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Abstract— A novel learning Model Predictive Control tech-
nique is applied to the autonomous racing problem. The goal
of the controller is to minimize the time to complete a lap. The
proposed control strategy uses the data from previous laps to
improve its performance while satisfying safety requirements.
A system identification technique is proposed to estimate the
vehicle dynamics. Simulation results with the high fidelity sim-
ulator software CarSim show the effectiveness of the proposed
control scheme.

I. INTRODUCTION

Nonlinear model predictive control is an appealing tech-
nique for autonomous driving because of its ability to handle
input and state constraints as well as nonlinearities intro-
duced by the vehicle dynamics. Recently, the effectiveness
and the real-time feasibility of this control strategy has been
demonstrated in [1], [2]. However, real-time path generation
for racing applications in real-world conditions remains
challenging. If the objective is the minimization of the lap
time, the controller has to plan the trajectory on a sufficiently
long time interval to avoid aggressive maneuvers that would
lead the vehicle outside the track. For instance, in a straight
line before a curve the controller should limit the velocity
to allow turning. Furthermore, when solving the problem
with a receding horizon approach, the resulting closed-loop
trajectory is not guaranteed to be optimal for the original
problem.

In [3] two approaches are presented for autonomous
racing. In the first one, a high level MPC controller is
used to generate a feasible trajectory for the low level
tracking MPC. In the second approach, a single layer Model
Predictive Contouring Control (MPCC) is presented, where
the controller objective is a trade-off between the progress
along the track and the contouring error. Also in [4], the
authors compared two approaches, the first one based on
a tracking MPC, and, the second one, based on a MPC
that aims to minimize the lap time. The authors pointed out
the importance of the horizon length, which is necessary
to reach good performance. In [5] the authors proposed an
iterative learning control (ILC) approach for autonomous
racing. The proposed ILC tracks an aggressive trajectory
computed off-line using the techniques proposed in [6]. The
authors showed the effectiveness of the proposed ILC with
experimental testing on a full size vehicle.

In this paper we propose to tackle the minimum lap
time problem as reference free iterative control problem
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using the novel technique presented in [7]. At each j-th
iteration the controller starts from the same starting point
and it has to minimize the traveling time to cross the finish
line. Under no model mismatch, the Learning MPC (LMPC)
presented in [7] guaranties that (i): the j-th iteration’s cost
does not increase compared to the j − 1-th iteration cost
(non-increasing cost at each iteration), (ii): state and input
constraints are satisfied at iteration j if they were satisfied
at iteration j−1 (recursive feasibility), (iii): if the controller
goal is to regulate the system to an equilibrium point xF ,
then such an equilibrium point is asymptotically stable, (iv):
if system converges to a steady state trajectory as the number
of iterations j goes to infinity, then such a trajectory is
locally optimal. The assumption of no model mismatch is
not satisfied in the racing application especially due to the
highly dynamic range of maneuvers. Therefore, in this work
we propose to couple the LMPC with a system identification
algorithm and we show, through high fidelity simulations
with CarSim, that the controller successfully improves the
overall objective function and it converges to a steady state
solution. Furthermore, we propose a problem relaxation that
reduces the computational burden associated with [7] and
satisfies real-time requirements.

As mentioned, we study also the case of model parameters
uncertainty and their iterative estimation. In general, the
MPC design under the presence of model uncertainty may be
challenging. In [8] the author proposes to use two different
models, a nominal one used to check the constraint satisfac-
tion and a learnt one to improve performance. However, for
the racing problem it may be difficult to define a priori a
model that guaranties the feasibility. A different approach
is proposed in [9], where MPC algorithm uses a simple
a priori vehicle model and a learned disturbance model.
The authors proved the effectiveness of this control strategy
for a path following problem. In the racing problem, we
would like to have a model of vehicle when operating
close to its handling capability. Unfortunately, modelling
the vehicle lateral dynamics is challenging. Also when the
linear model assumption holds, the tire stiffness are speed
and environment dependent. In [10] the lateral dynamics
are estimated using a LPV system and a set membership
algorithm has been successfully implemented. This proce-
dure might be computationally demanding for on-line model
learning. In this paper we propose an identification approach
which exploits information from the previous iterations. At
each time step t of the MPC algorithm, system dynamics
are estimated using only input-output data from previous
iterations close to the current system state x(t).

