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Towards Realistic Covariance Estimation of ICP-based Kinect V1 Scan
Matching: the 1D Case

Martin Barczyk and Silvère Bonnabel

Abstract— The Iterative Closest Point (ICP) algorithm is a
classical approach to obtaining relative pose estimates of a
robot by scan matching successive point clouds captured by
an onboard depth camera such as the Kinect V1, which has
enjoyed tremendous popularity for indoor robotics due to its
low cost and good performance. Because the sensed 3D point
clouds are noticeably corrupted by noise, it is useful to associate
a covariance matrix to the relative pose estimates, either for
diagnostics or for fusing them with other onboard sensors by
means of a probabilistic sensor fusion method such as the
Extended Kalman Filter (EKF). In this paper, we review the
sensing characteristics of the Kinect camera, then present a
novel approach to estimating the covariance of pose estimates
obtained from ICP-based scan matching of point clouds from
this sensor. Our key observation is that the prevailing source
of error for ICP registration of Kinect-measured point clouds
is quantization noise rather than white noise. We then derive
a closed-form formula which can be computed in real time
onboard the robot’s hardware, for the case where only 1D
translations are considered. Experimental testing against a
ground truth provided by an optical motion capture system
validates the effectiveness of our proposed method.

I. INTRODUCTION

Scan matching [1] is the process of computing the relative
roto-translation between successive point clouds measured
by a scanning sensor onboard a robot moving through a
structured environment. The resulting estimates are then used
to incrementally compute the global pose of the vehicle. A
classical approach to scan matching is the Iterative Closest-
Point (ICP) algorithm [2], [3]. A large number of implemen-
tations of the ICP algorithm have been developed over the
years [4], [5], which vary in the details of how point pairs are
selected, matched or rejected, and the choice of the alignment
error cost function: point-to-point [2] or point-to-plane [3].

The resulting pose estimates are typically fused with other
measurements such as wheel odometry, visual landmark
detection and/or GPS using probabilistic filters such as the
Extended Kalman Filter (EKF) [6], EKF Variants [7], particle
filters [8], or optimization-based smoothing methods as in
GraphSLAM [9]. In order to do this, we require a covariance
matrix which quantifies the uncertainty associated to the pose
estimated by scan matching.

Current methods to associate a covariance to the ICP
estimates are either computationally costly, such as the one
proposed in [10], or applications of the pioneering work
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by A. Censi [11], [12]. This author proposes an explicit
formula based on assuming Gaussian white sensor noise.
But this assumption does not match the noise characteris-
tics of a Kinect, for which the formula provides greatly
over-optimistic covariance estimates. Following our earlier
work [13], [14], we seek to develop a real-time method to
associate a realistic covariance to pose estimates obtained
from scan matching point clouds from a low-cost Kinect V1.
Note that even for different sensing technology such as LI-
DAR, remarkably small covariance estimates resulting from
applying the formula of [12] have been recently reported in
[15].

The contribution of the present paper is to present a novel
approach to estimating covariance values for ICP-based scan
matching of point clouds from a Kinect V1, which focuses
on quantization noise rather than Gaussian white noise.
We demonstrate its validity through experimental hardware
testing. The proposed method is restricted to translations
along a single axis, but the approach may be generalized
to the full 6 DoF case. This is deferred to future work.

The remainder of this paper is structured as follows.
Section II describes the Kinect V1 hardware and its noise
characteristics. Section III reviews the covariance of esti-
mates obtained from ICP-based scan matching and explains
why quantization errors dominate over Gaussian white noise
errors in the Kinect V1. Section IV introduces a novel
approach to accounting for depth camera quantization effects
when calculating the covariance of ICP-based scan matching
estimates. Section V provides experimental hardware results
which validate the proposed approach. Finally Section VI
offers conclusions and lays out future work.

