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Abstract— This paper proposes a novel Iterative Learning
Control (ILC) framework for spatial tracking. Spatial tracking
means that the temporal component is not fixed which violates
the standing assumption on time intervals in fraditional ILC.
The proposed framework allows for the length of the time
interval to change with each iteration. To relate the spatial
information from the past to the present iteration, the concept
of spatial projection is proposed. A class of nonlinear uncertain
systems with input saturation is chosen for demonstration. An
a appropriate ILC control law, exploiting the spatial projection
idea, is proposed and the corresponding convergence analysis,
based on the Composite Energy Function, is carried out. It
is shown that spatial tracking is achieved under appropriate
assumptions related to spatial projection and provided that the
desired trajectory is realizable within the saturation bound.
Finally, simulation results illustrate the predicted convergence.

I. INTRODUCTION

Iterative Learning Control (ILC) is a control framework
which focuses on repeatable task(s). A classical example
is car assembly which includes several repeatable tasks
performed by a robot, such as welding and painting. There
are many ways these tasks can be executed. Assuming (or
given) a desired motion profile, the goal of ILC is then to
improve the corresponding transient behavior and achieve
perfect tracking. The ILC framework does this by exploiting
the repeatability feature via application of an appropriate
learning mechanism. Knowledge acquired through learning
enables construction of a control law which effectively and
efficiently! accomplishes the transient and tracking goals.
There is a vast literature associated with ILC, spanning both,
the theory and the practice; for instance, cf.: survey papers
[1]-[3], books [4]-[6] and references therein.

A specific property in ILC analysis and controller design
is that the considered models evolve over a two-dimensional
temporal space. In particular, the dynamics of interest evolve
over the discrete-time or the continuous-time while its re-
peatability evolves over the iteration-time?. The majority of
the literature on ILC analysis and design uses a standing
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Note that other control methodologies can be used to solve the problems
ILC addresses. However, they usually do not exploit the specific properties
associated with the corresponding problems, such as repeatability, and
thus result in a less efficient and effective control laws. In addition,
ILC can enforce perfect tracking in the presence of significant modeling
uncertainties.

2Indeed, if a discrete-time corresponds to the set of non-negative integer
numbers, then this discrete-time and the iteration-time are the same. Oth-
erwise, the equidistance between points belonging to a discrete-time might
not equal to one.
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assumption that at each iteration, the dynamics of inter-
est evolves over a fixed finite discrete-time or continuous-
time interval. Loosely speaking this means that a given
task must be completed within this fixed time interval. To
illustrate why this causes a problem for certain applications,
imagine drawing a circle of a fixed radius. Assuming fixed
finite time intervals, this corresponds to drawing the circle
within that time interval during each iteration. Indeed, in
many applications this assumption is valid; e.g., one can
program a robot to perform this task. However, in human
motor learning, or in rehabilitation of a stroke patient, this
assumption cannot be satisfied; [7] demonstrates this even
for healthy subjects. For instance, in stroke rehabilitation,
during each session, a patient has to repeat the same task
(movement) a sufficient number of times. Now, imagine
that the rehabilitation process includes drawing a circle of
a fixed radius without robotic assistance. It is unreasonable
to expect that the patient will execute this task (movement) in
a fixed time interval every iteration (trial). Depending on the
effects of the injury, including factors such as pain, range of
motion, level of concentration and fatigue, and the stage of
the rehabilitation, it is more likely to expect that the duration
of the time interval will vary with each iteration (trial). It is
also natural to expect that over sufficiently many iterations
the duration of the time interval will converge to some value.
Thus, for applications such as stroke rehabilitation, where the
spatial component of the corresponding task is fixed while
its temporal component may vary, the standing assumption
on the time intervals needs to be relaxed. One relaxation,
that seems natural, is to assume bounded instead of fixed
time intervals; notice also that the former subsumes the latter.
This assumption then enables problem formulation so that the
emphasis is on the spatial component in the corresponding
ILC analysis and design.

Related industrial research on Spatial ILC (SILC), is
largely driven by the particular mechanical applications.
For instance, these include switched reluctance motors [8],
nonlinear rotary systems [9] and micro-additive manufactur-
ing [10]. Some theoretical results can be found in [11], [12]
and [13]. The first reference deals with a problem of directly
computing control using given temporal relation between
already learned trajectories, while the second considers the
problem of minimization of the total tracking error of the
repeated tasks with output constraints. The last reference
explores the freedom of not specifying temporal information
related to the spatial movement and shows some significant
practical yields.

