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Abstract— Recently, ergodic control has been suggested as a
means to guide mobile sensors for information gathering tasks.
In ergodic control, a mobile sensor follows a trajectory that is
ergodic with respect to some information density distribution.
A trajectory is ergodic if time spent in a state space region is
proportional to the information density of the region. Although
ergodic control has shown promising experimental results, there
is little understanding of why it works or when it is optimal.
In this paper, we study a problem class under which optimal
information gathering trajectories are ergodic. This class relies
on a submodularity assumption for repeated measurements
from the same state. It is assumed that information available in
a region decays linearly with time spent there. This assumption
informs selection of the horizon used in ergodic trajectory gen-
eration. We support our claims with a set of experiments that
demonstrate the link between ergodicity, optimal information
gathering, and submodularity.

I. INTRODUCTION

In information gathering tasks, a mobile sensing agent
plans a trajectory that maximizes the information gathered
about the environment. The gathered information is typically
measured as a reduction in uncertainty. Target localization
is a type of information gathering task where the agent
makes observations while searching for a target. The agent
maintains a belief, which is a probability distribution over
possible target locations. This belief is typically updated us-
ing Bayes’ rule and a measurement model. The agent’s goal
is to gather information about the target’s location, which
reduces uncertainty in the target estimate (measured by belief
entropy or variance). Information gathering tasks appear in
many real-world problems. Examples include localizing GPS
jammers [1], radio-tagged wildlife [2], or disaster victims [3].

Unfortunately, information gathering tasks are compu-
tationally challenging. Multi-step planning problems can
be cast as partially observable Markov decision processes
(POMDPs), which are computationally intractable to solve
exactly [4], [5]. One approach is to approximate the belief
as a Gaussian and linearize the dynamic and measurement
models. These approximations allow trajectories to be eval-
uated quickly in a model predictive control (MPC) frame-
work [6], [7]. However, these approximations are not always
appropriate for nonlinear systems with non-Gaussian beliefs.
Other approaches avoid linear-Gaussian assumptions but
optimize for a single time step rather than an entire trajectory.
Although these greedy, information-theoretic approaches are
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suboptimal in general, they are computationally efficient and
often used in practice [3].

Ergodic control has recently been proposed for designing
trajectories for mobile sensors [8], [9], [10]. This framework
can be applied to general, nonlinear systems and has out-
performed greedy methods in some experiments [11], [9].
Ergodic control is built on the notion of trajectory ergodicity.
A trajectory is ergodic with respect to some distribution if
time spent in a state space region is proportional to the
distribution’s density in that region. When using ergodic
control for information gathering, the distribution used is
an expected information density, which is a measure of
information at a point in the sensor’s state space.

Although ergodic control has shown promising experimen-
tal results, it has only recently been applied to information
gathering tasks. It is not understood why ergodic control
works well. Why does it make sense to spend time in a region
proportional to its information density, instead of spending
all our time in the most dense region? Selecting the length of
an ergodic trajectory is another open research problem [8].

In this paper, we provide some insight into these funda-
mental questions of ergodic control. We present a problem
class for which the optimal information gathering trajectory
is ergodic. This class assumes measurement submodularity,
where successive measurements from a state reduce the
information available at that state. Specifically, the class
assumes the rate of decay is linear. Under this assumption,
selection of the ergodic optimization horizon for many
systems becomes trivial. We use simple toy problems to
validate these ideas and show the potential suboptimality
of ergodic control when the assumptions do not hold. We
generate ergodic trajectories for more complex problems to
verify the connection between optimal information gathering,
information decay, and ergodic trajectories.

II. ERGODIC CONTROL

Ergodic control relies on the concept of trajectory ergod-
icity. A trajectory is ergodic with respect to a distribution if
its time-averaged statistics match the distribution’s spatial
statistics. In other words, the time spent in a region is
proportional to the distribution’s density in the region. Fig. 1
compares a trajectory ergodic with a distribution and a
trajectory maximizing time spent in high density regions.