II. KINECT V1 CAMERA

The Kinect V1 depth camera was originally sold as a
gaming peripheral for Microsoft’s XBox 360 console. The
Kinect’s sensing technology is well described in [16]. This
product has found tremendous popularity for indoor robotics
applications due to its low cost and good sensing perfor-
mance. The Kinect employs an infrared laser to project a
speckle pattern ahead of itself, whose image is read back
using an infrared camera offset from the laser projector.
By correlating the acquired image with a stored reference
image corresponding to a known distance, the unit computes
a depth map of the scene which is employed to construct a
3D point cloud as shown in the next paragraph. The depth
maps computed by the Kinect, corresponding to individual
pixels of the IR camera image, are available at a rate of



30 Hz. The IR camera has a total angular field of view of
57◦ horizontally and 43◦ vertically.

Each depth map reported by the Kinect is provided as
a vector of 11-bit unsigned integers (values between 0
and 2047), describing the normalized depth values of the
640 × 480 IR camera image pixels from the top-left corner
and proceeding right then wrapping around one line down.
Let u ∈ [0, 639] and v ∈ [0, 479] denote the coordinates
of a given pixel, with (u, v) = (0, 0) at the top-left corner,
with corresponding normalized depth value w. Each triplet
(u, v, w) is converted to a 3D point (x, y, z) in a right-down-
forward axes frame using the following formulas:

d = Ks(bs − w) (1a)

z =
fx(lB)

d
(1b)

x =
z(u− cx)

fx
(1c)

y =
z(v − cy)

fy
(1d)

where d is the disparity, Ks, bs are the shift (un-
normalization) scale and offset, respectively, fx, fy are the
camera focal lengths along the horizontal and vertical image
axes, respectively, lB is the baseline distance between laser
emitter and IR camera on the front of the Kinect, and
(cx, cy) are the coordinates of the principal point in the image
plane. The set of identified values of these parameters and
their units for our camera are listed in Table I. These were
obtained by running a Kinect camera calibration module built
into the well-known Robot Operating System (ROS).

TABLE I
IDENTIFIED PARAMETERS OF KINECT CAMERA MODEL

Parameter Value Units
fx 595.2 [px]
fy 595.2 [px]
lB 0.074 [m]
Ks 0.125 [px]
bs 1090.8 [ ]
cx 328.4 [px]
cy 251.8 [px]

Examining logged Kinect data, we see w is reported as in-
tegers ranging from 0 to approximately 1028, corresponding
to z = 0.32 m up to z = 5.61 m by the above calculation.
Since points too near or too far from the camera may not
be reliable due to noise effects, the device manufacturer
recommends a practical ranging limit between 0.8 m and
4.0 m. In addition, values of w = 2047 are used to signal
that a depth value could not be computed at the current pixel,
which may be due to lighting interference, light absorption
by dark surfaces, surface tilt, or other factors. These points
are simply omitted from the 3D computations.

The Kinect’s noise characteristics were experimentally
analyzed in [17] by scanning a flat surface located at varying
distances from the camera, then performing a RANSAC-
based plane fitting and computing the standard deviation
of the residual errors. The resulting σ was found to vary

quadratically with distance, from a few millimeters at depth
z = 0.5 m up to 4 cm at depth z = 5 m. In order to limit
noise, [17] recommended a depth range of 1.0 m to 3.0 m.
Within this depth interval, the standard deviation of residuals
is at worse σ ≈ 1 cm, and can be viewed as a random noise
effect.

A second source of error, also noted in [17], is the
quantization caused by (u, v, w) being integer values. For
instance at a depth of 2 m, inverting (1b) yields w = 915
as the normalized depth. However w = 915 and w =
916 values correspond respectively to z = 199.97 cm and
z = 201.11 cm and thus a depth resolution error of δz =
1.14 cm, where δz is proportional to z. By inspection of (1c)
and (1d) the computed x and y values exhibit the same effect
with δx or δy (the two have identical values due to fx = fy
in Table I) also proportional to z. A plot of the δ values
versus z is shown in Figure 1, which matches closely with
the experimental results presented in [17].

1 1.5 2 2.5 30

0.5

1

1.5

2

2.5

3

z [m]

 [c
m

]

x, y

z

Fig. 1. Quantization (resolution) errors for Kinect, 1 ≤ z ≤ 3 m range

Quantization errors are very different from Gaussian white
noise because they behave as a correlated noise, since the
odds that nearby points fall into the same quanta are very
large.

