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Abstract—In this work we formulate the satisfaction of a (syn-
tactically co-safe) linear temporal logic specification on a physical
plant through a recent hybrid dynamical systems formalism.
In order to solve this problem, we introduce an extension to
such a hybrid system framework of the so-called eventuality
property, which matches suitably the condition for the satisfaction
of such a temporal logic specification. The eventuality property
can be established through barrier certificates, which we derive
for the considered hybrid system framework. Using a hybrid
barrier certificate, we propose a solution to the original problem.
Simulations illustrate the effectiveness of the proposed method.

I. INTRODUCTION

Linear Temporal Logic (LTL, see, e.g., [1], [2]) provides a
tool to formulate richly expressive control specifications for
continuous-time plants (e.g., high-level tasks for multi-robot
systems). Since an LTL formula can be equivalently translated
into an automaton [1, Thm. 5.41], the combination of the
continuous-time plant and the automaton can be appealingly
addressed through a hybrid system formalism [3], in order to
leverage available control tools for the continuous-time part.
More precisely, we specify through the hybrid system how
the solutions of the continuous-time plant generate a word of
observations (corresponding to regions of interest), following
the terminology and approach of [2, Chap. 2]. We focus in this
work on syntactically co-safe Linear Temporal Logic (sc-LTL),
which is a relevant fragment of LTL. The fact that a word
of observations satisfies the sc-LTL specification, corresponds
to reaching a subset of the states of the automaton above
after a finite number of steps. Such a condition can be then
conveniently encompassed into an eventuality property of a
suitable set of the whole state of the hybrid system.

The notion of eventuality is stated for continuous-time
systems in [4, §3.2], and is paralleled here for a generic hybrid
system [3] as the existence of a finite hybrid time after which
a given set is reached by all solutions (cf. Definition 2). The
eventuality property for such a hybrid system is an attractivity-
like property with some distinct features. Indeed, it is a weaker
property than finite time attractivity [5, Def. 3.1] because no
settling-time function, independent of the considered solution,
is required. The eventuality property bears similarities with the
recurrence property in [6, §13.4.5], but the latter takes its full
meaning for stochastic systems, as we argue more in detail in
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Remark 2. Barrier certificates to assess the eventuality property
have been proposed again in [4] for a continuous-time setting.
Certifying eventuality without explicitly computing solutions
is the motivation behind barrier certificates for eventuality.
We extend them in this work for the hybrid setting [3] as
in Theorem 1.

The contributions of this paper are as follows. By formu-
lating the satisfaction of a sc-LTL formula by a continuous-
time plant as a hybrid system [3], we are motivated to extend
the eventuality property to such hybrid systems. We provide
for them sufficient conditions of Lyapunov type in terms of
barrier certificates, as a key contribution. Finally, we provide
a solution through barrier certificates to the problem of the
satisfaction of a sc-LTL formula by a continuous-time plant.

We propose a hybrid barrier certificate approach to over-
come the computational cost associated with discretizations
into (possibly very large) finite transition systems of the
continuous-time plant as in, e.g., [1], [2], [7]. For the same
reasons, such a discretization is also avoided in, e.g., [8]–[10].
As related work, the concept of eventuality agrees with the so-
called region stability of [9, Def. 1]. To the best of the authors’
knowledge, barrier certificates for eventuality have not been
proposed for hybrid systems [3], although barrier certificates
for other properties were proposed for the hybrid automata
described for instance in [11, §2]. Such hybrid automata can
be formulated in the formalism of [3] as shown in [3, §1.4.1-
1.4.2], but it is not possible to formulate as a hybrid automaton
a generic hybrid system [3] (cf. Equation (2)), for which our
main Theorem 1 is derived. [11] uses barrier certificates for
safety on a hybrid automaton. [9] proposes a method to enforce
the region stability above on a hybrid automaton, and is based
on computing solutions, unlike a barrier certificate approach.
[10] proposes a proof system for alternating-time temporal
logic on a continuous-time system. Finally, other works on
barrier certificates for continuous-time systems (or on their
counterparts for design, the so-called control barrier functions)
are [12]–[15] and references therein.