This paper is organized as follows: in Section II we intro-
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duce the vehicle model and we formalize the minimum time
problem. The iterative formulation is illustrated in Section
III, where we introduce the quantities necessary to implement
the LMPC. In Section IV, the system identification procedure
is described. The LMPC and its relaxation are illustrated in
Section V. Finally, in Section VI we test the proposed control
logic on an a section of a race track. Section VII provides
final remarks.

II. PROBLEM DEFINITION
A. Vehicle Model

The vehicle dynamics is described by,[
xt+1

yt+1

]
= f(xt, ut) (1)

where f(xt, ut) is the vehicle dynamic state update equation.
The vectors xt and ut in (1) collect the states and inputs of
the vehicle at time t,

xt = [vxt vyt ψ̇t eψt eyt st] (2a)
ut = [at δt], (2b)

where st represents the distance travelled along the center-
line of the road, eyt and eψt the lateral distance and heading
angle error between the vehicle and the path. vxt , vyt and
ψ̇t are the vehicle longitudinal velocity, lateral velocity
and yaw rate, respectively. The inputs are the longitudinal
acceleration at and the steering angle δt. For more details
on the curvilinear abscissa reference frame we refer to [11].

Path

𝑒&
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Fig. 1. Representation of the vehicle in the curvilinear abscissa reference
frame

B. Minimum Time Problem

The goal of the controller is to minimize the time to
cross the finish line at starget. More formally, the goal of
the controller is to solve the following constrained infinite
horizon optimal control problem

J∗0→∞(xS) = min
u0,u1,...

∞∑
k=0

h(xk, uk) (3a)

s.t. xk+1 = f(xk, uk), ∀k ≥ 0 (3b)
x0 = xS , (3c)
xk ∈ X , uk ∈ U , ∀k ≥ 0 (3d)

where equations (3b) and (3c) represent the vehicle dynamics
and the initial condition, and (3d) are the state and input
constraints. Note that In our problem the state constraint X
is a convex set representing the road boundaries. The stage
cost, h(·, ·), in equation (3a) is defined as

h(xk, uk) =

{
1 if xk /∈ L
0 if xk ∈ L

, (4)

where L is the set of points beyond the finish line at starget,

L =
{
x ∈ R6 : xeT6 = s > starget

}
(5)

where e6 is the the 6-th standard basis in R6.
Assumption 1: We assume that after the vehicle has

crossed the finish line there exists a controller that can keep
the vehicle on the road after the finish line. Namely, we
assume that L is a control invariant set, thus

∀xk ∈ L,∃uk ∈ U : xk+1 = f(xk, uk) ∈ L. (6)
III. LMPC PRELIMINARIES

The constrained infinite horizon optimal control problem
in (3) is difficult to solve, especially in real time. Therefore,
we implemented the Learning MPC for iterative tasks
presented in [7], where at each iteration the controller
computes a trajectory that brings the system from the
staring point xS to the invariant set L. The data from
each iteration are used to improve the performance of the
controller until the controller converges to a local optimal
solution, we refer to [7] for further details. In the following
we introduce the notation that will be used to implement
the Learning MPC for the racing application.

A. Sampled Safe Set
At the j-th iteration the vectors

uj = [uj0, u
j
1, ..., u

j
t , ...], (7a)

xj = [xj0, x
j
1, ..., x

j
t , ...], (7b)

collect the inputs applied to vehicle model (1) and the
corresponding state, where xjt and ujt denote the vehicle state
and the control input at time t of the j-th iteration,

xjt = [vjxt v
j
yt ψ̇

j
t e

j
ψt
ejyt s

j
t ] (8a)

ujt = [ajt δ
j
t ]. (8b)

Remark 1: In (7b) we have that xj0 = xS , ∀j ≥ 0, as
the vehicle starts from the same initial point xS at each j-th
iteration.
We define the the sampled Safe Set SSj at iteration j as

SSj =

{ ⋃
i∈Mj

∞⋃
t=0

xit

}
. (9)

SSj is the collection of all state trajectories at iteration i for
i ∈M j . M j in equation (9) is the set of indexes k associated
with successful iterations k for k ≤ j, defined as:

M j =
{
k ∈ [0, j] : lim

t→∞
xkt = L

}
. (10)



B. Iteration Cost

At time t of the j-th iteration the cost-to-go associated
with the closed loop trajectory (7b) and input sequence (7a)
is defined as

Jjt→∞(xjt ) =

∞∑
k=t

h(xjk, u
j
k), (11)

where h(·, ·) is the stage cost of the problem (3). We define
the j-th iteration cost as the cost (11) of the j-th trajectory
at time t = 0,

Jj0→∞(xj0) =

∞∑
k=0

h(xjk, u
j
k). (12)

Jj0→∞(xj0) quantifies the controller performance at each
j-th iteration.