III. COVARIANCE OF ICP-BASED SCAN MATCHING

As we mathematically proved in [18], if two 3D point
clouds {ak} ∈ R3 and {bk} ∈ R3 from successive scans
are close to each other — either due to a fast scanning rate,
or by pre-alignment using odometry-based dead reckoning
— the covariance of their ICP-based scan matching pose
estimate can be computed by modeling this algorithm as a
linear least-squares problem, but only for the point-to-plane
ICP variant.

Using the framework from [18], the linearized point-to-
plane ICP cost function in the 3D case takes the form

J(x) =
∑
i

‖yi −Bix‖2 (2)

with yi = nTi (ai − bi) and Bi = [−(ai × ni)
T − nTi ]

with (ai, bi) denoting the ith pair of corresponding points
from successive scans and ni the unit surface normal to
point bi. Within this linearized context, x = [xR xT ] ∈ R6



parameterizes X ∈ SE(3), the rigid-body transformation
from (ai) to (bi), by

X = I +

[
S(xR) xT

0 0

]
which is valid for X close to identity and where S(·) is the
3×3 skew-symmetric matrix such that S(a)b = a×b, a, b ∈
R3. The least-squares solution of (2) gives the estimated
transformation

x̂ =

(∑
i

BT
i Bi

)−1∑
i

BT
i yi (3)

where we define A :=
∑

iB
T
i Bi. Remark AT = A. Let x∗

denote the true transformation, and based on (2) assume the
linear measurement model yi = Bix

∗ + ri where ri is the
residual for the ith point pair. Solution (3) becomes

x̂ = A−1
∑
i

BT
i (Bix

∗ + ri) = x∗ +A−1
∑
i

BT
i ri (4)

Substituting the definitions of Bi and yi into ri = yi−Bix
∗

yields

ri = nTi (ai − bi) + (ai × ni)Tx∗R + nTi x
∗
T

= (x∗R × ai)Tni + (x∗T )Tni + (ai − bi)Tni
= [(x∗R × ai) + x∗T + ai − bi] · ni := wi · ni

where wi represents the post-alignment error of the ith point
pair due to sensor noise, and ri is its projection along the
surface normal ni. Assuming the ICP is an unbiased estima-
tor such that E〈x̂〉 = x∗, the covariance of its estimates is
given by

cov(x̂) = E〈(x̂− x∗)(x̂− x∗)T 〉

= E

〈(
A−1

∑
i

(Bi)
T ri

)(
A−1

∑
i

BT
i ri

)T〉
cov(x̂) = A−1

∑
i

∑
j

(
BT

i n
T
i E〈wiw

T
j 〉njBj

)
A−1 (5)

If we assume the post-alignment errors wi are indepen-
dent and identically distributed as wi ∼ N (0, σ2I), then
E〈wiw

T
j 〉 = E〈wi〉E〈wT

j 〉 = 0, i 6= j and the double sum
in (5) reduces to a single sum (nTi ni = 1 for unit normals):

cov(x̂) = A−1σ2
∑
i

(
BT

i Bi

)
A−1 = σ2A−1

This is precisely the covariance of a linear unbiased estimator
using observations with additive Gaussian white noise [19,
p. 85]. However, there is a catch: for a Kinect sensor with
N ≈ 300 000 points per cloud and an average standard
deviation σ ≈ 1 cm (as discussed in Section II), evaluating
this last expression yields a covariance matrix with entries on
the order of nanometers, a wildly over-optimistic result. This
result is due to the independence assumption, which makes
the estimator converge as 1/

√
N where N is the (high)

number of points. We conclude that the Kinect’s sensor noise
cannot be adequately modeled as additive i.i.d. Gaussian
white noise. The second type of noise — quantization, also

discussed in Section II — is the dominant source of scan
matching uncertainty, and needs to be accounted for in the
calculation of x̂.

IV. QUANTIZATION UNCERTAINTY

As established in Section III, the effect of quantization
in Kinect point clouds needs to be accounted for when
computing scan matching covariance through Equation (5).
We now demonstrate how this is done through a progression
of increasingly complex models.

A. Single Point Pair in 1D

We begin with the simplest possible case for scan match-
ing: a single pair of points located along a 1D axis. Let z1

and z2 denote the true position of the two points, and ∆z =
z2 − z1 the true distance between them. We cannot directly
measure z1 or z2; instead, we assume their measurements
are quantized in uniform steps of q > 0. In this way, the
true position z1 of the first point can be represented as the
(quantized) measurement zm plus a random variable T which
is uniformly distributed on the interval [−q/2, q/2):

z1 = zm + T.