The structure of the paper is as follows. Section II presents
some preliminaries and the problem statement. Section III de-
fines the eventuality property and provides a barrier certificate
for a generic hybrid system [3] as a main result. Section IV
then applies such a tool to solve the considered problem. The
solution is illustrated by a numerical example in Section V,
and conclusions are in Section VI. All the proofs are omitted
due to space constraints.

Notation. Given a set S, we denote its closure by S and its
cardinality by |S|. N is the set of the natural numbers. The
logical operators not, and, or are denoted by ¬, ∧, ∨. 〈·, ·〉
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defines the inner product between its two vector arguments.
For a set-valued mapping M : Rn ⇒ Rn, the domain of M
is domM := {x ∈ Rn : M(x) 6= ∅} and its graph is the set
gphM := {(x, y) ∈ Rn × Rn : y ∈ M(x)}. O(·) denotes an
asymptotic upper bound in algorithm analysis [16, p. 47].

II. PRELIMINARIES AND PROBLEM STATEMENT

After some preliminaries about the two main ingredients
of this work in Sections II-A and II-B, we can present the
addressed problem in Section II-C.

A. Linear Temporal Logic and Finite State Automaton

This work is focused on the fragment of LTL called syn-
tactically co-safe Linear Temporal Logic (sc-LTL), for whose
definition we adopt the terminology and approach in [2, §2.1].
Since each sc-LTL formula ψ can be translated into a Finite
State Automaton (FSA) (as proven in, e.g., [17, §II.B]), we
consider in the sequel just the FSA representation of a sc-LTL
formula as:

Definition 1: (Finite state automaton, semantics and accep-
tance condition [2, Def. 2.4]) A finite state automaton (FSA) is
a tuple A = (S, s0, O, δ, Sf ), where: S is a finite set of states,
s0 ∈ S is the initial state, O is a finite set of observations,
δ : S × O → S is a transition function1, Sf ⊂ S is the set
of accepting states. The semantics of an FSA is defined over
finite words of observations. For some n ∈ N, a run of A over
a finite word of observations wO = wO(1)wO(2) . . . wO(n)
(with wO(k) ∈ O for all k = 1, . . . , n) is a sequence
wS = wS(1)wS(2) . . . wS(n + 1) where wS(1) = s0 and
wS(k + 1) = δ(wS(k), wO(k)) ∈ S for all k = 1, . . . , n. The
word wO is accepted by A if the corresponding run wS ends
in an accepting state of the automaton, i.e., wS(n+ 1) ∈ Sf .

The set of the words accepted by A coincides with the
set of prefixes satisfying the corresponding sc-LTL formula
ψ [2, p. 31], so its satisfaction is guaranteed in a finite
number of steps. Considering a deterministic FSA (due to the
deterministic δ and a single s0) is without loss of generality
as a nondeterministic FSA can be translated into an equivalent
deterministic FSA (see, e.g., [18, Thm. 2.11]).

We present now an example of how a sc-LTL formula is
translated in a standard way into an FSA.

Example 1: For O = {o1, o2, o3}, let us consider the
following sc-LTL formula

o2 ∧©
((

(¬o1Uo2) ∧ (♦o1)
)
∨
(
o1 ∧ (©o3)

))
(1)

where the symbols ©, U, ♦ denote respectively the temporal
logic operators next, until, eventually as in [2, p. 28]. Then,
an intuitive rendering of the fact that a word wO satisfies the
formula in (1), is as follows:
o2 is present as first element of wO; next we have that: (i)
o2 is present at some point in wO and until then o1 is not
present, and o1 is also eventually present, or (ii) o1 is present
as first element of wO and o3 as next one.
The automaton corresponding to the formula in (1) is in

1More precisely, δ is a partial function: it does not map every element of
its domain, i.e., it might not be defined for some (s, o).

s0 s1

s6s3

s2

s5
o3

o3

o2|o3
o1

o1|o2|o3o1

o2

o2 o1|o2|o3

s4

o2

d(s0, Sf ) = 3
Ōs0 := {o2} d(s1, Sf ) = 2

Ōs1 := {o1, o2}
d(s4, Sf ) = 1
Ōs4 := {o3}

d(s5, Sf ) = 0
Ōs5 := {o1, o2, o3}

d(s6, Sf ) = 0
Ōs6 := {o1, o2, o3}

d(s3, Sf ) = 1
Ōs3 := {o1}

d(s2, Sf ) = 2
Ōs2 := {o2}

Fig. 1. The automaton corresponding to the formula in (1). The notation
oi| . . . |oj next to a transition means that such a transition is enabled if either
oi, . . . , or oj are generated. Double circles denote accepting states Sf . The
meaning of red and blue labels for each si is clarified in Section V.