We use the following notation. Consider a domain X ⊂ Rs

and a distribution φ : X → R that provides a density φ(x)
at a state x ∈ X . A trajectory of horizon T is a function
x : [0, T ]→ X . The state at time t according to trajectory x
is denoted x(t).
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Fig. 1. An ergodic trajectory (left) and a trajectory that simply moves to
the highest density state (right). Both trajectories start from (0.5, .01).

The time-averaged statistics of a trajectory are a distribu-
tion c over the state space, where the density at x is

c(x) =
1

T

∫ T

0

δ(x− x(t)) dt, (1)

where δ is the Dirac delta function. The factor 1/T ensures
the distribution integrates to 1. Likewise, φ must be a valid
density that integrates to 1 so that c and φ can be compared.

The goal in ergodic control is to drive c to equal φ. This
goal is made explicit in an ergodic metric that measures the
KL divergence between c and φ [12]. The KL divergence
measures the similarity of two distributions. A different but
widely-used ergodic metric decomposes c and φ into Fourier
coefficients and compares the coefficients to each other [13].
The distribution is decomposed into Fourier coefficients φk:

φk =

∫
X

φ(x)Fk(x) dx, (2)

where Fk is a Fourier basis function and k = [k1, . . . , ks]
is a multi-index used to simplify notation; φk is short for
φk1,k2,...,ks . Each ki ranges from 0 to K; there are (K+1)s

coefficients in total. The coefficients ck of trajectory x are

ck(x) =
1

T

∫ T

0

Fk(x(t)) dt. (3)

The ergodic metric E is a weighted sum of the squared
difference between trajectory and distribution coefficients:

E(x) =
∑
k

Λk

∥∥ck(x)− φk
∥∥2 , (4)

where
∑

k is short for
∑K

k1=0 ...
∑K

ks=0 and weights Λk

favor low-frequency features. This metric has been used in
feedback laws that drive trajectories toward ergodicity [13].

Strictly speaking, trajectories are only ergodic if c → φ
as T → ∞ [13]. However, we follow recent work and call
trajectory x ergodic if E(x) is small, even for finite horizons.
Projection-based trajectory optimization (PTO) is one way to
design ergodic trajectories for a given horizon T [14]. This
method can be used for general nonlinear systems and the
resulting ergodic trajectories have been used in information
gathering tasks [8]. In these tasks, the distribution φ is an
expected information density (EID) that represents the value
of making a measurement from a specific state. The EID

can be generated from information-theoretic concepts such
as Fisher information or expected entropy reduction.

An ergodic trajectory is open-loop—a trajectory is de-
signed for an EID, but this distribution changes as mea-
surements are made and the belief is updated. To take
advantage of this updated information, an MPC framework
can be used [8]. First, an ergodic trajectory is generated for
planning horizon T . Then some or all of that trajectory is
executed, and measurements are collected. The belief and
EID are updated, and a new ergodic trajectory is generated
for planning horizon T . This approach leverages the abil-
ity to plan entire trajectories while incorporating updated
information. Because ergodic trajectory generation can be
computationally expensive, the execution horizon is often as
large as the planning horizon in practice [8], [10], [9].

It has been claimed that ergodic control effectively bal-
ances exploration and exploitation of information—more
time is spent at information dense regions, but less dense
regions are also explored [9]. Empirically, ergodic control
seems like a viable choice for localization tasks. When
compared to greedy, information-theoretic methods, ergodic
control has slightly underperformed when noise is low, but
significantly outperformed in environments with significant
unmodeled noise [10]. At extraordinarily high levels of
noise, ergodic control has underperformed uniform sweeps
of the environment. When noise is so high as to render the
model useless, it is reasonable to cover the space uniformly.
Although it has slightly underperformed greedy and uniform
methods when noise is very low or very high, ergodic control
generally performs well across noise regimes. The ability
to adapt to concentrated information (low noise) or diffuse
information (high noise) is a benefit of ergodic control.