This paper aims to address this need by providing a SILC
framework for a class of nonlinear uncertain systems with



input saturation. Notice that input saturation is ubiquitous in
real world applications, while theoretically, the correspond-
ing control problem is challenging and of broad interest;
cf. [14] and references therein. Thus, the corresponding SILC
results have potential for high impact, both, theoretically and
practically. The underpinning component of the proposed
framework is an idea of spatial projection which is tightly
related to appropriate temporal rescaling. To the best of
authors’ knowledge the only reference that utilizes a similar
idea in the ILC setting is reported in [15]. Namely, in [15],
ILC and time-scale transformation are used to identify added
mass, drag and buoyancy in the dynamics of the under-
water robots. The considered application is rather specific,
and moreover no general analysis and design framework is
provided. After introduction of the spatial projection, the
present paper proposes an appropriate SILC controller and
carries out the corresponding convergence analysis using
appropriate Composite Energy Function (CEF) method. It is
shown that under the appropriate assumptions related to the
spatial projection and the assumptions akin to those utilized
in [14], spatial tracking is achieved. Finally, simulation
results demonstrate the convergence, even under disturbances
introduced by computer implementation.

The paper is organized as follows. In the sequel, the
mathematical preliminaries and notational conventions are
provided which is followed with the formulation of the
problem in Section II. Then, in Section III, the corresponding
assumptions are provided and main results are stated. This
is followed with Section IV, in which the simulations results
demonstrate the claims of the main results. Finally, Section V
hosts the concluding remarks.

Preliminaries: Symbols Z and R, respectively, denote the
set of integer and real numbers. A set D € {Z,R} which
elements are o-bounded, ¢ € {<,<,>,>}, by an element
a € D, is defined as D, := {x € D : x © a}. The set of
natural numbers is then N := Z-, while Ny := Z>q. The
Cartesian product between sets D;, j € {1,...,d}, d €
N, is denoted as Dy x --- x Dg. However, when D; =
D, Vj € {1,...,d}, d € N, the shorthand notation D?
is used. Its elements are denoted as ordered d-tuples, i.e.,
(x1,...,2q) where z; € D, Vj € {1,...,d}, d € N\.
Moreover, throughout the document, this notation is used
to denote column vectors. Standard notation for p norm
is used throughout the document. In particular, |[z[/) :=
SiilzilP, e N, p € [1,00), where | - | denotes the
standard Euclidean norm. In addition, for a given [0, T] —
z(t) € R", T > 0, its the supremum norm is defined as
l|lz|ls := max;c(o,7 [|2(t)]|1, while its time-weighted norm is
defined as [|z||x := max;cpo ) e+ ||z (t)]|1, where A > 0.

II. PROBLEM FORMULATION

For clarity reasons, first an ILC model for a class of non-
linear uncertain systems with input saturation is presented® .
This is followed with a discussion on why such a model is not

3Note that considered system is borrowed from [14], however, the present
paper uses notation which emphasizes that the system evolves over a two
dimensional temporal space.

applicable for the applications with non-fixed time intervals.
The discussion sets the stage for the introduction of an
appropriate spatial projection mapping. This mapping then
assists in the reasoning behind the proposed SILC model.
Finally, this spatial projection mapping is later used in the
construction of an appropriate SILC control law.

So, consider a dynamical model evolving over a two
dimensional temporal space®,

i(i,t) = f(t,x(i,t)) + B(t,z(i,t)) sat (u(i,t),a), (1)

where?,
(i,t) € Ng x [0, T], T € Rso, ()

is an element of a two dimensional temporal space, while,

sat (u(i,t), a)

1), @
= (sat (ul(i,t),ﬁl), ...,sat (um(i,t),ﬂm)), 3)

with,

sat (uj(i,t),ﬂj)
= sgn (u;(5, ) - minfa, llus ()1}, @ >0, @)

for each j € {1,...,m} and each (i,t) € Ny x [0, T].
Variables x € B, C R” and u € B, C R™, respectively,
are the model state and input, while (n,m) € N2. Further,
f +Rsg x B, — B, is an unknown model state mapping
while B : R>g x B, — B, x B,, is a known input matrix.
Correspondingly, consider a model of a desired behavior,

t4(t) = f (t,24(t)) + B (t,24(t)) ua(?), 5)

where,
ua(@)ll, <, Vte0,T], (6)

while z4 € B,, C R" and uq4 € B,,, C R, respectively, are
the desired behavior state and input.

