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Abstract— In current power distribution systems, one of the
most challenging operation tasks is to coordinate the network-
wide distributed energy resources (DERs) to maintain the
stability of voltage magnitude of the system. This voltage control
task has been investigated actively under either distributed
optimization-based or local feedback control-based characteri-
zations. The former architecture requires a strongly-connected
communication network among all DERs for implementing
the optimization algorithms, a scenario not yet realistic in
most of the existing distribution systems with under-deployed
communication infrastructure. The latter one, on the other
hand, has been proven to suffer from loss of network-wide op-
erational optimality. In this paper, we propose a game-theoretic
characterization for semi-local voltage control with only a
locally connected communication network. We analyze the
existence and uniqueness of the generalized Nash equilibrium
(GNE) for this characterization and develop a fully distributed
equilibrium-learning algorithm that relies on only neighbor-to-
neighbor information exchange. Provable convergence results
are provided along with numerical tests which corroborate the
robust convergence property of the proposed algorithm.

I. INTRODUCTION

Increasing penetration of distributed energy resources
(DERs) has significantly facilitated the regulation of voltage
level in power distribution systems. By varying the reactive
power (VAR) injected into the system, the DERs can be
coordinated to attain the desirable voltage profile in a timely
fashion. This problem can be formulated as a network-wide
optimal power flow (OPF) one. For recent efforts based on
this formulation, we refer to [1], [2], [3], [4], and the ref-
erences therein. Central/distributed optimization algorithms
such as primal-dual and ADMM have been advocated to
solve the OPF problem. A majority of these algorithms
require a strongly-connected communication network at high
quality in order to diffuse the local information (either
decision variables or measurement) across all DERs in the
network. Therefore, the limited communication capabilities
available to distribution systems challenge the practical im-
plementation of these algorithms.

The design of resource coordination algorithms for DERs
has to address the status quo of the communication and net-
working technologies in current distribution systems. Several
competing solutions, such as fiber optic cable, point-to-point
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microwave, and powerline carrier, are all subject to their
own limitations such as bandwidth constraints, unacceptable
delay, and high deployment cost [5], [6]. Some recent
work has accounted for these communication limitations in
designing optimization-based voltage control algorithms. For
example, [2] considers a hybrid voltage control strategy that
is cognizant to the instantaneous unavailability of commu-
nication links. In [7], distributed voltage control algorithms
using only quantized communication between neighboring
buses are developed to adapt to the bandwidth constraints.

On the other hand, several local control schemes have been
developed to allow for the need of no information exchange
in real-time. As advocated in [8], [9], [10], DERs can per-
form feedback control using only local voltage measurement
at no communications, even under asynchronous updates
[11]. Nonetheless, the local schemes have been proven to
make myopic decisions and lead to loss of optimality in volt-
age control performance [8], [9]. It has been argued in [12]
that the trade-off exists between performance optimality and
communication complexity for the voltage control problem,
as in a variety of control applications.

To better characterize the performance-communication
trade-off, this paper proposes a semi-local control scheme
under a locally connected communication network. In partic-
ular, we consider the scenario where DERs are partitioned
into several communication areas, where information can be
exchanged within each area. This scenario nicely generalizes
the scenario for local control schemes where each DER
itself is a communication area, as well as the scenario
under a strongly-connected communication network with
a single area. Moreover, it fills the gaps in between the
two special scenarios, as the achievable performance un-
der locally connected communication network characterizes
the value of communication links. Last but not least, this
scenario is extremely useful for the design of networked
micro-grids [13], where physically connected micro-grids are
owned and controlled by different entities or operators. Due
to competition or privacy concerns, there is very limited
information exchange among the micro-grids.

