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Abstract—In this paper, a concurrent learning based adap-
tive observer is developed for a class of second-order linear
time-invariant systems with uncertain system matrices. The
developed technique yields an exponentially convergent state
estimator and an exponentially convergent parameter estimator.
As opposed to persistent excitation required for parameter
convergence in traditional adaptive methods, excitation over
a finite time-interval is sufficient for the developed technique
to achieve exponential convergence. Simulation results in both
noise-free and noisy environments are presented to validate the
design.

I. INTRODUCTION

Over the the past decade, the role of autonomy in everyday
life has seen an unprecedented growth. As a result, the
tasks performed by autonomous systems have also grown
in complexity. Adaptive control methods have emerged as
a tool to address a subset of the challenges posed by com-
plexity. In particular, autonomous systems typically operate
in uncertain and changing environments. The ability to learn
the uncertainty and to adapt to changes is thus an integral
part of a modern control system.

Traditional adaptive control methods handle uncertainty in
the system dynamics by maintaining a parametric estimate of
the model and utilizing it to generate a feedforward control
signal [1]–[3]. While the feedforward-feedback architecture
guarantees stability of the closed-loop, the control law is
not robust to disturbances, and seldom provides informa-
tion regarding the quality of the estimated model [1], [2].
In addition to system identification, parameter convergence
in adaptive control schemes provides increased robustness
and improved transient performance (cf. [4]–[6]). Modifica-
tions such as σ−modification (cf. [1, Section 8.4.1]) and
e−modification (cf. [7]) result in robust adaptive controllers,
however, the parameter estimates generally do not converge
to the true values of the corresponding parameters [1], [2],
[7]–[9]. The parameters can be shown to converge under
persistent excitation; however, in addition to the control
effort required to maintain excitation, persistent excitation
can lead to mechanical fatigue, and often directly conflicts
with control objectives such as regulation and tracking.

Recently, a novel data-driven concurrent learning (CL)
adaptive control method that achieves parameter convergence
under a finite excitation condition was developed in results
such as [6], [10], [11]. In CL adaptive control, parameter
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convergence is achieved by storing data during time-intervals
when the system is excited, and then utilizing the stored
data to drive adaptation when excitation is unavailable. Since
excitation is required only over a finite time-interval, energy
utilization and mechanical fatigue can be kept to a minimum,
and asymptotic objectives such as regulation and tracking can
be effectively achieved. Furthermore, CL adaptive control
methods possess similar robustness to bounded disturbances
as σ−modification, e−modification, etc, without the associ-
ated drawbacks such as drawing the parameter estimates to
arbitrary set-points [6], [10]–[12].

Adaptation techniques similar to the CL method were
utilized to implement reinforcement learning under finite
excitation conditions in results such as [13]–[18]. CL meth-
ods have also been extended to classes of switched systems
(cf. [19]) and systems driven by stochastic processes (cf.
[20]). A major drawback of CL methods is that they require
numerical differentiation of the state measurements. CL
methods that do not require numerical differentiation of the
state measurements are developed in results such as [21] and
[22], however, they require full state feedback. Since full
state feedback is often not available, the development of an
output-feedback CL framework is well-motivated.

In this paper, a CL-based adaptive observer is developed
for a class of second-order linear time-invariant systems.
The elements of the system matrices are assumed to be
uncertain and the dimensions of the matrices are assumed to
be known. The developed technique yields an exponentially
convergent state estimator and an exponentially convergent
parameter estimator. Excitation over a finite time-interval (as
opposed to persistent excitation) is required for exponential
convergence. Simulation results are provided in a noise-free
environment to validate the design. Simulation results with
added measurement noise are also provided to demonstrate
robustness to sensor noise.