We can thus represent z2 as z1 +∆z = zm +T +∆z, where
∆z is the true scan matching result which cannot be directly
obtained. We also define ∆y as the difference between the
(quantized) measurements of z1 and z2, denoted as Q(z1)
and Q(z2) respectively:

∆y = Q(zm + T + ∆z)−Q(zm + T )

Q(z) = q

⌊
z

q
+

1

2

⌋
where b·c denotes the floor function. Remark ∆y can be
directly obtained by scan matching the measured points.
Because zm is by a construction an integer multiple of q,
the above simplifies to

∆y = Q(∆z + T )−Q(T )

= q

(⌊
∆z + T

q
+

1

2

⌋
−
⌊
T

q
+

1

2

⌋)
= q

⌊
∆z + T

q
+

1

2

⌋
= Q(∆z + T )

Let w := ∆y − ∆z denote the error in alignment of the
two points by our scan-matching algorithm. Although we
cannot obtain w directly, we can calculate its variance using
the probability density function associated to the random
variable T :

VarT (w) = VarT (∆y −∆z)

= ET

〈[
∆y −∆z − ET 〈∆y −∆z〉

]2〉
= ET

〈[
∆y − ET 〈∆y〉

]2〉
(6)



Within expression (6), we calculate

ET 〈∆y〉 = ET

〈
q

⌊
∆z + T

q
+

1

2

⌋〉
= q

∫ q/2

−q/2

1

q

⌊
∆z + t

q
+

1

2

⌋
dt

= q

∫ ∆z/q+1

∆z/q

bscds (by change of variables)

= q

(∫ b∆z/qc+1

∆z/q

bscds+

∫ b∆z/q+1c

b∆z/qc+1

bscds

+

∫ ∆z/q+1

b∆z/q+1c
bscds

)
= q

(∫ b∆z/qc+1

∆z/q

bscds+

∫ ∆z/q+1

b∆z/q+1c
bscds

)

= q

((⌊
∆z

q

⌋
+ 1− ∆z

q

)⌊
∆z

q

⌋
+

(
∆z

q
−
⌊

∆z

q

⌋)⌊
∆z

q
+ 1

⌋)
= ∆z

such that (6) becomes

VarT (w) = ET

〈[
∆y −∆z

]2〉
= ET 〈(∆y)2〉 − 2ET 〈∆y〉∆z + (∆z)2

= ET 〈(∆y)2〉 − (∆z)2

Within this expression we calculate

ET 〈∆y2〉 = ET

〈
q2

⌊
∆z + T

q
+

1

2

⌋2
〉

= q2

∫ q/2

−q/2

1

q

⌊
∆z + t

q
+

1

2

⌋2

dt

= q2

∫ ∆z/q+1

∆z/q

bsc2ds (by change of variables)

= q2

(∫ b∆z/qc+1

∆z/q

bsc2ds+

∫ ∆z/q+1

b∆z/q+1c
bsc2ds

)
= q2

((⌊
∆z

q

⌋
+ 1− ∆z

q

)⌊
∆z

q

⌋2

+

(
∆z

q
−
⌊

∆z

q

⌋)⌊
∆z

q
+ 1

⌋2)
= q2

(
2

∆z

q

⌊
∆z

q

⌋
+

∆z

q
−
⌊

∆z

q

⌋
−
⌊

∆z

q

⌋2)
and so the previous becomes

VarT (w) = ET 〈(∆y)2〉 − (∆z)2

= q2

(
∆z

q
−
(

∆z

q

)2

+ 2
∆z

q

⌊
∆z

q

⌋
−
⌊

∆z

q

⌋
−
⌊

∆z

q

⌋2)
This formula is not usable in practice since it requires ∆z,
which is not directly available. In order to proceed, first note

this expression can be rewritten as

VarT (w) = q2

(
∆z

q
−
⌊

∆z

q

⌋)(
1−

(
∆z

q
−
⌊

∆z

q

⌋))
Now, take the expectation over ∆z, i.e. over all the possible
displacements. Observe that ∀∆z ∈ R, we have ∆z/q −
b∆z/qc ∈ [0, 1]. We then assume that Z := ∆z/q−b∆z/qc
is a random variable uniformly distributed on [0, 1], and
calculate the expected value of the function VarT (w) of
random variable Z as

EZ〈VarT (w)〉 =

∫ 1

0

q2x(1− x)dx =
q2

6

This result is in accordance with the well established belief
in the digital signal processing literature that quantization
noise is uniformly distributed between plus and minus half
a quanta, giving it zero mean and a variance of one-twelfth
the square of a quanta. Here we are dealing with a difference
of quantized values, leading to a discrepancy by a factor of
two.