To pursue the semi-local control scheme, we develop a
game-theoretic characterization for this problem. The areas
controlled by different operators are modeled as players in
a strategic game and only considers self interest due to
lack of communication with each other. The contribution of
the present work is three-fold: i) we analyze the existence
and provide uniqueness conditions for the generalized Nash
equilibrium (GNE) under the game-theoretic characteriza-
tion; ii) we propose a fully distributed equilibrium-learning
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algorithm for voltage control that requires only neighbor-to-
neighbor communication between DERs in the same area;
iii) we prove the convergence of the algorithm under certain
monotonicity conditions and also corroborate its superior
convergence property numerically.

It is worth mentioning that the proposed equilibrium-
learning algorithm should be of independent interest for
solving the GNE problem with similar communication con-
straints. It is designed based on the inexact alternating
direction method of multipliers (inexact-ADMM) for solving
distributed optimization problems [14]. As pointed out by the
survey paper [15], very few algorithms have been proposed
for learning the GNE based on Lagrangian relaxation of
the coupling constraints as we propose here, letting alone
the ADMM-typed methods. One recent work [16] develops
an augmented Lagrangian-typed method for finding GNEs;
however, its implementation is not fully distributed within the
area as in our setting. Thanks to the availability of real-time
measurements in power networks, our algorithm does not
rely on information from other areas (players) of the game.
Although convergence at O(1/t) rate is proved only under
certain conditions, the proposed learning algorithm exhibits
superior convergence property even when these conditions
are violated, as demonstrated by numerical simulations.

II. MODELING AND PROBLEM FORMULATION

In this section, we introduce the modeling of power flow
in distribution networks and the voltage control problem with
only a locally connected communication network.

A. Voltage control problem

Consider a single-phase power distribution network with
a tree-topology graph denoted by (N , E), where N :=
{0, · · · , N} is the set of buses with bus-0 as the feeder
and E := {(i, j) ,∀i, j ∈ N} is the set of line segments.
We denote bus-0 as the reference bus and all the other buses
as a set Np := N/{0} that has controllable DERs providing
reactive power injection. The voltage magnitude vj and the
reactive power injection qj at each bus-j, ∀j ∈ Np, are
concatenated in v ∈ RN and q ∈ RN , respectively. Note that
v0 is the reference bus voltage for the point of common cou-
pling (PCC). Using the so-termed LinDisFlow model [17], a
linearized branch flow model for distribution networks, we
establish the relation between the VAR injection q and the
voltage profile v as in [2]

Bv = q + w (1)

where w is a constant vector that captures the system
operating point, B is the reduced1 weighted Laplacian matrix
of (N , E), satisfying Bij = Bji = 0,∀(i, j) /∈ E . This
sparsity structure of B will facilitate the design of distributed
algorithms for voltage regulation using only neighbor-to-
neighbor communications.

To regulate the system voltage profile to a desired one,
i.e., v → µ, while considering the cost and limits of

1By saying reduced, we mean that the row and the column corresponding
to bus-0 are removed in the Laplacian matrix.

Fig. 1. A schematic diagram for current distribution system with a locally
connected communication network illustrated as a cyber-physical system.

VAR provision, we formulate the following voltage control
problem denoted as P0

min
v,q

γ

2
‖v−µ‖22 +

N∑

j=1

Cj(qj) (2a)

s.t. Bv = q + w (2b)
qj ∈Qj ,∀j ∈ Np (2c)

where Qj := [q
j
, q̄j ] denotes the box-constrained feasible

set for VAR provision, γ ≥ 0 is a parameter that balances
the voltage regulation and the VAR provision cost Cj(qj) in
the objective. We make a standard assumption on Cj(qj).
Assumption 1. The cost functions Cj(qj) are convex and
continuously-differentiable over qj ∈ Qj ,∀j ∈ Np.

B. Locally connected communication network

As shown in Fig. 1, we consider a communication net-
work (N , Ec) constructed on top of the distribution network
(N , E) with the same set of buses2. This two-layer network
is usually viewed as a cyber-physical system. In current
distribution systems, however, the communication links are
relatively scarce so that the physically connected buses
are not necessarily all connected over the communication
network. Our focus is to analyze the performance limits and
design admissible voltage control algorithms when there is
such restricted communication.