Remark 1 (Input bound): As reported in [14], the whole
premise behind the successful application of an ILC
paradigm, for uncertain nonlinear systems with input sat-
uration, is that inequality (6) is satisfied. Namely, if satis-
fied, it is possible to construct an appropriate ILC control
law (cf. (7)) so that then after sufficiently many iterations, an
input that approximates u4 well enough, is generated (cf. [14,
Theorem 2]). O

A standard ILC objective is to construct an ILC con-
trol law so that desired behavior is learned with respect
to a corresponding performance index after sufficiently
many iterations. More precisely, the goal is to achieve
lim; 00 Az(3,t) = (0,...,0), where Ax(i,t) = zq(t) —
z(i,t). Depending on the properties of the corresponding
system different ILC control laws can be used, e.g., cf. [4]-
[6]. For instance, in [14], the following ILC control law is

“Note that @(i,t) := dx(i,t)/dt.

SIn the sequel, this temporal notation, akin to the one encountered in
hybrid systems, is changed to a notation accustomed to the ILC literature.
At this stage, the present notational choice is chosen for clarity.



used,

u(i 4+ 1,t) = sat (u(i, t), @)
+h-B(tati+1,0) Axi+1,8), (7)

where xk € R is the learning control gain.

Remark 2: Note that in (7), the ILC control law uses
the state error at the current iteration ¢ + 1 (i.e., time
domain feedback) instead of the state error from the previous
iteration ¢ (i.e., time domain feedforward). Also, since the
system (1) has the relative degree one, contraction mapping
method would require the derivative information of the state
error. This would then require for (7) to incorporate that
quantity. However, with appropriate assumptions and CEF
based approach, as documented in [14], it can be shown that
the proposed ILC algorithm (7) achieves perfect tracking. [J

Now, consider a scenario where the duration of each trial
is not fixed (in this case (2) is no longer satisfied). This, for
instance, can relate to the rate at which the corresponding
dynamics evolves not being fixed. For instance, consider a
scenario similar to the rehabilitation process, mentioned in
Section I. Recall that in the rehabilitation process, during
each treatment (session), a patient repeats (sufficiently many
times) a given movement. Recall also that due to many
factors, there is no guarantee that each repetition of a given
movement is performed at the same rate and thus within the
same time interval. Now, since in this case the task is not
repeatable over a fixed time interval (i.e., (2) is not satisfied),
the traditional ILC cannot be applied directly. Thus, one
needs a more general framework. In particular, one needs a
framework which focuses on the spatial information. There
are different ways to handle spatial information. This paper
focuses on the spatial projection mapping defined below.

Definition 1 (Spatial Projection): Consider  s(t) €
R!, I € N, where t € [0,T], T > 0. Given € > 0, a spatial
projection mapping is defined as,

oc(s(t)) :=s(e- 1), (8)
where 7 € [O T]. O

)€

Remark 3 (Spatial Projection): Indeed, the spatial projec-
tion is achieved via temporal rescaling (rate €) and the
corresponding manipulation of the original time domain.
However, the following example provides the reasoning
behind the idea of spatial projection and it also serves as
a prelude to the introduction of the model used for SILC. O

Example 1 (Spatial Projection): To illustrate the applica-
tion of the spatial projection mapping from Definition 1 for
the characterization of spatially equivalent trajectories, con-
sider the task of drawing a unit circle starting from the point
A in the clockwise direction; see Fig. 1. Instead of using a
dynamical model which captures the task of drawing a circle,
to simplify the explanation consider just a static mapping
which captures a unit circle. In particular, each point on a
unit circle can be defined as p(t) := (sin(¢), cos(t)) with the
property sin(t)? + cos(t)? = 1. To simplify the illustration
even further, consider drawing a unit circle only once, in
which case restricting ¢ to [0, 7], T > 0, enables the static

mapping to capture all the necessary features. In Fig. 1 this
corresponds to the green color. Let the corresponding unit
circle be a nominal unit circle. The nominal unit circle is
drawn with a corresponding rate and it takes 7' amount of
time to finish drawing it. Now, let (¢/,¢”) € R%, be given

% i \
sin(¢’ - 7) : \ /
sin(e” - T) /
i
r
€ >
L]
T
cos(e” - 1)
cos(e - 7) /
Fig. 1. Preserving spatial information.

and let € > 1 > €”. Tt follows®,

st =p(€ 1) e 0. 5] ow
st =p(e 7). e 0.5 ] o)