III. OPTIMALITY AND SUBMODULARITY

An optimal information gathering trajectory maximizes
I(x), the information gathered by trajectory x, while ad-
hering to dynamic or time constraints. On the surface, it
is not clear why an ergodic trajectory would maximize
I(x). If φ(x) represents the information at point x, directly
maximizing

∫ T

0
φ(x(t)) dt seems reasonable. This strategy

would direct the sensor to the point with highest information
density, instead of distributing measurements ergodically. To
justify ergodic behavior, we look to submodularity.

A. Submodularity

In the context of information gathering, measurement sub-
modularity refers to the notion that repeated measurements
from a given location are successively less informative [9].
Formally, we say this submodularity is present if I(xa +
xb) ≤ I(xa) +I(xb), where xa +xb is the concatenation of
trajectories xa and xb [15].

Submodularity is present in many information gathering
tasks and must be accounted for to prevent solely and
repeatedly sampling the maximally dense point [9]. If the
sensor only samples this point, and the information there
becomes depleted, the total information gathered along the



trajectory might be low. In one information gathering exam-
ple with a discrete number of states, the planner assumes a
state’s information is depleted after a single measurement,
preventing sensors from staying at the information max-
ima [15]. Another way to handle submodularity is to plan
for a single step. In greedy, one-step trajectory planners,
the belief and EID can be updated after each measurement,
thereby incorporating submodularity and preventing a sensor
from sampling a point with depleted information. By only
planning for the next measurement location, the planner
can ignore submodularity induced by an entire trajectory.
However, when planning an entire trajectory for an initial
EID, we need something to handle the submodularity.

In this context, it seems that ergodic control might be one
way to incorporate submodularity into trajectory generation.
In ergodic control, a trajectory is generated for an initial
EID, which becomes stale as soon as the sensor starts
making measurements. It is possible to update the EID and
replan with MPC, but this can be computationally expensive.
Because previous research uses relatively long execution and
planning horizons, we focus on a single ergodic trajectory
generated from an initial EID.

Submodularity seems to be a possible justification for
ergodic control. We next examine a particular type of sub-
modularity that best justifies ergodic trajectories.

B. Example and Problem Class

Suppose a sensor is in a domain where information is
concentrated at two states. The left state has an information
density of 80%, and the right state has a density of 20%. By
definition, an ergodic trajectory splits its time proportionally
to this ratio, and this falls out of the metric in Eq. (4). Perfect
ergodicity (i.e., E = 0) can be achieved if ck = φk:

1

T

∑
xd∈Xd

τ(xd)Fk(xd) =
∑

xd∈Xd

φ(xd)Fk(xd),

where Xd is a discrete set of states with nonzero information,
τ(xd) is the time spent in state xd, and φ(xd) represents the
information at xd. Equality holds when

τ(xd)

T
= φ(xd).

That is, perfect ergodicity is achieved if the proportion
of time spent at xd is equal to the information at that
location. In our example, the sensor spends 0.8T in the
left state and 0.2T in the right. After spending 0.8T at the
left state, the ergodic trajectory never returns. One situation
where this behavior is optimal is if the state is stripped of
information after 0.8T . Then, the 20% state will contain
more information after 0.8T , and an optimal trajectory will
spend the rest of the time there.

Using the above example as a guide, we claim that an
ergodic trajectory minimizes the time to gather all available
information in a domain if the following model for informa-
tion collection and submodularity holds:

1) Information is collected (and depleted) from a state
when a sensor spends time there.

2) Information is collected from all states at the same rate:
1/T per unit time for a continuous trajectory and 1/N
per time step for a discrete trajectory with N steps.