Suppose there are K connected communication areas in
(N , Ec) and let K = {1, · · · ,K}. Let Kk denote the set
of buses within the k-th communication area. Each bus can
merely exchange measurement or decisions with neighboring
buses in the same area. Hence for each area-k, the relation
between the VAR injection qk ∈ R|Kk| and the voltage
profile vk ∈ R|Kk| is partitioned from (1) as,

Bk,kvk = qk + wk −Bk,−kv−k (3)

2Mathematically speaking, this leads to the fact that (N , Ec) is a subgraph
of (N , E).



where the subscript −k represents the indices of buses that
are not in communication area-k, i.e., {j|j /∈ Kk}, Bk,k and
Bk,−k are thus submatrices of B with proper dimensions.
Note that the submatrix Bk,k inherits the sparsity structure
as the matrix B. Denoting B̃ := diag{Bk,k} as a block
diagonal matrix with Bk,k on its diagonal, we immediately
have the following lemma.
Lemma 1. Both matrices B and B̃ are positive definite
(PD) and thus invertible.

Proof. The positive definiteness of B follows directly from
[9, Prop. 1]. Hence all the block submatrices Bk,k,∀k ∈ K
are PD, and so does the block diagonal matrix B̃.

III. GAME CHARACTERIZATION WITH LOCAL
COMMUNICATIONS

In this section, we consider a game theoretic character-
ization of the voltage control problem with only a locally
connected communication network.

With non-strongly connected communications, the global
problem P0 can hardly be attacked directly using distributed
optimization algorithms as [18], [19] since information
cannot spread over all buses. Alternatively, the buses of
each communication area can only take care of the voltage
mismatch and VAR injection within that area, though they
are physically coupled with buses of other areas. This char-
acteristic makes the problem fall under the realm of strategic
games. Consider a game G =

〈
K, {Ak}k∈K , {Uk}k∈K

〉
with

K players whose feasible sets Ak,∀k ∈ K are defined as
follows

Ak := {(vk,qk)|q
k
≤ qk ≤ q̄k, (4)

Bk,kvk = qk + wk −Bk,−kv−k}.
Let ak := (vk,qk) denote the decision variable of area-k.
Note that Ak is determined by the action of other areas,
denoted as a−k, i.e., Ak = Ak(a−k). Let Uk : Ak → R
denote the payoff function for area-k. Similarly to (2a), each
area aims to minimize its own operational cost with the
form3:

Uk (ak) =
γ

2
‖vk − µk‖22 +

∑

j∈Kk

Cj(qj). (5)

Hence, the voltage control problem for each area-k can be
formulated as

min
ak

Uk (ak) s.t. ak ∈ Ak(a−k), ∀k ∈ K (6)

The problem (6) is commonly categorized as a generalized
Nash equilibrium problem (GNEP), in which each player
has its own objective and action while its feasible set is
dependent on the actions of other players. The solution to the
GNEP, i.e., the generalized Nash equilibrium, characterizes
the performance limit of voltage control for such a locally
connected communication network. In general, however, it is
not straightforward to establish the existence and uniqueness

3Note here we use the convention that players minimize (not maximize)
their cost (payoff) functions as in [20].

of the GNE [15]. Here due to the special structure of G,
we can establish the following results on the existence and
uniqueness of the GNE based on the theory of variational
inequality.

Theorem 1. [Existence of the GNE] The set of the GNE for
G is nonempty and compact.