The unit circle that corresponds to (9a) is associated with
blue color while the unit circle that corresponds to (9b) is
associated with red color. As illustrated, in all three cases the
spatial information is preserved; e.g., the unit circle which
is in the black color. However, femporally, they to differ.
In particular, the difference is the rate at which each circle
is drawn and time it took to complete each circle; e.g., it
is possible to temporally characterize them. In particular,
because €/ < 1 < ¢, the circle associated with the green
color is drawn at a slower rate than the circle associated
with the blue color and at the faster rate than the circle
associated with the red color. To illustrate this even further,
at the (“universal”) time instant 7, the corresponding point
on the unit circle associated with the blue color is ahead of
the the corresponding point on the unit circle associated with
the green color which is ahead of the corresponding point on
the unit circle associated with the red color. Correspondingly
circle completion times associated with the blue, green and
red color, respectively, satisfy T'/¢’ <T < T/¢". A
Now, consider,

(i e(i) - t) = e(@) - f(e(@) - t, (i

(i,t) S NO X [O,TIL}7

Note that in both cases it holds that sin(-)2 + cos(-)2 = 1.



is an element of a two dimensional temporal space with,

T
Ti = —0

TeR
E(i), € >0,

(12)
and,

€:Ng = Ry, (13)

is a mapping that captures at what rate the dynamics of (10)
evolves at each iteration 7. More details about this mapping
is provided in the sequel but for now note that at each
iteration 4, €(i) affects the duration of the time interval
[0,T;], see (12). With the concept of spatial projection
(see Definition 1 and Example 1), the system (10) can be
interpreted as the spatial projection of the system (1) with
respect to the mapping € (see (13)). To make the notation
less verbose, the system (10) is succinctly represented as,

$2|51 =€ f (Ei : tvxi|ei)

+ € - B (€ - t,xyc, ) sat (uy)e,,u) . (14)

Correspondingly, consider a model of a desired behavior,

ta (€(i) - t) = €(i) - f ((i) - £, wa(e(d) - 1))
+ (i) - B(e(@) - t,xa(e(d) - 1)) ua(e(i) - 1),

where z4 € B,, C R” and ugq € B,, C R™, respectively,
are the desired behavior state and input. Again, f and B
in (15), are the same as in (10). Note that the desired
behavior model (15) is also accordingly spatially projected.
Now, similarly as for (10), the desired behavior model (15)
is succinctly represented as

id\ei =€ (f(ez : tvl'd\eq-,) + B(el . tvmd\ei)ud\ei) )

The ILC objective remains the same. Namely, construct an
ILC control law so that desired behavior is learned after
sufficiently many iterations. However notice that the desired
behavior, though spatially invariant, is affected by (13).
Moreover, the rate (13) also directly affects (11), (14)
and (16). Thus, before stating precisely the ILC objective
it is necessary to elaborate more on it.

Variable €(i) > 0, captures at what rate the dynamics
of (14) evolves at the iteration ¢. Correspondingly, it also
directly affects the length of the corresponding time interval,
see (12) and (11). Focusing on the applications such as
rehabilitation process, mentioned above, it seems natural to
assume that (13) converges to some value, as stated in the
following assumptions.

Assumption 1 (Rate Convergence): Consider
equation (13). There exists a tuple (e.,n) € Rsg x (0,1),
such that,

5)

(16)

leirs — exlly <n-flei — e, a7

holds for each ¢ € Ng. O

Remark 4 (Rate Convergence): For instance, the element
€.« can represent a unique rate of the execution of a given
task for a (healthy) patient. Section IV explores different rate
profiles which satisfy Assumption 1. ]

Remark 5 (Rate Boundedness): Notice that because of
Assumption 1 there exists € € Ry, such that ¢, < €

holds for each ¢ € Ny. This means that the length of the
corresponding time interval, see (12), is upper bounded as
well. Also, note that the upper bounded on rate ¢ means
that considered dynamics cannot evolve infinitely fast, which
definitely applies to humans. ]

Remark 6 (Rate Dynamics): Notice that the rate e, as
defined in (13), is a static mapping which is assumed
to be known for each iteration ¢ € Ny. Assumptions 1
seem reasonable, even without the full knowledge of (13).
However, the conducted analysis does depend on it. Thus, the
future work will address the design and analysis where (13)
is not fully available but estimates are. In addition to that, a
more complex description of the rate ¢ will be considered,
e.g., it will be modeled as an output of a dynamical system
which might be affected with data from the model (14)
and/or (16). U
Now, the goal is defined as a construction of an ILC control
law such that,

lim Az, = (0,...,0) (18)
1—> 00

where
Azjje, 1= Tdje, — Ti|e, - (19)