3) The information available at state x is equal to φ(x).
In a discrete domain, we assume

∑
xd∈Xd

φ(xd) = 1
(the analog to

∫
X
φ(x) dx = 1 in the continuous case).

C. Time Horizon Selection

Our problem class requires a linear collection (and deple-
tion) of information. If we know the rate at which infor-
mation is collected at, we can choose the ergodic trajectory
horizon to efficiently collect the available information.

Assume we have the same two-state example from the
previous subsection, where the left and right states have 0.8
and 0.2 units of information, respectively. Assume further
that we know the collection rate is 0.1 per step; at each
step, the sensor collects 0.1 information units from its current
state. There is a cost to switch between the states and the
sensor starts in the left state.

The trajectory that minimizes the time and cost to collect
all information is 10 steps long. The sensor spends its first
eight steps in the left state and its last two in the right state.
This perfectly ergodic trajectory collects all information
available while minimizing the switching cost.

If we instead generated a 20-step ergodic trajectory min-
imizing control cost, the resulting trajectory would spend
80% of its time in the left state and 20% in the right—
so, 16 steps in the left state followed by four in the right.
After its first eight steps in the left state, the sensor would
deplete all available information there. It would collect no
new information until switching to the right state. Eventually,
all information would be collected, but it would have taken
roughly twice as long as with the 10-step horizon.

If we picked a shorter horizon, like five steps, a perfectly
ergodic trajectory would spend four steps in the left state and
then one in the right. However, at the end of this trajectory,
the sensor would only have collected half the available
information—the left state would still have 0.4 and the right
would have 0.1. The sensor could execute another five-step
ergodic trajectory starting from the sensor’s last position (the
right state). This trajectory would spend one step in the right
state followed by four in the left. After the two five-step
trajectories, all information is collected—just as it was at
the end of our single 10-step trajectory. However, the sensor
incurs twice the cost by switching states twice, using two
sweeps to cover the space. Further, two ergodic trajectories
are computed instead of one, which can be expensive.

By selecting a horizon for our ergodic trajectory, we
assume a decay rate. If this rate matches the true decay rate,
we can minimize the time required to collect all available
information. In many dynamical systems, a trajectory with
this carefully selected horizon will also minimize the control
effort required to gather all information, as it did in our
example. However, this is not the case with all dynamical
systems. For example, an oscillating system might trade time
for energy use. In these systems, an ergodic trajectory might



exert extra control effort to drive the sensor to distribute
measurements ergodically.

D. Example Outside the Class

Consider two observation posts on either side of a runway.
An observer estimates the distance to an approaching aircraft.
From either post, the observer measures the true distance
corrupted with zero-mean Gaussian noise. The left post offers
the best view, while the right post is blocked by trees. As
a result, the Gaussian noise of the left post has standard
deviation σsmall, and the noise of the right has σlarge > σsmall.

Both posts have non-zero information density—from ei-
ther, enough noisy measurements can be stitched together
to give a low variance distance estimate. However, more
observations are required from the right (noisier) post. The
optimal search trajectory makes all measurements from the
left post. However, an ergodic trajectory would spend some
time in the right post because it has non-zero information
density. The linear information decay assumed in our prob-
lem class implies all information will be “used up” from the
left post after some fraction of the time horizon. As a result,
an ergodic trajectory reserves some time for the right post.

The ergodic trajectory is suboptimal because it falls
outside of our problem class. The sensor model implies
measurements from the left post are always more informative
than those from the right, regardless of the time spent there.

E. Analysis of the Ergodic Metric

So far, we have provided intuitive arguments for the
connection between submodularity and the optimality of
ergodic trajectories. In this section, we provide a theoretical
argument using the Fourier-based ergodic metric.

Before proceeding, consider two preliminaries. First, the
Fourier transform is linear with respect to distributions. That
is, if z, y ∈ R, and φ1 and φ2 are two distributions, then

φ = zφ1 + yφ2 ⇐⇒ φk = zφ1k + yφ2k.