In the following, a linear error system is developed in
Section II to facilitate CL-based adaptation. A CL-based
parameter estimator is designed in Section III. A state-
observer that utilizes the parameter estimates to estimate
the generalized velocity is developed in Section IV. A
Lyapunov-based stability analysis of the parameter estimator
and the state observer is presented in Section V. Section
VI presents numerical simulation results, and Section VII
presents concluding remarks and a few comments on possible
extensions of the developed technique.
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II. ERROR SYSTEM FOR ESTIMATION

Consider a second order linear system of the form

ṗ (t) = q (t) ,

q̇ (t) = Ax (t) +Bu (t) ,

y (t) = p (t) , (1)

where p : R≥t0 → Rn and q : R≥t0 → Rn denote
the generalized position states and the generalized velocity
states, respectively, x ,

[
pT qT

]T
is the system state,

A ∈ Rn×2n and B ∈ Rn×m denote the system matrices, and
y : R≥t0 → Rn denotes the output. The objective is to design
an adaptive estimator to identify the unknown matrices A and
B, online, using input-output measurements. It is assumed
that the system is controlled using a stabilizing input, i.e.,
x, u ∈ L∞. Systems of the form (1) can be obtained through
linearization of second-order Euler-Lagrange models, and
hence, represent a wide class of physical plants, including but
not limited to robotic manipulators and autonomous ground,
aerial, and underwater vehicles.

To obtain an error signal for parameter identification, the
system in (1) is expressed in the form

q̇ (t) = A1p (t) +A2q (t) +Bu (t) , (2)

where A1 ∈ Rn×n and A2 ∈ Rn×n are constant matrices
such that A =

[
A1 A2

]
. Integrating (2) over the interval

[t− T1, t] for some constant T1 ∈ R>0,

q (t)− q (t− T1) = A1

tˆ

t−T1

p (τ) dτ +A2

tˆ

t−T1

q (τ) dτ

+B

tˆ

t−T1

u (τ) dτ. (3)

Integrating again over the interval [t− T2, t] for some con-
stant T2 ∈ R>0,

tˆ

t−T2

(q (σ)− q (σ − T1)) dσ = A1

tˆ

t−T2

σ̂

σ−T1

p (τ) dτdσ

+A2

tˆ

t−T2

σ̂

σ−T1

q (τ) dτdσ +B

tˆ

t−T2

σ̂

σ−T1

u (τ) dτdσ. (4)

Using the Fundamental Theorem of Calculus and the fact
that q (t) = ṗ (t),

p (t)− p (t− T2)− p (t− T1) + p (t− T2 − T1) =

A1F (t) +A2G (t) +BU (t) . (5)

where

F (t) ,

{´ t
t−T2

´ σ
σ−T1

p (τ) dτdσ, t ∈ [t0 + T1 + T2,∞) ,

0, t < t0 + T1 + T2,
(6)

G (t),

{́
t

t−T2
(p (σ)−p (σ−T1)) dσ, t∈ [t0+T1+T2,∞) ,

0 t < t0 + T1 + T2,
(7)

and

U (t) ,

{´ t
t−T2

´ σ
σ−T1

u (τ) dτdσ, t ∈ [t0 + T1 + T2,∞) ,

0 t < t0 + T1 + T2.
(8)

The utility of the integral form in (5) is that it is independent
of the generalized velocity states, q. The expression in (5)
can be rearranged to form the linear error system

F (t) = G (t) θ, ∀t ∈ R≥t0 . (9)

In (9), θ is a vector of unknown parameters, defined as

θ ,
[
vec (A1)

T
vec (A2)

T
vec (B)

T
]T
∈ R2n2+mn,

where vec (·) denotes the vectorization operator and the
matrices F : R≥0 → Rn and G : R≥0 → Rn×2n2+mn are
defined as

F (t) ,


p (t−T2−T1)−p (t−T1)

+p (t)−p (t−T2) ,
t∈ [t0+T1+T2,∞) ,

0 t < t0 + T1 + T2.

G (t) ,
[
(F (t) � In)

T
(G (t) � In)

T
(U (t) � In)

T
]
,

where In denotes an n × n identity matrix, and � denotes
the Kronecker product. Note that even though the linear
relationship in (9) is valid for all t ∈ R≥t0 , it provides useful
information about the vector θ only after t ≥ t0 + T1 + T2.