Remark 2: In equations (11)-(12), xjk and ujk are the
realized state and input at the j-th iteration, as defined in (7).

Remark 3: At each j-th iteration the system is initialized
at the same starting point xj0 = xS ; thus we have
Jj0→∞(xj0) = Jj0→∞(xS).

Finally, we define the function Qj(·), defined over the
sampled safe set SSj as:

Qj(x) =

 min
(i,t)∈F j(x)

J it→∞(x), if x ∈ SSj

+∞, if x /∈ SSj
, (13)

where F j(·) in (13) is defined as

F j(x) =
{

(i, t) : i ∈ [0, j], t ≥ 0 with x = xit,

for xit ∈ SS
j
}
.

(14)

Remark 4: The function Qj(·) in (13) assigns to every
point in the sampled safe set, SSj , the minimum cost-to-go
along the trajectories in SSj .

IV. SYSTEM IDENTIFICATION
In this section the system identification technique is de-

scribed. At the j-th iteration, the trajectories in the sampled
safe set, SSj−1, and the data from the current iteration
are used to estimate the system dynamics. In particular we
assume that the system dynamic update at time t of the j-th
iteration is given by

xjt+1 = f jt (xjt , u
j
t ) = ḡ(xjt , u

j
t ) + gjt (x

j
t , u

j
t ) (15)

where ḡ(xjt , u
j
t ) ∈ Rn is known function that represents the

known dynamic of the system, and at time t of the j-th
iteration the function

gjt (x
j
t , u

j
t ) = [gj1,t(·), · · · , g

j
n,t(·)]T ∈ Rn (16)

is identified using a least mean square technique. The entries
of gjt (·) are defined as

gji,t(·) = γji,tθ
j
i,t, i ∈ {1, · · · , n} (17)

where γji,t, i ∈ {1, · · · , n} is the feature vector that may
change for different states and θji,t, ∀i ∈ {1, · · · , n} is the
parameter vector which is estimated on-line.

Remark 5: We refer to the Appendix I for further details
on how we implemented (15)-(17) for the racing problem.

Furthermore, in order to estimate the parameter vector
θji,t ∈ Rpi , ∀i ∈ {1, · · · , n}, we implemented the following
least mean square technique,

θji,t = argmin
θ̄

||φji,tθ − y
j
i,t||2, ∀i ∈ {1, · · · , n}, (18)

where the vector yjt,i selects a subset of the collected data
using a distance-based criterion. In particular, at time t of
the j-th iteration we define the time index lt,jk with k ≤ j,
for which xk

lt,jk
is the closest point to the current system state

xjt ,

lt,jk = argmin
l̃

||xjt − xkl̃ ||2. (19)

Afterwards, the measurement vector, yjt,i, in (18) is con-
structed using the data collected in the last n̄ steps, and,
for the last nj+1 trajectories in SSj−1, the data collected n̄
steps before and n steps after lt,jk ,

yji,t =



(
xj
lt,jj
− ḡ(xlt,jj -1, ult,jj -1)

)
eTi

...(
xj
lt,jj -n̄

− ḡ(xj
lt,jj -n̄-1

, uj
lt,jj -n̄-1

)
)
eTi(

xj-1
lt,jj-1+n

− ḡ(xj-1
lt,jj-1+n-1

, uj-1
lt,jj-1+n-1

)
)
eTi

...(
xj-1
lt,jj-1-n̄

− ḡ(xj-1
lt,jj-1-n̄-1

, uj-1
lt,jj-1-n̄-1

)
)
eTi

...(
x
j-nj
lt,jj-nj

+n
− ḡ(x

j-nj
lt,jj-nj

+n-1
, u
j-nj
lt,jj-nj

+n-1
)
)
eTi

...(
x
j-nj
lt,jj-nj

-n̄
eTi − ḡ(x

j-nj
lt,jj-nj

-n̄-1
, u
j-nj
lt,jj-nj

-n̄-1
)
)
eTi



∈ RN̄ ,

(20)
i ∈ {1, · · · , n}, where ei is the standard basis in Rn, and
N̄ = n̄+1+nj(n̄+n+1) is the number of points used for the
system identification.