Figure 1. It has been obtained through the tool LTL2BA [19],
partially simplified as in [2, Ex. 2.8] (because of the definition
of δ : S ×O → S in Definition 1, transitions can be triggered
by at most one observation, and not by multiple observations),
and made deterministic as indicated above.

B. Hybrid dynamical systems

In order to model the evolution in continuous time for the
plant and the one corresponding to discrete updates in the
logical state of the FSA A , we consider the hybrid dynamical
system H [3] with state x ∈ Rn:

H :

{
ẋ ∈ F(x), x ∈ C

x+ ∈ G(x), x ∈ D.

(2a)
(2b)

The state x is allowed to evolve according to the flow map
given by the differential inclusion F (that can be reduced
to a differential equation) when it belongs to the flow set
C and according to the jump map given by the difference
inclusion G (that can be reduced to a difference equation)
when it belongs to the jump set D. A solution φ to (2) [3,
Def. 2.6] is then parametrized naturally by two time directions
as (t, j) 7→ φ(t, j), where t denotes the continuous time and
j acts as a counter of the jumps occurred. The subset of
R2 of points (t, j) where a solution φ is defined is called
a hybrid time domain [3, Def. 2.3] and is denoted by domφ.
We will refer the reader to specific points in [3] whenever
further details are needed.

C. Problem statement

Based on Sections II-A and II-B, we introduce in this
section the system in which we are interested, and describe
then our problem statement.

A sc-LTL formula ψ is given in the form of a finite
state automaton A := (S, s0, O, δ, Sf ) from Definition 1 as
discussed in Section II-A and we assume in this work that
such sc-LTL formula can indeed be satisfied:

Assumption 1: For the FSA A := (S, s0, O, δ, Sf ), there
exists sf ∈ Sf that is reachable from the initial state s0.
Moreover, without loss of generality, we remove from A all
the states that are not reachable from s0 and from which no
accepting state sf can be reached.



The approach of, e.g., [2] associates an observation with the
states of a transition system to be controlled, and the possible
words of observations generated by this transition system are
checked against the sc-LTL formula to find those satisfying the
formula. Instead of the transition system, we consider here
directly the continuous-time dynamics described by a linear
time invariant plant with state ξ ∈ Rn and control u ∈ Rm

ξ̇ = Aξ +Bu, (3)

and we specify how to associate each solution to (3) with a
word of observations, which should conform to the sc-LTL
formula. Specifically, each observation o corresponds to a
region of interest Do for the state ξ in (3), such that

Do ⊂ Rn is a compact set with nonempty interior. (4)

Indeed, solutions to the hybrid system

ξ̇ = Aξ +Bu, ξ ∈ Rn\Do

ξ+ = ξ, ξ ∈ Do

(5)

are enforced to flow under a suitable action for u, which is
specified in Section IV, and when they jump from Do, we
say that the solution has generated the observation o. In order
that the words of observations arising from such jumps of
the solutions conform to the sc-LTL formula given by A , we
further constraint the evolution of (5) as:

ṡ = 0

ȯ = 0

ξ̇ = Aξ +Bu

(s, o, ξ) ∈ C (6a)

s+ = δ(s, o)

o+ = ō

ξ+ = ξ

(s, o, ξ) ∈ D. (6b)

In (6), s and o do not change during flow. Corresponding to a
jump, the current logical state s ∈ S of A in Definition 1 is
updated to s+ through the transition function δ of A based on
the observation o generated by the solution. The observation
o+ we want the solution to generate next in order to conform
to the sc-LTL formula, is updated according to the discrete-
time input ō. Due to such associated decision, ō parallels the
continuous-time input u and is also specified in Section IV.
ξ does not change across jumps. Finally, to specify C and D
in (6a)-(6b), define for each s ∈ S

Os := {o ∈ O : δ(s, o) is defined}. (6c)

The overall flow and jump sets are then

C := {(s, o, ξ) : s ∈ S, o ∈ Os, ξ ∈ Rn\Do} (6d)
D := {(s, o, ξ) : s ∈ S, o ∈ Os, ξ ∈ Do}, (6e)

so that jumps are allowed only in the set D comprising all
possible s ∈ S, o ∈ Os as defined in (6c) and ξ ∈ Do,
whereas for all such s and o, solutions can only flow before
they reach Do.