Second, when adding two distributions, we add the densities
at each point; scaling a distribution scales the density at each
point. When adding or scaling distributions, the resulting
distributions will not integrate to 1, so care must be taken
when performing these operations.

Our argument proceeds as follows. Suppose we desire a
trajectory with horizon T = Ta + Tb that is split into two
partial trajectories xa and xb. Suppose xa has already been
executed for its horizon Ta. This partial trajectory has a
spatial distribution ca and coefficients cak, each of which are
normalized by horizon Ta. We want to design the remainder
of the trajectory, xb, for the remaining horizon Tb so that the
entire trajectory x = xa +xb is ergodic. The coefficients for
each partial trajectory are

cak =
1

Ta

∫ Ta

0

Fk(x(t)) dt,

cbk =
1

Tb

∫ Ta+Tb

Ta

Fk(x(t)) dt.
(5)

The coefficients for the entire trajectory are a weighted
average of the coefficients for the individual trajectories:

ck =
1

Ta + Tb

∫ Ta+Tb

0

Fk(x(t)) dt

=
1

Ta + Ta

(
Tac

a
k + Tbc

b
k

)
.

(6)

The objective function then becomes

J(xb) =
∑
k

Λk

(
Tac

a
k + Tbc

b
k

Ta + Tb
− φk

)2

. (7)

We can reorder this objective so it becomes

J(xb) =

(
Tb

Ta + Tb

)2∑
k

Λk

(
cbk − φ′k

)2
, (8)

where
φ′k =

Ta + Tb
Tb

(
φk −

Ta
Ta + Tb

cak

)
. (9)

We drop the scale factor, yielding the equivalent objective

J(xb) =
∑
k

Λk

(
cbk − φ′k

)2
. (10)

Therefore, designing xb to minimize Eq. (7) is equivalent
to designing xb to minimize Eq. (10). We are effectively
designing xb to be ergodic with respect to a new distribution
φ′, whose coefficients are φ′k. Because of the linearity of the
Fourier transform, the modified distribution φ′ is similar to
the modified coefficients φ′k:

φ′ =
Ta + Tb
Tb

(
φ− Ta

Ta + Tb
ca
)

. (11)

The distribution φ′ results from the effect of partial trajectory
xa and its corresponding distribution ca on the original
distribution φ. The quantity inside the parentheses of Eq. (11)
is equal to the original distribution minus a scaled version of
ca; the scale factor is equal to the proportion of time spent
in trajectory xa.

However, the distribution in the parentheses of Eq. (11) is
invalid because it does not integrate to 1. If we are designing
xb to be ergodic with respect to spatial distribution φ, we
normalize cb and φ so we can compare them. The linearity
of the Fourier decomposition implies∫

X

(
φ(x)− Ta

Ta + Tb
ca(x)

)
dx =

Tb
Ta + Tb

. (12)

Therefore, we have the normalization term (Ta + Tb)/Tb in
Eq. (11), ensuring φ′ integrates to 1.

We have shown that the ergodic objective from Eq. (4)
reduces the values of states in which time has already been
spent, proportional to the time spent there; this result matches
the conditions presented in Section III-B.

These results satisfy an intuitive result: if Ta = Tb and
cak = φk, then φ′k = φk. That is, if the partial trajectory xa
is perfectly ergodic, then xb should be ergodic with respect
to the same distribution in order for the whole trajectory to
be ergodic. The trajectory xa collects half the information



available at every state, so it makes sense to perform a similar
sweep over the domain to retrieve the remaining information.

Consider another intuitive result. From Eq. (11), φ′(x) < 0
if

φ(x) <
Ta

Ta + Tb
ca(x).

If this is the case, we have oversampled point x during
partial trajectory xa and it is impossible to rectify this in
the remaining horizon Tb [16]. It is possible to overcome
this oversampling by increasing the horizon Tb, which would
ensure a smaller scale applied to ca(x).

