε

0
es∆ρ ∆ρ f ds

On choosing f = φ where ∆ρ φ = −(h− ĥ) yields the exact
fixed point equation (8).

(ii) The justification for approximation Tε ≈ eε∆ρ is the
following Lemma.

Lemma 1: Consider the family of Markov operators
{Tε}ε≥0. Fix a smooth function f . Then

Tε f (x) = f (x)+ε∆ρ f (x)+O(ε
2). (26)

Proof: Introduce the heat semigroup Gε as,

Gε f (x) ∶= ∫
Rd

gε(x−y) f (y)ρ(y)dy. (27)



The following are the two properties of the heat semigroup:

G0 f (x) = ρ(x) f (x), (28)
d

dε
Gε f (x)∣

ε=0 = ∆(ρ f )(x). (29)

In terms of Gε , the operator Tε is expressed as,

Tε f (x) = 1
nε(x)Gε(

f√
Gε 1

)(x), (30)

where nε(x) = Gε( 1√
Gε 1

)(x). The Taylor expansion of
Tε f (x) yields,

Tε f (x) = T0 f (x)+ε
d

dε
Tε f (x)∣

ε=0+O(ε
2).

Now, the properties (28) and (29) can be used to show that
T0 f (x) = f (x) and d

dε
Tε f (x)∣

ε=0 = ∆ρ f (x).

(iii) The justification for the third step is Law of Large
numbers. Moreover the following lemma provides a bound
for the L2 error.

Lemma 2: Consider the Markov operators Tε and T (N)ε

defined in (23) and (24). Then ∀ f ∈ L2(ρ),

E[∥Tε f −T (N)ε f ∥2
L2(ρ)] ≤

C
Nεd/2 .

Proof: The bound is proved by explicitly evaluating the
error E[∥Gε f −G(N)ε f ∥2

L2(ρ)] where Gε is defined in (27) and

G(N)ε f (x) ∶= 1
N ∑

N
i=1 gε(x,X i) f (X i). Since {X i} are i.i.d.,

E[∥Gε f −G(N)ε f ∥2] ≤
1
N ∫ ∫ g2

ε(x,y) f (y)2
ρ(y)ρ(x)dydx.

Subsequently, using the fact that g2
ε(x,y) = C

εd/2 g2ε(x,y) and
∫ g2ε(x,y)ρ(x)dx ≤C, one obtains,

E[∥Gε f −G(N)ε f ∥2
L2(ρ)] ≤

C∥ f ∥2
L2(ρ)

Nεd/2 ,

and the estimate follows because of (30).

B. Sketch of the Proof of Theorem 2

Estimate for Bias: The crucial property is that Tε is a
bounded strictly contractive operator on H1

0 with

∥(I−Tε)−1∥H1
0 (ρ)

= 1
ελ1

+O(1), (31)

where λ1 is the spectral bound for ∆ρ . Since φε solves the
fixed-point equation (9),

φε = Tε φε +ε(h− ĥ)+O(ε
2).

Therefore,

φ −φε = φ −Tε φ +Tε(φ −φε)−ε(h− ĥ)+O(ε
2)

= −ε∆ρ φ +Tε(φ −φε)−ε(h− ĥ)+O(ε
2),

where we have used Lemma 1. Noting −∆ρ φ = (h− ĥ),

φ −φε = Tε(φ −φε)+O(ε
2).

The bias estimate now follows from using the norm esti-
mate (31).

Estimate for variance: The variance estimate follows from
using Lemma 2. The key steps are to show that

∥T (N)ε f −Tε f ∥H1
0 (ρ)
→ 0 a.s,

which follows from the LLN, and that T (N)ε are bounded and
compact on H1

0 (ρ). This allows one to conclude that ∥(I −
T (N)ε )−1∥H1

0 (ρ)
is bounded. These forms of approximation

error bounds in a somewhat more general context of compact
operators appears in [Chapter 7 of [6]].

C. Proof of proposition 2

For the Gaussian density N(0,σ2I), the completion of
square is used to obtain an explicit form for the operator Tε :

Tε f (x) = ∫
1√

4πε(1−δε)
exp[−(y−(1−δε)x)2

4ε(1−δε)
] f (y)dy,

where δε ∶= ε
σ

2+4ε

σ4+3εσ2+4ε2 . For the linear function h(x) =H ⋅x,
the fixed-point equation (9) admits an explicit solution,

φε =
ε

δε

H ⋅x

where we used the fact that Tε x = 1−δε x.
Since the solution φε is known in an explicit form, one

can easily compute the gain function solution in an explicit
form:

(G1) Kε =
ε

δε

H = σ
2H −ε

σ
2−4ε

σ2+4ε
H,

(G2) Kε = σ
2H + εσ

6

(σ2+4ε)(σ4+3εσ2+4ε2)H.

The error estimates follow based on the exact Kalman gain
solution K = σ

2H.

D. Proof of Proposition 3

The proof relies on the fact that ε
d/2gε(x,y) converges to

a constant as ε →∞. This would imply that kε(x,y) → 1 as
ε →∞. Therefore for a fixed function f ,

lim
ε→∞

Tε f (x) = ∫ f (x)ρ(x)dx =∶ f̂

Define the limit T∞ ∶= limε→∞Tε and observe:

lim
ε→∞

φε

ε
= lim

ε→∞
(I−Tε)−1(h− ĥ) = (I−T∞)−1(h− ĥ) = h− ĥ

where the last step uses the fact that ĥ = T∞h and we as-
sumed (I−Tε)−1h→(I−T∞)h. Then the gain approximation
formula (15) implies:

lim
ε→∞

Kε(x) = lim
ε→∞

1
2
[Tε(e

φε

ε
)−Tε(e)Tε(

φε

ε
)]

+ lim
ε→∞

1
2
[Tε(eh)−Tε(e)Tε(h)]

= ∫ x(h(x)− ĥ)ρ(x)dx

The argument for the finite-N case is identical and omitted
on account of space.