Proof. Under Assumption 1, the GNEP for each area-k is
a convex optimization problem for given other areas’ deci-
sion a−k. Hence the Karush-Kuhn-Tucker (KKT) conditions
equivalently characterize the solution to each GNEP since
the non-empty interior points in Ak(a−k) ensure the Slater’s
condition to hold [21] for each subproblem (6). We thus
obtain the equilibrium conditions (EC) of the game G, i.e.,
∀k ∈ K,




γ(vk − µk) + BT
k,kθk = 0

∇Ck(qk)− θk + η̄k − ηk = 0

η̄Tk q̄k = 0,ηT
k
q
k

= 0, η̄k ≥ 0,η
k
≥ 0

q
k
≤ qk ≤ q̄k,Bk,kvk = qk + wk −Bk,−kv−k

(7a)

(7b)

(7c)

(7d)

where ∇Ck(qk) := [∇Cj(qj)]j∈Kk
and η̄k,ηk and θk are

the multipliers. Equations (7a) and (7b) are the stationarity
conditions with respect to (w.r.t.) vk and qk, respectively.
Equation (7c) represents the complementary slackness and
dual feasibility conditions, and equation (7d) represents the
primal feasibility conditions. By eliminating the variable vk
using qk, we obtain the EC in the following compact form




γB̃−1(B−1q + µ̄) +∇C(q) + η̄ − η = 0

η̄T (q− q̄) = 0,ηT (q− q) = 0, η̄ ≥ 0,η ≥ 0

q ≤ q ≤ q̄

(8a)

(8b)

(8c)

where µ̄ := B−1w − µ is constant, and ∇C(q) is a con-
catenation of ∇Ck(qk). Interestingly, the EC (8) coincides
with the KKT system of a variational inequality VI(Q,Φ),
where Q :=

∏
j∈Np

Qj is a convex set and Φ : Q → RN is
a mapping defined as

Φ(q) := γB̃−1(B−1q + µ̄) +∇C(q). (9)

The solution set to the VI(Q,Φ) is equivalently the solution
of the KKT system (8) (see [22, Prop. 1.3.4]), which is
nonempty and compact since Q is convex and compact and
Φ is continuous by Assumption 1 (see [22, Corollary 2.2.5]).
This completes the proof.

One advantage of this connection to the VI(Q,Φ) is to
elicit the conditions for the uniqueness of the GNE, for
more discussions see [22]. One of the most commonly used
conditions for global uniqueness of the VI’s solution is as
follows [20].

Lemma 2. The GNE for G is unique if the mapping Φ : Q →
RN defined in (9) is strongly monotone, i.e., ∀q1,q2 ∈ Q,
there exists a constant m > 0 such that

(q1 − q2)T [Φ(q1)−Φ(q2)] ≥ m‖q1 − q2‖22.

Another interesting advantage of the connection to the VI



theory is that some algorithms for solving the VI can be used
to seek the GNE. For example, the basic projection algorithm
[23, Chapter 3.5.2], which performs the projected gradient-
play q(t+1) = PQ[q(t) − εΦ(q(t))]4 on the feasible set Q,
has its fixed point as the GNE provided that the mapping Φ
is strongly monotone and the step-size ε is small enough.
However, from (9), the evaluation of Φ requires a fully
connected communication within each area since the block
matrices B−1

k,k on the diagonal of B̃−1 are usually dense (due
to the sparsity structure of its inverse, Bk,k). Hence this
equilibrium-learning approach may not be implementable
under our setting with local communications as illustrated
in Fig. 1. This motivates us to develop a fully distributed
equilibrium-learning algorithm that requires only neighbor-
to-neighbor communications in the next section.

IV. DISTRIBUTED EQUILIBRIUM-LEARNING FOR
VOLTAGE CONTROL

In this section, we propose a fully distributed volt-
age control algorithm to achieve the GNE while requiring
only neighbor-to-neighbor information exchange within each
communication area.