F. Spatial Correlation

Our intuitive examples used domains where information is
concentrated in a discrete set of states so we could observe
the effect of sampling from a state. This observation is
more difficult in a continuous domain. Even with noiseless
dynamics, the agent cannot sample all states in a continuous
domain in finite time. In a real scenario with noise, the
vehicle will likely never return to the same exact state, so
the notion of spending more time in a state is unrealistic.

These problems arise from use of the Dirac delta in
the definition of the time-averaged statistics c, which sets
the sensing footprint at any time to be a single state. An
alternative is to encode a larger sensor footprint into c [12].
For example, if a sensor gathers information from all points
within a radius of its current state, the time-averaged statistics
c can be defined to reflect this. However, the bulk of existing
work uses the Dirac delta, so we use it here.

Although the Dirac delta implies no spatial correlation
between measurements, correlation is introduced by the
ergodic metric, giving the sensor a footprint larger than a
single state. We have assumed a perfect relationship between
a spatial distribution φ and its coefficients φk—that is, de-
composing φ into coefficients φk and using these coefficients
to reconstruct a spatial distribution would lead to φ. This
interchangeability holds as K → ∞, but real implementa-
tions use a finite number of coefficients, yielding a band-
limiting effect on the representational power of the Fourier
decomposition [10]. It has been posited that this effect can
be beneficial as it allows for unmodeled uncertainty in the
EID. We build on this idea, suggesting that fewer coefficients
can add spatial correlation between vehicle states, as higher-
order coefficients are needed to capture fine differences in a
distribution or trajectory.

An example of this spatial correlation is shown in Figure 2.
A discrete ergodic trajectory is generated for a simple
Gaussian distribution. This trajectory is decomposed into
sets of coefficients ck for different numbers of coefficients
K. These sets of coefficients are used to reconstruct spatial
distributions of the trajectory. When K = 5, the resulting
spatial distribution of the trajectory looks fairly similar to
the original Gaussian distribution. When K = 30, the spatial
distribution more closely matches the trajectory. When K =
150, the spatial distribution is so similar to the trajectory
that individual points along the trajectory are discernible.
Visually, the coarse K = 5 distribution most closely matches
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Fig. 2. In the upper left, the original distribution and a trajectory designed
to be ergodic with respect to it. The reconstructed distributions from this
trajectory when using K = 5, K = 30, and K = 150 coefficients are
shown in the upper right, lower left, and lower right, respectively.
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Fig. 3. Trajectories generated to be ergodic with respect to a Gaussian
distribution. The left trajectory was generated with K = 5 coefficients, and
the right was generated with K = 100.

the original spatial distribution. Even though a small number
of states are visited in the trajectory, much of the state
space has positive density because of the spatial correlation
introduced by the small number of coefficients. In contrast,
there is much less spatial correlation in the K = 150
distribution; only states in the near vicinity of the discrete
trajectory’s points have any density.

This spatial correlation affects the ergodic trajectories
generated. Figure 3 shows trajectories generated for the same
distribution φ, but one uses K = 5 coefficients and the other
uses K = 100. The trajectories are generated using PTO until
a descent direction threshold is reached [14]. The trajectory
generated with fewer coefficients is more spread out, because
the coarse decomposition implies greater spatial correlation.

Figure 4 shows an example of the partial-trajectory exam-
ple from the previous subsection. Although the first partial
trajectory only coarsely covers the lower-right mode, the
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Fig. 4. On the left, a trajectory ergodic with respect to a bimodal
distribution φ starts in the lower right corner. On the right, we show the
modified spatial distribution according to Eq. (11) after half the trajectory
is executed. The lower right mode is gone because all information was
collected after the first half of the trajectory was spent there.

modified spatial distribution suggests all information was
gathered from the mode.