Remark 1: Since the set of observations O is independent of
the state set S of the FSA A in Definition 1, we emphasize
that Do is determined only by o (and not by s). Solutions

to (6) are allowed to jump only after they reach Do, although
they can flow through Do′ with o′ 6= o.

As in [20], u and ō play the role of hybrid inputs. By acting
on u and ō, then, (6) should generate through jumps a word
of observations that is accepted by the sc-LTL. So, the input
ō in (6b) needs to be constrained for a given s+ as

ō ∈ Os+ , (7)

where from its definition in (6c), Os+ contains only those
elements ō′ for which δ(s+, ō′) is defined.

Given the constraint (7) for (6), the satisfaction of the sc-
LTL formula is then equivalent, based on Definition 1, to the
solution property that the component s of the solution to (6)
at hybrid time (T, J) satisfies s(T, J) ∈ Sf for some finite
T ≥ 0 and J ≥ 0. We then have:

Problem 1: For system (6) under the constraint (7), find a
control law for u and ō such that for some finite T ≥ 0 and
J ≥ 0, s(T, J) ∈ Sf .

To solve Problem 1 and guarantee the eventuality property
of solutions, we develop sufficient conditions in terms of
barrier certificates in the sense of [4] for hybrid systems [3] in
Section III. In Section IV, we propose such a barrier certificate
for Problem 1 after we specified a (possible) control law for
u and ō.

III. EVENTUALITY PROPERTY FOR HYBRID SYSTEMS
THROUGH BARRIER CERTIFICATES

In the scope of this section we consider the generic hybrid
system H in (2) with state x ∈ Rn and data (F,C,G,D).

We require that (2) satisfies mild regularity assumptions as
in [3, Ass. 6.5]2 together with a so-called viability condition
so that basic existence of solutions is guaranteed, as in the
following Assumption 2. TC(x) below denotes the tangent
cone to the set C at a point x as in [3, Def. 5.12 and Fig. 5.4].

Assumption 2: (1) The data (F,C,G,D) satisfy the hybrid
basic conditions as in [3, Ass. 6.5], that is: C and D are
closed sets in Rn; the set-valued mappings F and G have a
closed graph and are locally bounded relative to C and D,
respectively; C ⊂ domF and D ⊂ domG; F(x) is convex for
each x ∈ C. (2) For every ξ ∈ C\D there exists a neighborhood
U of ξ such that for every x ∈ U ∩ C, F(x) ∩ TC(x) 6= ∅.

Motivated by [4, Thm. 3.5], we generalize the eventuality
property for a hybrid system H in (2), as in the following
Definition 2. SH below denotes the set of all maximal solutions
φ to H as in [3, p. 33], and a solution is said to be maximal
if it cannot be extended, as per [3, Def. 2.7].

Definition 2: (Eventuality property w.r.t. a set R) Consider
H in (2) and a closed set R ⊂ C∪D. The eventuality property
w.r.t. the set R holds if for each solution φ ∈ SH there exist
finite T ≥ 0 and J ≥ 0 such that φ(T, J) ∈ R and for all
(t, j) ∈ domφ with t+ j < T + J , φ(t, j) ∈ C ∪ D.

Due to the nonuniqueness of solutions inherent in H in (2),
we require that the eventuality property is satisfied by all
solutions. Nonuniqueness is also motivated by the fact that the
vector field in [4, Thm. 3.5] is assumed to be only continuous.

2Broadly speaking, [3, Ass. 6.5] guarantees that stability properties are
uniform and robust w.r.t. small perturbations (see [3, pp. 139, 169]).