The linear error system in (9) motivates the adaptive
estimation scheme that follows. The design is inspired by
the concurrent learning (cf. [23]) technique. Concurrent
learning enables parameter convergence in adaptive control
by using stored data to update the parameter estimates.
Traditionally, adaptive control methods guarantee parameter
convergence only if the appropriate PE conditions are met
(cf. [1, Chapter 4]). Concurrent learning uses stored data
to soften the PE condition to an excitation condition over
a finite time-interval. Concurrent learning methods such as
[6] and [11] require numerical differentiation of the system
state, and concurrent learning techniques such as [22] and
[21] require full state measurements. In the following, a
concurrent learning method that utilizes only the output
measurements is developed.

III. PARAMETER ESTIMATOR DESIGN

To obtain output-feedback concurrent learning update law
for the parameter estimates, a history stack denoted by
H is utilized. The history stack is a set of ordered pairs
{(Fi,Gi)}Mi=1 such that

Fi = Giθ, ∀i ∈ {1, · · · ,M} . (10)

If a history stack that satisfies (11) is not available a priori,
it can be recorded online, using the relationship in (9), by



selecting a set of time-instances {ti}Mi=1 and letting

Fi = F (ti) ,

Gi = G (ti) . (11)

Furthermore, a singular value maximization algorithm is used
to select the time instances {ti}Mi=1. That is, a data-point
{(Fj ,Gj)} in the history stack is replaced by a new data-
point {(F∗,G∗)}, where F∗ = F (t) and G∗ = G (t), for
some t, only if

λmin

∑
i6=j

GTi Gi+GTj Gj

<λmin

∑
i 6=j

GTi Gi+G∗TG∗
 ,

where λmin {·} denotes the minimum Eigenvalue of a matrix.

Definition 1. A history stack {(Fi,Gi)}Mi=1 is called full rank
if there exists a constant c ∈ R such that

0 < c < λmin {G } , (12)

where the matrix G ∈ R(2n2+mn)×(2n2+mn) is defined as
G ,

∑M
i=1 GTi Gi.

The concurrent learning update law to estimate the un-
known parameters is then given by

˙̂
θ (t) = kθΓ (t)

M∑
i=1

GTi
(
Fi − Giθ̂ (t)

)
, (13)

where kθ ∈ R>0 is a constant adaptation gain and Γ :

R≥0 → R(2n2+mn)×(2n2+mn) is the least-squares gain
updated using the update law

Γ̇ (t) = β1Γ (t)− kθΓ (t)

M∑
i=1

GTi GiΓ (t) . (14)

Using arguments similar to Corollary 4.3.2 in [1], it can be
shown that provided λmin

{
Γ−1 (t0)

}
> 0, the least squares

gain matrix satisfies

Γ I(2n2+mn) ≤ Γ (t) ≤ Γ I(2n2+mn), (15)

where Γ and Γ are positive constants, and In denotes an n×n
identity matrix. The following finite-excitation assumption
is necessary for the update law in (13) to result in an
exponentially convergent parameter estimator.

Assumption 1. For a given M ∈ N and c ∈ R>0, there
exists a set of time instances {ti}Mi=1 such that a history
stack recorded using (11) is full rank.

Since the history stack is updated using a singular value
maximization algorithm, the matrix G is a piece-wise con-
stant function of time. The use of singular value maximiza-
tion to update the history stack implies that once the matrix
G satisfies (12), at some t = T , and for some c, the condition
c < λmin {G (t)} holds for all t ≥ T . The following section
details the design of an exponentially convergent adaptive
state-observer.