IV. INFORMATION GATHERING EXPERIMENTS

We use two experiments to test the relationship between
ergodicity, submodularity, and information gathering. In each
experiment, ergodic trajectories are generated for a mobile
sensor and an EID composed of one or two Gaussians. The
EID covers the unit square, which is discretized into a 10×10
grid. The information in each cell is obtained from the EID.

At each time step, the sensor collects (and removes)
information from the cell it occupies at a specified rate. If
there is not enough information in the cell, the sensor collects
whatever is left. Discretization implies spatial correlation
between measurements, as measurements from any point in
a cell affect future measurements from any point inside the
same cell. Note that this spatial correlation does not corre-
spond to the spatial correlation implied by a finite number
of coefficients. This domain is simple but not unlike others
that have been used in information-gathering research [15].

We use PTO with K = 50 to generate discrete trajectories
with N = 100 points starting from (0.25, 0.35). Single
integrator dynamics are used with a time step of 0.5 seconds.

A. Ergodic Score and Information Collected

We have claimed that perfectly ergodic trajectories are
information-optimal under linear information submodularity.
If our claim is correct, information gathered should increase
as ergodic score improves (i.e., E decreases).

We terminate PTO at different ergodic scores and record
the information collected by each trajectory. We compare
against rapdily-exploring information gathering (RIG), a
sampling-based motion planner that incorporates information
submodularity [15]. We also generate an information-optimal
trajectory that moves the sensor to the grid cell with the most
information left. Information is collected from the cell, and
the process repeats. The resulting trajectories are feasible
only because of the simple dynamics; such a technique
is not applicable to general systems. Figure 5 shows the
relationship between ergodic score and information collected.
Trajectories are shown in Fig. 6.
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Fig. 5. Information gathered as a function of ergodic score.
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Fig. 6. Trajectories generated with different methods collecting information
in a discrete 10× 10 grid.

As trajectory ergodicity increases, the information col-
lected increases. The information-optimal trajectory collects
the most information and has the lowest ergodic score, rein-
forcing the tie between ergodicity and information collection
under our model. It is impossible to collect all the infor-
mation with the finite number of discrete steps. However,
if N → ∞, the information-optimal trajectory approaches
100% information gathered and E → 0. RIG approaches
optimality if sufficient points are used, so it performs well.

Both the information-optimal and RIG trajectories are
generated with an exact model of the spatial correlation
involved. In contrast, the PTO trajectories only have a
sense of the spatial correlation through the finite number
of coefficients used. However, these trajectories are still
competitive if solved to a low enough ergodic score. This
result validates the claim that improved ergodicity leads to
more information collected in problems with our model.
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Fig. 7. PTO ergodic trajectories. On the left, a single trajectory generated
for horizon Nf . On the right, a trajectory of horizon Nf is composed of two
trajectories each designed for a horizon of Nf/2. The first sub-trajectory is
the solid, blue line. The second is the red, dashed line. The single trajectory
on the left collects roughly the same information with about half the cost.

B. Trajectory Horizon and Information Collected

In Section III-C, we claim that knowledge of the informa-
tion collection (decay) rate informs selection of the trajectory
horizon. Suppose we know the information collection rate is
1/Nf per time step, where Nf is a positive integer. When
selecting a horizon N for our ergodic trajectory, we posit
that N should match Nf for the most efficient trajectories.
We set Nf = 100 and use PTO to generate a trajectory with
N = 100. We then generate a composite trajectory consisting
of two smaller ergodic trajectories, each with N = 50.
Figure 7 shows the trajectories.

Both trajectories collect roughly the same information:
77.8% for the single trajectory and 82.6% for the com-
posite. However, the single trajectory has a control effort
(
∑N

n=1 un) of 3.6, and the composite has a control effort of
6.8. When the horizon is too short, not enough information
is collected and a second pass is needed, increasing the
cost. Thus, knowledge of the information collection rate can
inform selection of the trajectory horizon.