Remark 2: The eventuality property in Definition 2 bears
similarities with the recurrence property in [6, §13.4.5], which
is however fully meaningful for stochastic hybrid dynamical
systems. Moreover, recurrence excludes finite escape times
altogether, whereas here they are admitted if the solution
reaches R before escaping to infinity.

Inspired by [4, Thm. 3.5 and Remark 3.6], we derive
sufficient conditions to guarantee eventuality for H in (2).

Theorem 1 (Barrier certificate for eventuality): Consider H
in (2) satisfying Assumption 2. Let R ⊂ C∪D be a closed set
such that

G(D\R) ⊂ C ∪ D. (8a)

If there exist a function B, continuous on C\R ∪ D\R and
differentiable on an open neighborhood of C\R, and ε > 0
such that:

B is bounded from below on C\R ∪ D\R (8b)

B is radially unbounded3 on C\R ∪ D\R (8c)

〈∇B(x), f〉 < −ε ∀x ∈ C\R, ∀f ∈ F(x) (8d)

B(g)− B(x) < −ε ∀x ∈ D\R, ∀g ∈ G(x), (8e)

then the eventuality property w.r.t. the set R holds, as in
Definition 2. We call B a barrier certificate w.r.t. R.

Some comments are in order. Condition (8a) is a necessary
condition to have the eventuality property in Definition 2,
which involves all maximal solutions to H. Indeed, if (8a)
did not hold, some solutions could jump out of C∪D without
ever being in R. (8b), (8d), (8e) guarantee essentially that the
decrease of B will eventually lead any solution φ to reach R.
(8c) excludes the existence of solutions with finite escape time
that grow unbounded without reaching R.

IV. A BARRIER CERTIFICATE FOR SC-LTL SATISFACTION

In this section, we first specify the control law for u and ō
for (6), and then propose a barrier certificate as in Theorem 1,
which guarantees that the eventuality property w.r.t. a suitable
set, as required in Problem 1, is achieved.

To this end, we introduce a shortest-path distance notion
for the FSA A of Definition 1 that was embedded in the
hybrid system (6) as explained in Section II-C. The FSA A in
Definition 1 can be seen as a digraph where each s represents
a vertex, and each observation o ∈ Os in (6c) labels an edge
from s to δ(s, o). We compute then for each node s ∈ S its
shortest-path distance d̂ to any other node sf ∈ Sf as

(s, sf ) 7→ d̂(s, sf )

:=

∞, if there is no path from s to sf
minimum number of edges
in any path from s to sf

, otherwise,

(9a)

based on the breadth-first search algorithm [16, §22.2].
Through (9a), we define the distance of s ∈ S to the set
of accepting states Sf as

d(s, Sf ) := min
sf∈Sf

d̂(s, sf ), (9b)

3Equivalently: if the sequence of points {xi}+∞
i=1 is unbounded and xi ∈

C\R ∪ D\R for all i, then also the sequence {B(xi)}+∞
i=1 is unbounded.

which is the minimum shortest-path distance from s over the
accepting states sf ∈ Sf . At a jump, after which the logical
state takes the next value s+, the discrete-time input ō is
selected, consistently with (7), as any element in Os+ which
additionally makes the distance to Sf decrease strictly:

ō ∈ Ōs+ := {ō′ ∈ Os+ :

d(δ(s+, ō′), Sf ) < d(s+, Sf ) if s+ /∈ Sf}, (10)

where d(s+, Sf ) is the distance to Sf just after the jump
and d(δ(s+, ō′), Sf ) is the distance to Sf that is achieved
when selecting ō′ as the next observation we want to generate.
Showing the nonemptiness of Ōs+ for each s+ /∈ Sf is part
of the proof of Proposition 1 below.

We turn then to the selection of the continuous-time input u.
To keep the exposition focused on the core contribution of this
work, we ask to control the whole state to a generic setpoint
ξ̄ ∈ Rn, as in the following Assumption 3. This assumption
can be relaxed if we only want to control some output to a
setpoint (see [21, §23.6]).

Assumption 3: The pair (A,B) is controllable and such that
for all ξ̄ ∈ Rn, there exists a unique solution ū to

Aξ̄ +Bū = 0.