IV. STATE OBSERVER DESIGN

To facilitate parameter estimation based on a prediction
error, a state observer is developed in the following. To
facilitate the design, the dynamics in (1) are expressed in
the form

ṗ (t) = q (t) ,

q̇ (t) = Y (x (t) , u (t)) θ,

where Y : Rn × Rm → Rn×(2n2+mn) is defined as
Y (x, u) =

[
(p� In)

T
(q � In)

T
(u� In)

T
]
. The adap-

tive state observer is then designed as

˙̂p (t) = q̂ (t) , p̂ (t0) = p (t0) ,

˙̂q (t) = Y (x (t) , u (t)) θ̂ (t) + ν (t) , q̂ (t0) = 0, (16)

where p̂ : R≥t0 → Rn, q̂ : R≥t0 → Rn, x̂ : R≥t0 → Rn, and
θ̂ : R≥t0 → Rn are estimates of p, q, x, and θ, respectively,
ν is the feedback component of the identifier, to be designed
later, and the prediction error p̃ : R≥t0 → Rn is defined as

p̃ (t) = p (t)− p̂ (t) .

The update law for the generalized velocity estimate
depends on the entire state x. However, using the structure
of the matrix Y and integrating by parts, the observer can
be implemented without using generalized velocity measure-
ments. Consider the integral form of (16)

q̂ (t)− q̂ (t0) =

tˆ

t0

(
Y (x (τ) , u (τ)) θ̂ (τ) + ν (τ)

)
dτ.

Using the definition of Y and θ, and expanding the integral,

q̂ (t)− q̂ (t0) =

tˆ

t0

(p (τ) � In)
T

vec
(
Â1 (τ)

)
dτ

+

tˆ

t0

(u (τ) � In)
T

vec
(
B̂ (τ)

)
dτ +

tˆ

t0

ν (τ) dτ

+

tˆ

t0

(q (τ) � In)
T

vec
(
Â2 (τ)

)
dτ.

The last term of the integral can be further expanded using
integration by parts to yield

tˆ

t0

(q (τ) � In)
T

vec
(
Â2 (τ)

)
dτ =

(p (t) � In)
T

vec
(
Â2 (t)

)
− (p (t0) � In)

T
vec
(
Â2 (t0)

)
−

tˆ

t0

(p (τ) � In)
T

vec
(

˙̂
A2 (τ)

)
dτ.



Thus, the update law in (16) can be implemented without
generalized velocity measurements as

q̂ (t) =

tˆ

t0

(u (τ) � In)
T

vec
(
B̂ (τ)

)
dτ +

tˆ

t0

ν (τ) dτ

+ q̂ (t0) +

tˆ

t0

(p (τ) � In)
T
(
vec
(
Â1 (τ)

)
−vec

(
˙̂
A2 (τ)

))
dτ

+(p (t) � In)
T

vec
(
Â2 (t)

)
−(p (t0) � In)

T
vec
(
Â2 (t0)

)
(17)

To facilitate the design of the feedback component ν, let

r (t) = q̃ (t) + αp̃ (t) + η (t) , (18)

where the signal η is added to compensate for the fact that
the generalized velocity state, q, is not measurable. Based on
the subsequent stability analysis, the signal η is designed as
the output of the dynamic filter

η̇ (t) = −βη (t)− kr (t)− αq̃ (t) , η (t0) = 0, (19)

and the feedback component ν is designed as

ν (t) = p̃ (t)− (k + α+ β) η (t) . (20)

The design of the signals η and ν to estimate the state from
output measurements is inspired by the p−filter (cf. [24]).
Similar to the update law for the generalized velocity, using
the the fact that p̃ (t0) = 0, the signal η can be implemented
using the integral form

η (t) = −
tˆ

t0

(β + k) η (τ) dτ−
tˆ

t0

kαp̃ (τ) dτ−(k + α) p̃ (t) .

(21)
A Lyapunov-based analysis of the parameter and the state
estimation errors is presented in the following section.