A. The GNE and VI in primal-dual space

As discussed in Section III, the solution to the VI(Q,Φ)
aligns with the equilibrium of the voltage control under local
communications. However, due to the general dense structure
of B̃−1, most algorithms for solving VI(Q,Φ), as summa-
rized in [22, Chapters 10 and 12], can not be implemented in
a fully distributed fashion. To exploit the sparsity structure
in B̃, dualization of the equality constraint in (3) seems to
be necessary. A Lagrangian dual based algorithm has been
proposed and studied in reference [2] under the condition of
having a globally connected communication network. This
algorithm updates iterates in both primal and dual spaces
(v,q,θ) ∈ Ω := RN × Q × RN (unlike the primal-based
algorithms such as gradient-projection which only perform
updates in the primal space q ∈ Q). Here, the variable θ is
the dual variable associated with the constraint (3).

Based on this observation, we first establish the connection
between the GNE and a VI in the primal-dual variable space.
For ease of notation, we denote that ∀k ∈ K,

fk(vk) :=
γ

2
‖vk − µk‖22 and hk(qk) :=

∑

j∈Kk

Cj(qj),

f(v) :=
∑

k∈K
fk(vk) and h(q) :=

∑

k∈K
hk(qk).

Hence given any a−k, to solve each GNEP (6) is to find a
point ω∗k := (v∗k,q

∗
k,θ
∗
k)T such that ∀vk ∈ R|Kk|, ∀qk ∈

Qk,




(vk − v∗k)T (∇fk(v∗k) + BT
k,kθ

∗
k) ≥ 0,

(qk − q∗k)T (∇hk(q∗k)− θ∗k) ≥ 0,

Bk,kv
∗
k = q∗k + wk −Bk,−kv−k.

(10a)

(10b)
(10c)

4PQ[·] denotes the projection operator onto the set Q.

By concatenating (10) for all k ∈ K, the GNEP is
equivalent to finding an ω∗ := (v∗,q∗,θ∗)T ∈ Ω such that

VI(Ω,F) : (ω − ω∗)TF(ω∗) ≥ 0,∀ω ∈ Ω, (11)

where

ω :=




v
q
θ


 ,F(ω) :=




∇f(v) + B̃Tθ
∇h(q)− θ

−ρB̃(v −B−1q−B−1w)


 .

To facilitate our proof later, the power flow constraint (10c)
is equivalently rewritten as ρB̃(v − B−1q − B−1w) = 0
in the definition of F with any fixed ρ > 0. This is due to
Lemma 1 that both B̃ and B are invertible.

Remark 1. Several algorithms have been proposed in [22] to
solve general VI problems. To guarantee the global conver-
gence of the algorithm, the mapping F is assumed to have
some form of monotonicity, see Chapter 12 in [22]. Among
these assumptions on monotonicity, pseudo-monotone is the
weakest one, under which the extra-gradient (EG) algorithm
[22], to the best of our knowledge, is the only one that
has theoretical guarantee of global convergence to the VI
solution. Moreover, since the sparse matrix B̃ is used to
evaluate F, the gradient of the VI, the EG algorithm admits
a distributed implementation. Therefore, we will use it as
the benchmark algorithm in our simulations. In fact, the
poor convergence speed of the EG algorithm shown later
motivates us to propose the following novel primal-dual
algorithm for equilibrium-learning, although its convergence
result can so far only be established on certain monotonicity
assumptions as we will show shortly.

B. Algorithm design

The equilibrium-learning algorithm is inspired by primal-
dual algorithms for solving convex optimization problems
[24], especially the ADMM algorithm [14]. We also incor-
porate the feedback control scheme that exploits real-time
measurement of voltage magnitude as in [2], to enable a
distributed implementation of the algorithm.

First for each iteration t, define

g(t) := BT
k,k

(
Bk,kv

(t)
k − q

(t)
k − w̌

(t)
k +

1

ρ
θ

(t)
k

)
, (12)

where ρ > 0 is a parameter of the algorithm to be set. w̌
(t)
k

is a measurable quantity defined as

w̌
(t)
k := Bk,kv̌

(t)
k − q

(t)
k ,

where v̌(t) is the measurement of voltage magnitude when
the VAR q(t) is injected, determined by the power flow
equation (1). This way, the decision related to other areas
at time t, i.e., the term wk − Bk,−kv

(t)
k in (3), can be

obtained through this feedback measurement without any
communication across areas.