B. Several Point Pairs in 1D

Now consider the more complicated case of several point
pairs, each located along a 1D axis. Assume we have a set
of N pairs with true positions (z1i, z2i), 1 ≤ i ≤ N , with
a common distance ∆z = z2i − z1i between all the point
pairs. Physically, this setup represents two successive scans
of a surface by a depth camera moving in a straight line
towards it. Note we cannot directly know (z1i, z2i) nor ∆z
due to quantization of the measurements.

Analogously to Section IV-A, we write z1i = zmi + Ti
where Ti is a random variable uniformly distributed on
[−qi/2, qi/2) where qi is the quantization step size asso-
ciated to the ith point pair. We have z2i = z1i + ∆z =
zmi + Ti + ∆z, and define ∆yi := Qi(z2i) − Qi(z1i)
as the difference between the (quantized) measurements of
the ith point pair, and wi := ∆yi − ∆z as the error in
its alignment. By Section IV-A we have ET 〈∆yi〉 = ∆z,
such that ET 〈wi〉 = 0. Under this measurement model, for
1 ≤ i ≤ N and 1 ≤ j ≤ N , if z1i = z1j then Ti = Tj ,
otherwise Ti is independent from Tj . Following Section IV-
A, we show ∆yi = Qi(∆z + Ti) such that wi is a function
of the random variable Ti, wj is a function of the random
variable Tj , and so E〈wiwj〉 = E〈wi〉E〈wj〉 = 0.

The uncertainty of wi terms is quantified by their covari-
ance:

cov(wi, wj) = E 〈(wi − E〈wi〉)(wj − E〈wj〉)〉 = E〈wiwj〉

By Section IV-A and the previous paragraph, we obtain

E〈wiwj〉 =

{
q2
i /6, i = j

0, i 6= j

This result can be used in conjunction with Equation (5) to
compute the covariance of scan matching along the forward
direction axis.



C. Multiple points in 3D case

The approach presented in Section IV-B forms the basis of
scan matching in 3D. For 3 DoF motion consisting of pure
translations along three orthogonal axes, the model can be
extended by considering the quantizations δx and δy along
the x and y camera axes, which vary identically with depth
as discussed in Section II. For general 6 DoF motion, the
calculations become longer due to the coupling between
translation and rotation of the camera when scanning point
clouds. These more complicated models are left as future
work.

V. EXPERIMENTAL VALIDATION

A. Technical details

A picture of the experimental validation setup is shown
in Figure 2. The wheeled rover is equipped with a forward-
facing Kinect camera, supplying 3D point clouds at a 15 Hz
rate. The robot is also equipped with high-resolution en-
coders on the left and right wheels, as well as a 2D scanning
laser, although these sensors are not employed in the present
case. The robot starts out stationary, then travels in a straight
line with a constant velocity towards the end wall, where it
stops. An Optitrack motion-capture system, whose cameras
are mounted on tripods seen in Figure 2, employs optical
markers fixed to the vehicle to provide sub-millimeter ground
truth information, used to validate the results obtained from
the onboard ICP-based scan matching algorithm.

Fig. 2. Experimental Setup for 1D Covariance Test

We employ our own implementation of the point-to-
plane ICP algorithm, which following the taxonomy in [4]
uses random normal-space sampling of source points from
both meshes, nearest-neighbour point matching with constant
weighting, rejection of pairs based on excessive distance
or containing points on mesh boundaries, and alternates
matching pairs with minimizing the cost function by lin-
earization. The surface normals ni are obtained using the
PlanePCA method [20]. The input point clouds are decimated
to a rate of 3 Hz for scan matching, meaning that the
linearization assumptions in Section I are valid even without
pre-alignment by odometry-based dead reckoning.