V. STABILITY ANALYSIS

To facilitate the analysis, (10) and (13) are used to express
the dynamics of the parameter estimation error as

˙̃
θ (t) = −kθΓ (t) G (t) θ̃ (t) . (22)

Since the function G : R≥t0 → R(2n2+mn)×(2n2+mn) is
piece-wise continuous, the trajectories of (22), and of all
the subsequent error systems involving G , are defined in the
sense of Carathéodory. Using the dynamics in (1), (16), (19),
and the design of the feedback component in (20), the time-
derivative of the error signal r is given by

ṙ (t) = Y (x (t) , u (t)) θ̃ (t)− p̃ (t) + (k + α) η (t)− kr (t) .

The analysis is carried out separately over the time intervals
t ∈ [t0, t0 + tM ] and t ∈ R≥tM . It is established that the
error trajectories remain bounded for t ∈ [t0, t0 + tM ] and
that the error trajectories decay exponentially to zero for t ∈
R≥tM . The following Lemma establishes boundedness of the
parameter estimation error vector for all t ∈ R≥t0 .

Lemma 1. The parameter estimation error vector satisfies
the bound ∥∥∥θ̃ (t)

∥∥∥ ≤ θ, ∀t ∈ R≥t0 , (23)

where θ ∈ R is a positive constant.

Proof: The candidate Lyapunov function Vθ

(
θ̃, t
)

,
1
2 θ̃
TΓ−1 (t) θ̃ can be differentiated along the trajectories of

(22) and (14) to yield

V̇θ

(
θ̃ (t) , t

)
≤ −kθ

2
θ̃T (t) G (t) θ̃ (t)−β1

2
θ̃T (t) Γ−1 (t) θ̃ (t) .

The bound in (15) yields

V̇θ

(
θ̃ (t) , t

)
≤ −kθ

2
θ̃T (t) G (t) θ̃ (t) .

Since G (t) is a positive semidefinite matrix for all t ∈ R≥t0 ,
the candidate Lyapunov function satisfies

Vθ

(
θ̃ (t)

)
≤ V θ, ∀t ∈ R≥t0 ,

where V θ , Vθ

(
θ̃ (t0) , t0

)
. Using the fact that γ

∥∥∥θ̃∥∥∥2

≤

Vθ

(
θ̃, t
)

, for all
(
θ̃, t
)
∈ R(2n2+mn) × R≥t0 , where

γ , 1/2Γ, it is concluded that the parameter estimation error
satisfies (23).

For brevity of notation, time-dependence of all the signals
is suppressed hereafter. The following Lemma establishes
boundedness of the observer error signals for all t ∈ R≥t0 .

Lemma 2. Provided the observer gains are selected such
that

β >

(
1 + α2

)2
4α

,

the state-estimation error, x̃, and the auxiliary observer error
signals, η and r, are bounded for all t ∈ R≥t0 .

Proof: To establish boundedness of the observer error
signals, consider the candidate Lyapunov function

Vr (p̃, r, η) ,
1

2
p̃T p̃+

1

2
ηT η +

1

2
rT r. (24)

The time-derivative of (24) along the trajectories of (1), (16),
and (19) is given by

V̇r = p̃T q̃ + ηT (−βη − kr − αq̃)

+ rT
(
Y (x, u) θ̃ − p̃+ (k + α) η − kr

)
.

Using (18), the Cauchy-Schwartz inequality and simplifying
and canceling common terms,

V̇r ≤ −
[
‖p̃‖ ‖η‖

]  α
−|1−α2|

2
−|1−α2|

2 β − α

[‖p̃‖
‖η‖

]
− krT r

+ rTY (x, u) θ̃.

Using (23) and the fact that x and u are bounded, the matrix
Y can be bounded as supt∈R≥t0

‖Y (x (t) , u (t))‖ ≤ Y and



the derivative of the candidate Lyapunov function can be
bounded as

V̇r ≤ −
[
‖p̃‖ ‖η‖

]  α
−|1−α2|

2
−|1−α2|

2 β − α

[‖p̃‖
‖η‖

]
−k ‖r‖2

+ Y θ ‖r‖ .