Remark 6: n̄, nj , n are tuning variables which are chosen
by the designer.
In (18), the regressor matrix φjt,i,∀i ∈ [vx, vy, ψ̇] is com-
puted using the feature vectors, and the data collected in



SSj−1 and current iterations,

φji,t =



γji
l
t,j
j

-1

...
γji
l
t,j
j

-n̄-1

γj-1
i
l
t,j
j-1+n-1

...
γj-1
i
l
t,j
j-1 -n̄-1

...
γ
j-nj
i
l
t,j
j-nj

+n-1

...
γ
j-nj
it,jj-nj

-n̄-1



∈ RN̄×pi , i ∈ {1, · · · , n} (21)

V. LMPC CONTROL DESIGN

A. LMPC Formulation

The LMPC tries to compute a solution to the infinite time
optimal control problem (3) by solving at time t of iteration
j the finite time constrained optimal control problem

J LMPC,j
t→t+N (xjt ) = min

ut|t,...,ut+N−1|t

[ t+N−1∑
k=t

h(xk|t, uk|t)+

+Qj−1(xt+N |t)

]
(22a)

s.t.

xk+1|t = f jt (xk|t, uk|t), ∀k ∈ [t, · · · , t+N − 1] (22b)

xt|t = xjt , (22c)
xk|t ∈ X , uk ∈ U , ∀k ∈ [t, · · · , t+N − 1] (22d)

xt+N |t ∈ SSj−1, (22e)

where (22b) and (22c) represent the system dynamics in
(15) and initial condition, respectively. The state and input
constraints are given by (22d). Finally (22e) forces the
terminal state into the set SSj−1 defined in equation (9).
Let

u∗,jt:t+N |t = [u∗,jt|t , · · · , u
∗,j
t+N−1|t]

x∗,jt:t+N |t = [x∗,jt|t , · · · , x
∗,j
t+N |t]

(23)

be the optimal solution of (22) at time t of the j-th iteration
and J LMPC,j

0→N (xjt ) the corresponding optimal cost. Then, at time

t of the iteration j, the first element of u∗,jt:t+N |t is applied
to the system (1)

ujt = u∗,jt|t . (24)

The finite time optimal control problem (22) is repeated
at time t + 1, based on the new state xt+1|t+1 = xjt+1

(22c), yielding a moving or receding horizon control strategy.

B. LMPC Relaxation

As the sampled safe set in (9) is a set of discrete points,
the optimal control problem in (22) is a Nonlinear Mixed
Integer Programming, therefore the LMPC (22) and (24) may
be computationally challenging to solve in real-time. There-
fore, we introduce the time varying approximated safe set,
S̃Sj−1

t , and the time varying approximated Qj−1(·) function,
Q̃j−1
t (·). At time t of the j-th iteration, we approximate
SSj−1 with the time varying approximated sampled safe set,

S̃Sj−1

t =
{
x ∈ R6, λ ∈ [0, 1] :

x ∈ λx̃j−1
t + (1− λ)x̃j−2

t

} (25)

where x̃j−1
t approximates locally the j-1-th trajectory, xj−1,

using a 5-th order polynomial function,

x̃j−1
t =

{
x ∈ R6 : ∀i ∈ {vx, vy, ψ̇, eψ, ey},

i = [s5 s4 s3 s2 s 1] Γj−1
t,i

}
,

(26)
being Γj−1

t,i the solution to the following least mean square
problem

Γj−1
t,i = argmin

Γ
||


ij−1

lt,jj−1+4N

...
ij−1

lt,jj−1

+

−


s5
lt,jj-1+4N

· · · slt,jj-1+4N 1

...
...

s5
lt,jj-1

· · · slt,jj-1
1

Γ||2,

(27)
where lt,jj-1 is the time index defined in equation (19).

Remark 7: Note that x̃j−2
t is defined replacing j-1 with

j-2 in the above definition.
Furthermore, we introduce the time varying function

Cj−1
t (·), which at time t of the j-th iteration approximates

the cost to go along the j-1-th trajectory,

Cj−1
t (x) =

{
[s5 s4 s3 s2 s 1]∆j−1

t , if x ∈ x̃j−1
t

+∞, if x /∈ x̃j−1
t

, (28)



where ∆j−1
t,i is the solution to the following least mean

square problem

∆j−1
t = argmin

∆
||


Jj−1
t→∞(xj-1

lt,jj-1+4N
)

...
Jj−1
t→∞(xj-1

lt,jj-1
)

+

−


s5
lt,jj-1+4N

· · · slt,jj-1+4N 1

...
...

s5
lt,jj-1

· · · slt,jj-1
1

∆||2.