Under Assumption 3, for every o ∈ O it is possible [21,
p. 116] to find Lyapunov functions Uo certifying asymptotic
stability of a generic point co belonging to the interior of Do

in (4) as
Uo(ξ) := (ξ − co)TPo(ξ − co) (11)

where Po is positive definite. Based on these Lyapunov func-
tions, it is possible in turn to select u as

u = uo −Ko(ξ − co) (12)

with uo defined such that Aco + Buo = 0 and, for instance,
Ko := 1

2B
TPo [21, §12.4]. Then,

(ξ − co)T [Po(A−BKo) + (A−BKo)
TPo](ξ − co)

= −(ξ − co)TQo(ξ − co) < 0 ∀ξ 6= co (13)

where the positive definiteness of Qo is guaranteed by the
definition of Ko and the controllability of the pair (A,B) in
Assumption 3.

With the input selections in (10) and (12), (6) becomesṡȯ
ξ̇

 =

 0
0

(A−BKo)(ξ − co)

 =: f(x), (s, o, ξ) ∈ C

(14a)s+o+
ξ+

 ∈
δ(s, o)Ōδ(s,o)

ξ

 =: G(x), (s, o, ξ) ∈ D, (14b)

where the total state is defined concisely as

x := (s, o, ξ). (15)

Consistently with the FSA A and the policy (10), the initial
conditions for the the logical states are selected as:

s(0, 0) = s0, o(0, 0) ∈ Ōs0 . (16)
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Fig. 2. The sets Dok in (23) for k = 1, 2, 3 projected for each agent
i = 1, . . . , 4 onto the x-y plane and the corresponding selected parameters
cixok , ciyok , riok (riok = 0.1 for all i, k).

To solve Problem 1, we propose then a barrier certificate
for eventuality in the sense of Theorem 1. For the closed set

R := {(s, o, ξ) : s ∈ Sf , o ∈ Os, ξ ∈ Rn}, (17)

the barrier certificate w.r.t. R is, for the state x in (15),

B(x) := d(s, Sf ) + λUo(ξ), (18)

where d is in (9b), Uo is in (11) and λ > 0 is a sufficiently
small parameter whose existence is part of the proof of
Proposition 1 below, which solves Problem 1. Note that an
energy function equal to the distance d was already used
in [22, Def. 3.3].

Proposition 1: Under Assumptions 1 and 3, there exist a
sufficiently small λ > 0 such that B in (18) is a barrier
certificate w.r.t. the set R in (17), in the sense of Theorem 1,
for the hybrid system in (14).

Remark 3: Our solution can be compared to the automata-
based approach in [2, §5.3]. We share with that approach the
computational cost to translate the sc-LTL formula into the
FSA A . Our approach requires computing the matrices Ko’s
and the distances d in (9) (based on the distances d̂ for each
accepting state sf ), but not λ. Therefore, the overall cost can
be shown to be O(|O|n3 + |Sf |(vA + eA )) where vA and
eA are respectively the number of vertices and edges of A .
On the other hand, we do not build any product automaton
of A and the transition system discretizing the continuous-
time plant, so we do not have the cost O(|Sp||Σ|) of [2, §5.3]
where |Sp| and |Σ| are respectively the cardinalities of the set
of states of such product automaton and of the set of inputs
of such transition system. In order that the transition system
captures well the plant, |Sp| easily becomes very large.

V. SIMULATIONS

In this section we present a numerical example to illustrate
the eventuality property w.r.t. R in (17) of the solutions to (14)
when a barrier certificate B is found as in (18), that is, in the
setting of Proposition 1.

The sc-LTL specification is given by the formula in (1), so
this section continues Example 1. We have then

S := {s0, . . . , s6}, O := {o1, o2, o3}, Sf := {s5, s6}. (19)

We assign to each vertex of the corresponding automaton in
Figure 1 a distance d as in (9) and report it in Figure 1 (red

labels). For each s ∈ S, we compute the set Ōs based on (10)
and report it in Figure 1 (blue labels). This specifies the jump
map in (14b).