Completing the squares, using the fact that provided β >
(1+α2)

2

/4α, the matrix

Qr ,

 α
−|1−α2|

2
−|1−α2|

2 β − α


is positive definite, and letting $r = min {2λmin {Qr} , k}

V̇r ≤ −$rVr +
Y

2
θ

2

2k
.

Hence, the candidate Lyapunov function Vr satisfies the
bound supt∈R≥t0

{Vr (p̃ (t) , r (t) , η (t))} ≤ V r, where

V r , max
{
Vr (t0) , Y

2
θ
2
/2k$r

}
.

In the following, Theorem 1 demonstrates exponential
convergence of all the error signals to the origin.

Theorem 1. Provided the hypothesis of Lemma 2 hold, the
learning gains are selected such that

kkθc >
Y

2

4
,

and provided the history stack is populated using the singu-
lar value maximization algorithm, the parameter estimation
error, θ̃, and the state estimation error, x̃, converge exponen-
tially to zero.

Proof: Let the candidate Lyapunov function V : Rn ×
Rn × Rn × R2n2+mn → R be defined as

V
(
p̃, r, η, θ̃, t

)
= Vr (p̃, r, η) + Vθ

(
θ̃, t
)
. (25)

Consider the time-interval t ∈ [t0, tM ]. Lemmas
1 and 2 imply that the candidate Lyapunov
function satisfies V

(
p̃ (t) , r (t) , η (t) , θ̃ (t) , t

)
≤

V r + V θ, for all t ∈ [t0, tM ]. In particular,
V
(
p̃ (tM ) , r (tM ) , η (tM ) , θ̃ (tM ) , tM

)
≤ V r + V θ.

Over the time interval t ∈ R>tM , the time-derivative of
(25), along the trajectories of (1), (16), (19), and (22)
satisfies the bound

V̇ ≤ p̃T q̃ + ηT (−βη − kr − αq̃)

+ rT
(
Y (x, u) θ̃ − p̃+ (k + α) η − kr

)
− kθ θ̃TG θ̃. (26)

Since the history stack is full rank during the time-interval
t ∈ R>tM , the matrix G satisfies the rank condition in (12).
Hence, (26) satisfies the bound

V̇ ≤ −
[
‖p̃‖ ‖η‖

]
Qr

[
‖p̃‖
‖η‖

]
−
[
‖r‖

∥∥∥θ̃∥∥∥]Qθ [‖r‖∥∥∥θ̃∥∥∥
]
,

(27)

TABLE I
SIMULATION PARAMETERS FOR THE DIFFERENT SIMULATION RUNS.

THE PARAMETERS ARE SELECTED USING TRIAL AND ERROR.

Noise Variance
Parameter 0 0.001 0.01

T1 0.5 0.9 1
T2 0.3 0.5 0.4
N 50 50 150

Γ (t0) I12 I12 I12
β1 0.5 0.5 0.5
α 2 2 2
k 10 10 10
β 2 2 2
kθ 0.5/N 0.5/N 0.5/N

where

Qθ ,

[
k −Y2
−Y2 kθc

]
.

Provided β > (1+α2)
2

/4α and kkθc > Y
2
/4, the matrices Qr

and Qθ are positive definite, and hence, (27) satisfies the
bound

V̇ ≤ −$V,

where $ , 2 min {λmin {Qr} , λmin {Qθ}}. Hence, using
the Comparison Lemma [25, Lemma 3.4]

V
(
p̃ (t) , r (t) , η (t) , θ̃ (t) , t

)
≤

V
(
p̃ (tM ) , r (tM ) , η (tM ) , θ̃ (tM ) , tM

)
e−$(t−tM ),

∀t ∈ R>tM , which implies that

V
(
p̃ (t) , r (t) , η (t) , θ̃ (t) , t

)
≤
(
V θ + V r

)
e−$(t−tM ),

∀t ∈ R>tM . Hence, the parameter estimation error, θ̃, and
the state estimation error, x̃, converge exponentially to the
origin.