(29)

Remark 8: Note that Cj−2
t (·) is defined replacing j-1 with

j-2 in the above definition.
The Cj−1

t (·) function in (28) is used to define the continuous
time varying approximation of Qj−1(·),

Q̃j−1
t (x, λ) =


λCj−1

t (x)+ (1− λ)Cj−2
t (x),

if (x, λ) ∈ S̃Sj−1

t

+∞, if (x, λ) ∈ S̃Sj−1

t

.

(30)
Finally, we reformulate the LMPC in (22) and (24) using

the time varying approximation of SSj−1 and of the Qj−1(·)
function, to have a computationally tractable problem. We
define the following constrained finite time optimal control
problem,

J̃ LMPC,j
t→t+N (xjt ) = min

λ,ut|t,...,ut+N−1|t

[ t+N−1∑
k=t

h(xk|t, uk|t)+

+ Q̃j−1
t (xt+N |t, λ)

]
(31a)

s.t.

xk+1|t = f jt (xk|t, uk|t), ∀k ∈ [t, · · · , t+N − 1]
(31b)

xt|t = xjt , (31c)
xk|t ∈ X , uk ∈ U , ∀k ∈ [t, · · · , t+N − 1]

(31d)

(xt+N |t, λ) ∈ S̃Sj−1

t . (31e)

Let
ũ∗,jt:t+N |t = [ũ∗,jt|t , · · · , ũ

∗,j
t+N−1|t]

x̃∗,jt:t+N |t = [x̃∗,jt|t , · · · , x̃
∗,j
t+N |t]

(32)

be the optimal solution of (31) at time t of the j-th iteration
and J̃ LMPC,j

0→N (xjt ) the corresponding optimal cost. Then, at time

t of the iteration j, the first element of ũ∗,jt:t+N |t is applied
to the system (1)

ujt = ũ∗,jt|t . (33)

The finite time optimal control problem (31) is repeated at
time t+ 1, based on the new state xt+1|t+1 = xjt+1 (31c).

VI. SIMULATION RESULTS

Simulations are performed in CarSim which uses a high-
fidelity vehicle model to simulate the vehicle dynamics. The
parameters of the CarSim vehicle and tire models were iden-
tified using data collected from our experimental passenger
vehicle. The nonlinear optimization problem (31) is solved
using NPSOL [12]. To verify the real-time feasibility of the
LMPC strategy, we successfully ran the closed-loop simu-
lation on a dSpace MicroAutobox II embedded computer
(900MHz IBM PowerPC processor) at a sampling time of
100ms. The LMPC is discretized at 100ms and the horizon
N = 10. The system identifiation algorithms is implemented
using n = n̄ = 50 and nj = 2. Future work will focus on
the implementation on our experimental vehicle.

In order to implement the LMPC (31) and (33), we
computed a feasible trajectory, x0, that drives the from xS to
the invariant set L using a path following controller at a low
velocity. For more details on the path following controller,
we refer to [13]. The first feasible trajectory, x0, is used to
construct S̃S0

t and Q̃0
t , needed to initialize the first iteration

of the LMPC (31) and (33). Parameters used in the controller
are reported in Table I.

To effectively illustrate the results, the controller is tested
on a single corner of a race track. The track centerline,
starting position and finish line are shown in Figure 2. In
particular, we have a straight in the first section, a curve in
the second section and a straight again in the third section.
We define the time t̃j at which the vehicle crosses the finish
line at the j-th iteration as

t̃j = min{t ∈ Z0+ : xjt ∈ L}. (34)

The track borders are described by the box constraint |ey| ≤
1.6m. Note that we assumed that the road constraint on the
lateral distance ey takes into account the width of the vehicle.

The initial feasible trajectory and the locally optimal
trajectory that the controller converges to are shown in Figure
3. It is seen that the vehicle cuts the corner performing a
trajectory with a constant radius of curvature. In particular,
we see that the controller saturates the road constraint in the
second section of the path, which represents the curve (Fig.
6). This behavior was shown to be the optimal solution for
the minimum time problem racing problems [14].



Figure 4 depicts the velocity profile along the trajectory.
The controller slows down just before entering corner, speeds
up right after the midpoint of the curve. This behavior is
consistent with racing driver performance [6] [15].