Remark 7 (State Error): Notice that because of Assump-
tion 1, it follows that the state error limit (18), is equivalent
to lim; o0 A, = lim;_, o0 Az, = 0. O
One attempt in constructing such a law is to directly and
correspondingly apply the reasoning behind (7). In particular,
one might be tempted to apply the following ILC control law,

Uit1|e;y, ‘= sat (uim,ﬂ)
-
+ 5B (€416 Tit1)e,) ATigife,,. (20)

However, unfortunately, when ¢; # ¢, ¢ € Ryq, Vi € Ny,
the length of [0, T;] is not fixed (see (12)). Therefore, two
consecutive time intervals are not necessarily the same length
and using (20) to compute control values for the time interval
[0, T;+1] becomes problematic. Firstly, if T,;1; > T;, then
for the time interval [T;41 — T;, T;41] there are no control
values from the time interval [0, T;] that can be used; i.e.,
they are only defined for the time interval [0, T,;]. On the
other hand, if T,;; < T,, then the control values from the
time interval [T;41 —T;, T;11] are not even used. To explain
this more precisely, consider Example 1. For simplicity
reasons, assume that the data associated to the blue color
corresponds to the data from the time interval [0, T;]. Let
Ti+1 > T; and let the corresponding time interval [0, T;41]
be associated to the green color; e.g., T;; 1 = T while
T, = T/€. Now, using the “blue data” to compute the
corresponding data for the time interval [0, T; ;] becomes
a problem because for the time interval [T;41 — T4, Tit1]
(in Example 1 this corresponds to [T — T'/¢’, T]) the “blue
data” is not defined. Conversely, now assume that the data
associated to the green color corresponds to the data from the
time interval [0, T;]. Let T;;1 < T; and let the corresponding
time interval [0, T; 1] be associated to the blue color; e.g.,
T,+1 = T/€ while T; = T. Now, using the “green data”



to compute the corresponding data for the time interval
[0, T;+1] becomes also a problem. Namely, the “green data”
that corresponds to the time interval [T, — T,41, T;] is not
used. To address both issues the following ILC control law
is proposed,

Uit1]epr ‘= Oein (sat (u,;|5i, u)

T
+r-B (€i+1 -t zi+1|6@'+1) Axi+1‘€'i+1)
= sat (ui|5i+1,ﬁ)

.
+ 5B (€41 6 Titt)en,) ATitije,,-
(21)

The idea behind the ILC control law (21) is to preserve
spatial reference. This appears to resemble human approach
towards spatial tracking, i.e., when spatial reference is fixed
and there are no time constraints. In the following section
the proposed control law is analyzed in a more detail.
Remark 8 (Robotic Assistance): The proposed framework
focuses on human learning without robotic assistance, e.g.,
cf. [16]. Thus, the control refers to human voluntary move-
ment. In the future work the corresponding extensions will
be addressed. (]

III. ANALYSIS

This section records the convergence analysis of the pro-
posed SILC framework. Recall that the framework consists of
models (14) and (16) and the control law (21). The analysis
leverages existing results in the ILC literature which use an
appropriate CEF function to show convergence, e.g., cf. [14].
In fact, the analysis documented in this section follows
closely the corresponding analysis in [14]. Thus, full proofs
are omitted and only some comments on key differences are
provided.

Now, to claim (18) under the proposed control law (21),
some additional sufficient assumptions are stated below. The
first one is related to the initial states of (14) and (16). This
assumption is often used in the ILC literature and it even has
a reserved name, Identical Initialization Condition (IIC).

Assumption 2 (IIC): Consider (14) and (16). The follow-
ing holds,

2(0,7) = 2° = x4(0), (22)

for each ¢ € Nj. ]
Further, the mappings f and B from (14) and (16) are
assumed to be Locally Lipschitz Continuous (LLC). In
particular, the following is assumed.

Assumption 3 (LLC): Consider models (14) and (16).
There exists (L, G) € R2, such that,

[f(e-8,2) = fle-t,2) L < L-[|Z — |y,
|B(e-t,%) — B(e-t,Z)|a < G- |2 — 2|1,

(23a)
(23b)

holds V((e . t,ﬁj)’ (6 . t,:E)) c (RZO « Ba:)Q and Ve € Roo;
|| - [[ar is induced matrix norm’. 0

N

7For definitions and corresponding theory, consult [17, Chapter 9].