As for the flow map in (14a), consider a continuous state ξ
that is the stack of the x and y position of 4 agents:

ξ := (ξ1x, ξ1y, ξ2x, ξ2y, ξ3x, ξ3y, ξ4x, ξ4y). (20)

The matrices A and B are constructed starting from a Lapla-
cian matrix L corresponding to the agent connections:

A := −L⊗ I2, B := I8, L :=

[ 1 −1 0 0
−1 3 −1 −1
0 −1 1 0
0 −1 0 1

]
(21)

where ⊗ denotes the Kronecker product and Im an m × m
identity matrix. With these A and B, the state ξ and input u
can be interpreted as a group of follower and leader agents,
respectively (see [23, §10.6]). Moreover, A and B satisfy
Assumption 3. The matrix Po in (11) is taken for all o’s as
the unique solution P of the Lyapunov equation

PA+ATP − PBBTP = −2P, (22a)

and take for each o

Ko := K := 1
2B

TP. (22b)

(22) verifies (13) by simple computations as in [21, §12.4].
Define then the components of co by analogy with (20) as

co := (c1xo , c
1y
o , c

2x
o , c

2y
o , c

3x
o , c

3y
o , c

4x
o , c

4y
o ).

Consider the set Dok (k = 1, 2, 3) in Figure 2 (complying
with (4)) that can be described analytically as

Dok := {x : (ξix−cixok)2+(ξiy−ciyok)2 ≤ (riok)2, i = 1, . . . , 4}
(23)

where riok is the radius corresponding to the observation ok
for the agent i. See Figure 2. Based on (23), the overall flow
and jump sets C and D in (14) are obtained from (6d)-(6e).

From the automaton in Figure 1, the sets Dok in (23) and
P in (22a), a sufficiently small λ = 0.0172 can be found, as
guaranteed by Proposition 1. We emphasize that λ is computed
for illustrating B, but is not needed to implement our control
strategy. With such λ and the distances d reported in Figure 1,
the barrier certificate in (18) becomes then:

B(x) := d(s, Sf ) + λ(ξ − co)TP (ξ − co). (24)

This barrier certificate guarantees that all solutions to (14)
satisfy the eventuality property with respect to R in (17), and
in particular with respect to the accepting state set Sf in (19)
of the FSA A corresponding to the sc-LTL formula in (1).
Indeed, two solutions satisfying the eventuality property are
depicted in Figure 3 and correspond to the sequence s0, s1,
s3, s6 (path 1, top of Figure 3) and s0, s1, s4, s5 (path 2,
bottom of Figure 3), which arise from the two admissible
control sequences for ō selected based on the Ōs reported
in Figure 1. For path 1, for instance, we note that the agents
move so that the observations o2, o2 and then o1 are generated
(cf. Figure 2 for the sets Dok ), thereby reaching the accepting
state s6 within R. The evolution of the barrier certificate along
solutions for path 1 and 2 is shown in Figure 4, together
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y

agent 1
agent 2
agent 3
agent 4

x

y

Fig. 3. Evolution of the x and y components of the agents, where the initial
condition is denoted by a small circle. The big circles represent the sets
Dok corresponding to the generation of observations (cf. Figure 2). The top
(bottom, respectively) part shows a solution generating the observations o2,
o2, o3 (o2, o1, o3) corresponding to the sequence s0, s1, s3, s6 (s0, s1, s4,
s5) eventually reaching an accepting state of the automaton in Figure 1.

o2

o2, o2

o1
o3: sc-LTL
satisfiedo1: sc-LTL

satisfied

Fig. 4. Evolution of the barrier certificate B in (24) along the two solutions
in Figure 3. The vertical arrows indicate the generated observations along the
two paths up to satisfaction of the sc-LTL formula. The evolution of B is
truncated when solutions reach R in (17).

with the generated observations that lead to satisfaction of
the sc-LTL formula. The associated strict decrease from (8d)
and (8e) is evident. B certifies eventuality for multiple paths
that equally lead to satisfaction of the sc-LTL formula, thus
generalizing the sequential setting of [24].

VI. CONCLUSIONS AND FUTURE DEVELOPMENTS

In this work we have extended the eventuality property in [4]
and the associated barrier certificates to the hybrid setting [3].

The resulting hybrid barrier certificate provides a solution to
the problem of the satisfaction of a sc-LTL specification by a
continuous-time linear time-invariant physical system.
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