Since we are only considering 1D motions along the z-
axis of the camera and body-fixed frame, we take the term
E〈wiw

T
j 〉 in (5) as

E〈wiw
T
j 〉 =

0 0 0
0 0 0
0 0 q2

i /6

 if i = j, else =

0 0 0
0 0 0
0 0 0


where qi is taken as the depth quantization at the z coordinate
of the second point of the pair (ai, bi). The value of qi is
equal to δz from Section II and is computed algebraically.
Only the square root of the bottom-right diagonal entry of the
6×6 covariance matrix of x̂ = [x̂R x̂T ] is reported, which
represents the standard deviation of the estimated translation
along the z axis as explained in Section III.

B. Results and Discussion

The results from the scan matching experiment described
in Section V-A are summarized in Table II. A set of 18 scan
matching pairs is presented, listed in order of decreasing
(approximate) distance to the far wall seen in Figure 2.
Each pair number gives the corresponding estimated forward
displacement ∆z computed by the ICP, the true forward
displacement ∆z measured by the optical motion capture
system, and the calculated standard deviation σz associated
with the estimated displacement.

TABLE II
DATA FROM SCAN MATCHING EXPERIMENT

Scan pair Distance ∆z (ICP) ∆z (true) σz
number [m] [cm] [cm] [cm]

1 3.8 -0.4 0.0 0.2
2 3.8 5.0 3.1 0.2
3 3.75 -0.2 10.9 0.2
4 3.6 10.7 9.8 0.3
5 3.4 9.1 8.5 0.3
6 3.25 9.7 9.6 0.3
7 3 9.9 10.1 0.2
8 2.75 9.9 10.0 0.2
9 2.5 9.9 9.8 0.3
10 2.3 10.2 10.1 0.2
11 2.15 10.1 9.8 0.2
12 1.9 10.1 9.9 0.1
13 1.7 10.2 9.9 0.1
14 1.5 10.1 9.7 0.1
15 1.3 10.3 10.2 0.1
16 1.15 8.9 8.9 0.1
17 1.1 3.2 2.7 0.03
18 1.05 0.0 0.0 0.03

Based on the data in Table II, we make the following
observations. For the majority of the cases (pairs 4 to
16, inclusive), the ICP-estimated ∆z lies inside the three-
sigma interval of the ground truth displacement. Pairs 1 and
18 represent the start and end phases of the experiment,
respectively, where the robot is stationary and the pair of
scans should overlap. Note the ICP incorrectly estimates a
negative (backwards) displacement of 4 mm at point 1, while
the point 2 and 3 estimates are clearly incorrect since they
lie outside the three-sigma interval. These errors are caused
by the large distance between the Kinect and the end wall,
giving rise to a sparse point cloud — caused by regions of



non-computed depth values, c.f. Section II — and hence poor
accuracy of ni and convergence to a non-global minimum by
the ICP algorithm. Point 17 is also affected by an incorrect
convergence, which can be diagnosed by monitoring the
values of the ICP’s cost function during successive iterations.
As discussed in [18], convergence to a wrong (non-global)
minimum by the ICP is a type of error which cannot be
accounted for by our method, since it breaks the assumption
of the ICP being an unbiased estimator.

Also note that the value of σz tends to decrease as the cam-
era approaches the far wall, which agrees with the Kinect’s
depth measurement precision increasing at smaller distances
as shown in Section II. Data points 1 to 3 do not follow
this trend, but this is likely caused by the poor accuracy
of ni values along the far wall mentioned in the previous
paragraph, which in turn affects the z-axis covariance result
due to the projection nTi E〈wiw

T
i 〉ni in (5).

VI. CONCLUSION

In this paper, we have introduced a novel approach to com-
puting the covariance of ICP-based scan matching estimates
of point clouds obtained from a Kinect V1 depth camera.
This was then successfully validated in hardware through a
1D motion experiment, demonstrating the effectiveness of
the proposed method.

As stated in Section IV-C, the present calculations only
apply to translations along the depth axis of the camera. The
proposed method now needs to be extended to the full six
degree-of-freedom case. We are in the process of expanding
the calculations to handle this case, as well as validating
them through hardware experiments.
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