VI. SIMULATIONS

The linear system selected for the simulation study is given
by

ṗ (t) = q (t) ,

q̇ (t) =

[
2 3 1 5
1 2 1 8

] [
p (t)
q (t)

]
+

[
1 3
0 1

]
u (t) ,

The contribution of this paper is the design of a parameter
estimator and a velocity observer. The controller is assumed
to be any controller that results in bounded system response.
In this simulation study, the controller, u, is designed so
that the system tracks the trajectory p1 (t) = p2 (t) =∑3
j=1 sin (jt) + sin (5t). Since there are twelve unknown

parameters and the desired trajectory contains only four dis-
tinct frequencies, the closed-loop system is not persistently
excited.

The state observer in (16) is implemented using the
integral form in (17), and the filter in (19) is implemented
using the integral form in (21). The simulation is performed
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Fig. 1. Trajectories of the parameter estimation errors using noise-free
position measurements.
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Fig. 2. Trajectories of the generalized position estimation errors using
noise-free position measurements.

using Euler forward numerical integration using a sample
time of Ts = 0.0005 seconds. Past T1+T2

Ts
values of the

generalized position, p, and the control input, u, are stored in
a buffer. The matrices F and G for the parameter update law
in (13) are computed using trapezoidal integration of the data
stored in the aforementioned buffer. Values of F and G are
stored in the history stack and are updated so as to maximize
the minimum eigenvalue of G .

The initial estimates of the unknown parameters are se-
lected to be zero, and the history stack is initialized so that all
the elements of the history stack are zero. Data is added to the
history stack using a singular value maximization algorithm.
To demonstrate the utility of the developed method, three
simulation runs are performed. In the first run, the observer
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Fig. 3. Trajectories of the generalized velocity estimation errors using
noise-free position measurements.
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Fig. 4. Trajectories of the parameter estimation errors with a Gaussian
measurement noise (variance = 0.001).

is assumed to have access to noise free measurements of
the generalized position. In the second and the third runs, a
zero-mean Gaussian noise with variance 0.001 and 0.01, re-
spectively, is added to the generalized position signal to sim-
ulate measurement noise. The values of various simulation
parameters selected for the three runs are available in Table I.
Figure 1 demonstrates that in absence of noise, the developed
parameter estimator drives the parameter estimation error, θ̃,
to the origin. Figures 2 and 3 demonstrates that the developed
observer drives the generalized position and the generalized
velocity estimation error to the origin, respectively. Figures
4 - 9 indicate that the developed method is applicable in the
presence of measurement noise, with expected degradation
of performance with increasing variance of the noise.
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Fig. 5. Trajectories of the generalized position estimation errors with a
Gaussian measurement noise (variance = 0.001).
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Fig. 6. Trajectories of the generalized velocity estimation errors with a
Gaussian measurement noise (variance = 0.001).

VII. CONCLUSION

This paper develops a CL-based adaptive observer and
parameter estimator to estimate the unknown parameter and
the generalized velocity of second-order linear systems using
generalized position measurements. The developed technique
utilizes the fact that when integrated twice, the system
dynamics can be reformulated as a set of algebraic equations
that are linear in the unknown parameters. By integrating
n−times, the developed method can be generalized to higher-
order linear systems.

Simulation results indicate that the developed method is
robust to measurement noise. A theoretical analysis of the
developed method under measurement noise and process
noise is a subject for future research. Future efforts will
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Fig. 7. Trajectories of the parameter estimation errors with a Gaussian
measurement noise (variance = 0.01).

0 10 20 30 40 50
Time (s)

-3

-2

-1

0

1

2

3
~p
(t

)
Generalized position estimation error

Fig. 8. Trajectories of the generalized position estimation errors with a
Gaussian measurement noise (variance = 0.01).

also focus on the examination the effect of the integration
intervals, T1 and T2, on the performance of the observer.
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