Now we are ready to present the update steps of the
proposed algorithm, i.e., ∀k ∈ K,

v
(t+1)
k = arg min

vk

γ

2
‖vk − µk‖22

+ ρ
〈
g(t),vk − v

(t)
k

〉
+
β

2
‖vk − v

(t)
k ‖22

q
(t+1)
k = arg min

qk∈Qk

∑

j∈Kk

Cj(qj)

+
ρ

2
‖Bk,kv

(t+1)
k − qk − w̌

(t)
k +

1

ρ
θ

(t)
k ‖22

θ
(t+1)
k = θ

(t)
k + ρ(Bk,kv

(t+1)
k − q

(t+1)
k − w̌

(t+1)
k )

(13a)

(13b)

(13c)

where β > 0 is also a parameter to be tuned. The up-
dates (13) originate from the ADMM update for solving
the sub-problem GNEP (6) of each area-k. The first step
(13a) exploits a linearized/inexact minimization so that this
step can be implemented using only neighbor-to-neighbor
communications. In particular, the updates at each bus can
be written in closed form, i.e., ∀j ∈ Kk and ∀k ∈ K,

v
(t+1)
j =

γµj −
∑
i∈N j

c

Bji(2θ
(t)
i − θ

(t−1)
i ) + βv

(t)
j

γ(1 + β)

q
(t+1)
j = Solj

[
∇Cj(qj) + ρ(qj − q(t)

j −
1

ρ
θ

(t)
j )

− ρ
∑

i∈N j
c

Bji(v
(t+1)
j − v̌(t)

j )

]

θ
(t+1)
j = θ

(t)
j + ρ

∑

i∈N j
c

Bji(v
(t+1)
j − v̌(t+1)

j )

(14a)

(14b)

(14c)

where N j
c denotes the neighboring buses of bus-j over the

communication network (E ,Nc), the operator Solj [g(qj)]
over a continuous function g(qj) finds the solution of
g(qj) = 0 and then projects it onto the feasible set Qj .
Note that by Assumption 1, the optimization in step (13b)
is strongly convex w.r.t. qj , which ensures the uniqueness of
the zero of the mapping in the square brackets of (14b). All
three updates in (14) require only local information exchange
with the neighboring buses, respecting the locally connected
communication topology considered here.

C. Convergence analysis

Here we will show that the updates converge to the GNE
with the rate of O(1/t) under certain monotonicity assump-
tions on the problem. The proof follows the techniques
in [25], which was established for solving optimization
problems from the VI point of view. We start by introducing
the monotonicity assumption on the mapping F over the
region Ω.
Assumption 2. The mapping F : Ω → R3N is monotone
over Ω, i.e., ∀ω1,ω2 ∈ Ω, we have

(ω1 − ω2)T [F(ω1)− F(ω2)] ≥ 0. (15)

Hereafter, we will establish the convergence results based
on this assumption.

Remark 2. [Monotonicity of F] The monotonicity of F
plays an essential role in the proof of standard primal-dual
algorithms for solving optimization problems [24]. In fact,
if the mapping F is differentiable, then requiring F to be
monotone over the whole primal-dual space Ω is equivalent

to requiring the matrix ∇F(ω) =

[
γI 0 B̃T

0 Hh −I
−ρB̃ ρB̃B−1 0

]
to

be positive semi-definite (PSD), where Hh is the Hessian of
h. However, unlike the case in optimization where B̃ = B,
the matrix ∇F(ω) here is not skew-symmetric as shown in
[25] and thus not necessarily PSD even if both functions f
and h are convex and ρ = 1. This can be mitigated by taking
a larger value for γ, the stronger monotonicity of ∇h, and
a proper choice of ρ. We will also show from numerical
examples that the algorithm can converge to the GNE even
when this assumption of monotonicity does not hold.