V. DISCUSSION

Our work suggests ergodic control is the optimal informa-
tion gathering strategy under a specific model of information
collection and submodularity. This model is unrealistic in
many sensing tasks for two reasons. First, a measurement
made in one location often decreases the information avail-
able at other locations. This spatial correlation is not captured
by the traditional Dirac delta formulation in ergodic control;
the spatial correlation resulting from a finite number of
Fourier coefficients is unlikely to match the correlation of
a real sensor. Second, our model assumes that while some
states might have more total information, information is
collected at the same rate from all states. However, in
real scenarios, measurements from certain states are more
informative than others. Further, the EID is often formulated
to represent the value of a single measurement, such as
mutual information or the expectation of Fisher information.
Because our proposed model is unrealistic in many tasks,
it is likely that ergodic control is suboptimal for general
information gathering tasks; although it is possible that other
models are optimally solved by ergodic control.

Ergodic control does excel in some tasks, particularly
when our model of submodularity holds. Coverage problems
in which an agent must surveil or cover an area uniformly
are well served by ergodic control [13]. Coverage problems
actually adhere to our problem class; there is value to visiting
uncovered states, but that value decreases linearly until these
states have been as well covered as others. Ergodic control is
also suitable for autonomous painting [17], because painting
an image is effectively a coverage problem in which the time
to spend at a state is governed by the image’s darkness at
that state. Because ergodic trajectories are distributed over
a spatial distribution (rather than seeking out maxima or
minima), they are robust to unmodeled sensor noise [10].

REFERENCES

[1] A. Perkins, L. Dressel, S. Lo, and P. Enge, “Antenna characterization
for UAV based GPS jammer localization,” in Institute of Navigation
(ION) GNSS+, 2015.

[2] O. M. Cliff, R. Fitch, S. Sukkarieh, D. L. Saunders, and R. Heinsohn,
“Online localization of radio-tagged wildlife with an autonomous
aerial robot system,” in Robotics: Science and Systems, 2015.

[3] G. M. Hoffmann, S. L. Waslander, and C. J. Tomlin, “Distributed
cooperative search using information-theoretic costs for particle filters,
with quadrotor applications,” in AIAA Guidance, Navigation, and
Control Conference (GNC), 2006.

[4] C. H. Papadimitriou and J. N. Tsitsiklis, “The complexity of Markov
decision processes,” Mathematics of Operations Research, vol. 12,
no. 3, pp. 441–450, 1987.

[5] O. Madani, S. Hanks, and A. Condon, “On the undecidability of
probabilistic planning and related stochastic optimization problems,”
Artificial Intelligence, vol. 147, no. 1, pp. 5–34, 2003.

[6] C. Leung, S. Huang, G. Dissanayake, and T. Furukawa, “Trajectory
planning for multiple robots in bearing-only target localisation,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2005.

[7] C. Leung, S. Huang, N. Kwok, and G. Dissanayake, “Planning under
uncertainty using model predictive control for information gathering,”
Robotics and Autonomous Systems, vol. 54, no. 11, pp. 898–910, 2006.

[8] Y. Silverman, L. M. Miller, M. A. MacIver, and T. D. Murphey, “Op-
timal planning for information acquisition,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2013.

[9] L. M. Miller, Y. Silverman, M. A. MacIver, and T. D. Murphey,
“Ergodic exploration of distributed information,” IEEE Transactions
on Robotics, vol. 32, no. 1, pp. 36–52, Feb 2016.

[10] L. Miller, “Optimal ergodic control for active search and information
acquisition,” Ph.D. dissertation, Northwestern University, 2015.

[11] L. M. Miller and T. D. Murphey, “Optimal planning for target
localization and coverage using range sensing,” in IEEE Conference
on Automation Science and Engineering (CASE), 2015.

[12] E. Ayvali, H. Salman, and H. Choset, “Ergodic coverage in constrained
environments using stochastic trajectory optimization,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2017.
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