The controller successfully decreases the traveling time
from the starting point, xS , to the finish line in Figure 2.
Furthermore, we see in Figure 5 that the travelling time is
decreasing at each iteration until the LMPC (31) and (33)
reaches convergence.
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Fig. 2. Path used for testing the proposed control logic.
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Fig. 3. Steady state trajectory of the proposed control strategy on the
X − Y plane.

Figure 6 shows the evolution of the vehicle longitudinal
velocity and lateral distance from the center-line. The con-
troller correctly understands the benefit of cutting the curve
until it saturates the road constraints. Moreover, the controller
brakes until the midpoint of the curve to prevent the vehicle
to drift out of the track.
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Fig. 4. Evolution of the velocity profile over the iterations.
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Fig. 5. Evolution of the iteration cost over the iterations. We notice that the
LMPC coupled with the proposed system identification technique decreases
the travelling time at each iteration.

We analyse the one step prediction errors at time t of the
j-th iteration,

∇ijt = i∗,jt+1|t − i
j
t+1, ∀i ∈ [vx, vy, ψ̇] (35)

which quantifies the model mismatch between the real model
(1) and the learnt model (15). Figure 7 reports the one step
prediction error for the 45-th iteration, compared with the
actual system state. We notice that the proposed distance-
based identification technique correctly identifies the system
dynamics within an acceptable tolerance, in particular we



Fig. 6. Evolution of the closed-loop trajectory over the iterations
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Fig. 7. Comparision between the prediciton error and the closed-loop
trajectory.

have,

max
t
|∇vjxt | = 0.0587 m/s

max
t
|∇vjyt | = 0.0511 m/s

max
t
|∇ψ̇jt | = 0.0224 rad/s.

Finally, Figure 8 shows that LMPC (31) and (33) saturates
the tire capabilities of the left front and rear tire. Therefore,
we conform that the proposed control logic is able to identify
the vehicle’s performance limit and operate the vehicle at the
limit of its handling capability.
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Fig. 8. Analysis of the tire forces. We notice that the left wheels are
operating at their handling capability.

VII. CONCLUSIONS

In this paper, a learning nonlinear model predictive control
for the racing problem that exploits information from the
previous laps to improve the performance of the closed
loop system over iterations is presented. A time varying
approximation safe set and a terminal cost, learnt from
previous iterations, are presented. Moreover, we coupled
the LMPC with a distance-based identification method that
allows the controller to operate the vehicle at the limit of
its handling capability. We tested the proposed control logic
in simulation with the high fidelity simulator CarSim and
we showed that the controller is able to identify the vehicle
dynamics and to operates the vehicle close to the limit of its



handling capability.

VIII. APPENDIX I

This Section describes the model used for the identification
techniques presented in Section IV. We assumed that the
known dynamics in (15) is given by the kinematic model
in the error reference frame,

ḡjt (x
j
i , u

j
i ) = xji +



0

0

0[
ψ̇t −

vxtcos(eψt )−vytsin(eψt )
1−eytκ(st)

κ(st)

]
dt

(vxksin(eψt) + vytcos(eeψt ))dt

vxk cos(eψt )−vyk sin(eψt )
1−eykκ(sk)

dt


,

(37)
where κ(s) is the angle of the tangent vector to the path at the
curvilinear abscissa st. The states eyt and eψt represent the
lateral distance and heading angle error between the vehicle
and the path. vxt , vyt and ψ̇t are the vehicle longitudinal
velocity, lateral velocity and yaw rate, respectively.
Furthermore, the linear regressor in (16) is used to identify
the longitudinal and lateral dynamics and it is given by

gjt (x
j
i , u

j
i ) =



gjt,1(x
j
i , u

j
i )

gjt,2(x
j
i , u

j
i )

gjt,3(x
j
i , u

j
i )

0

0

0


, (38)

where the feature vectors in (17) are defined as

γj1,t = [vjxt , v
j
yt ψ̇

j
t , a

j
t ] ∈ R3 (39a)

γj2,t =
[vjyt
vjxt

, ψ̇jt v
j
xt ,

ψ̇jt

vjxt
, δjt

]
, ∈ R4 (39b)

γj3,t =
[ ψ̇jt
vjxt

,
vjyt

vjxt
, δjt

]
, ∈ R3. (39c)

Note that the features are chosen based on the dynamic
bicycle model, for further details we refer to [10].
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