The last assumptions essentially excludes the finite escape
time possibility by restricting attention to Bounded-Input-
Bounded-Output (BIBO) stable systems.

Assumption 4 (BIBO Stability): Consider (14) and (16).
The corresponding dynamics is BIBO stable on time interval
[0,T/€;], T >0 forall ¢; > 0. O
Finally, the main theoretical result is stated next.

Theorem 1: Consider (14) and (16). Let the Assump-
tions 1 — 4 be satisfied. Then, the control law (21) achieves
the limit (18). ]
Proof: The proof follows similar lines as the proof of Theo-
rem 2 in [14]. Thus, for space reasons it is omitted. However,
the key differences is explained below. The used CEF is
defined as, E;., == 5 -e M- (Azy,)? + 5= - fOTi e~
(udje, — ui|6i)2d7'. One of the steps in demonstrating the
convergence is to establish the corresponding dissipation
inequality, e.g., step (2) in [14]. However, in the present case
[0, T;] is not fixed. Thus, directly emulating step (2) would
result in trying to upper bound AE; ., := Eiyq|c,,, — Ei,
with a negative number. However, the same problems, as
captured in the paragraph after (20), are encountered. To ad-
dress this, similarly as for the control law (21), one considers
AE2|61 = i+1leip1 — Teipa (Ellfl) = Ei+1|6¢+1 - Ei|6«;+1'
The rest of the proof then follows similar lines as the proof
of Theorem 2 in [14]. [ |

IV. SIMULATIONS

A simple scalar example is used to illustrate that the
limit (18) is achieved under the proposed ILC control
law (21). The used example is borrowed from [14] and
correspondingly modified. Indeed, the considered dynamics
is simple, but still sufficient to demonstrate the conver-
gence. First, the model and desired behavior dynamics are
presented. Then, four different rate e profiles, that satisfy
Assumption 1, are depicted® and the corresponding results
are presented.

So, consider the following dynamical system, i, =
€3 Tj|c, -sin(e; - ) +€; - sat (uim,ﬂ) , where z° = 0 while
t € [0,(2-7)/e]; in Fig. 2, four different rate profiles are
provided. Following the narrative from [14], let the desired
behavior be captured with, 24/, = 1.5-sin(e; - ). Using the
latter two equations, it follows that ugje, = €; - 4.5 - (sin(e; -
t)2-cos(e;-t) —sin(e;-t)*). From Fig. 2 it is easy to determine
lower and upper bound for each individual rate profile and
use it to determine the lengths of the corresponding time
intervals. However, for simplicity and space reasons this is
omitted. It can be shown that [jug,[[1 < 8.8 regardless of
the used rate profile. Thus let 4 = 8.8. The convergence
results for each rate profile, obtained by using the proposed
control law (21), are captured in Fig. 3. Before concluding
this section, few remarks are provided regarding the imple-
mentation of the control law (21) in a computer environment.
To perform simulations, MATLAB and Simulink are used.
Implementation of the spatial projection of the control values

8Recall that in this manuscript, the full knowledge of (13) is assumed
available. Future work will address cases where this is not the case.
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Fig. 2. Different line shapes correspond to different rate e profiles. All four
profiles converge to e, = 1. Iteration time ¢ is located on the horizontal
axis while the vertical axis stores values.

Fig. 3. Convergence of Axz;|.. under (21) for rate profiles depicted in

les
Fig. 2. The learning control gain in (21), x = 0.8, while ugc, = 0, for
simplicity. Iteration time ¢ is located on the horizontal axis while the vertical
axis stores the values of ||Az;), |ls.

form the previous iteration (see first part of the right hand
side of (21)) involves sampling the corresponding control
signal; 1500 samples are taken to be exact. Then, these values
are equally spread along the time interval that corresponds
to the iteration 7 + 1. Depending on the solver used in the
Simulink, different interpolation methods are applied; in the
case of the presented results, solver “ode23t” is used.

For a dotted rate profile, Fig. 4 shows the corresponding
control signal for ¢ = 4, its projection to ¢ = 5 and the
control signal for ¢ = 50. Finally, as shown in Fig. 4 even
with saturation, the proposed control eventually learns ug)e,
which does not violate the saturation bound.

V. CONCLUSION

A SILC framework which utilizes the idea of spatial
projection is proposed. The spatial tracking is achieved under
the proposed SILC controller. Simulation results demonstrate
this even with the imperfections introduced by the simulation
environment. There are several future directions, including
analysis and design where the full knowledge of the rate e
is not available.
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