The GNE ω∗ can be further characterized in the following
lemma under Assumption 2, based on Theorem 2.3.5 in [22].
This lemma implies that ω̃ ∈ Ω is an approximate solution
of VI(Ω,F) with accuracy ε > 0 if it satisfies

(ω − ω̃)TF(ω) ≥ −ε,∀ω ∈ Ω. (16)

We will show that the sequence {ω(t)} generated by the
proposed algorithm satisfies (16).
Lemma 3. Under Assumption 2, the set of GNE Ω∗ can
be characterized as

Ω∗ =
⋂

ω∈Ω

{ω̃ ∈ Ω : (ω − ω̃)TF(ω) ≥ 0}.

The updates (13) over the region Ω can be rearranged in
a more compact form

v(t+1) = argmin
v

f(v) +
1

2
‖v − v(t)‖2βI−ρB̃T B̃

+
ρ

2
‖B̃v − B̃B−1q(t) − B̃B−1w +

1

ρ
θ(t)‖22

q(t+1) = argmin
q∈Q

h(q) +
ρ

2
‖B̃v(t+1) − q

+ (I− B̃B−1)q(t) − B̃B−1w +
1

ρ
θ(t)‖22

θ(t+1) = θ(t) + ρB̃(v(t+1) −B−1q(t+1) −B−1w),

(17a)

(17b)

(17c)

where the measurement w̌(t+1) in (13c) is replaced by the
VAR injection q(t+1) following the power flow equation (3).

For ease of notation, we introduce three matrices

H =



βI− ρB̃T B̃ 0 0

0 ρI 0
0 0 I


 ,M =



I 0 0
0 I 0

0 −ρB̃B−1 I




Q =



βI− ρB̃T B̃ 0 0

0 ρI 0

0 −ρB̃B−1 I


 .

Note that Q = HM. We then define a sequence {ω̃(t)}
based on the sequence {ω(t)} where

ω̃(t) =



ṽ(t)

q̃(t)

θ̃
(t)


 :=




v(t+1)

q(t+1)

θ(t) + ρB̃(v(t+1) −B−1q(t) −B−1w)


 .

(18)



Notice that

ω(t+1) = ω(t) −M(ω(t) − ω̃(t)). (19)

We then obtain the following lemma that quantifies the dis-
crepancy between ω̃(t) and the actual solution to VI(Ω,F).
Lemma 4. The sequences {ω(t)} and {ω̃(t)} satisfy

(ω − ω̃(t))TF(ω) ≥ (ω − ω̃(t))TQ(ω(t) − ω̃(t)),∀ω ∈ Ω.
(20)

Proof. We first derive the optimality conditions for the
minimization steps (17a) and (17b):

(v − ṽ(t))T
[
∇f(ṽ(t)) + B̃T θ̃

(t)

+ (βI− ρB̃T B̃)(ṽ(t) − v(t))
]
≥ 0,∀v ∈ RN

(q− q̃(t))T
[
∇h(q̃(t))− θ̃(t)

+ ρ(q̃(t) − q(t))
]
≥ 0,∀q ∈ Q.

(21a)

(21b)

Also, according to (18), we have that ∀θ ∈ Θ,

θ̃
(t) − θ(t) − ρB̃(v(t+1) −B−1q(t) −B−1w) = 0. (22)

Combining (21) and (22), we have that ∀ω ∈ Ω,

(ω − ω̃(t))TF(ω̃(t)) ≥ (ω − ω̃(t))TQ(ω(t) − ω̃(t)). (23)

Recalling that Q = HM and F(ω) is monotone over Ω, we
further obtain (20).
The right hand side of (20) can be handled using the
following lemma.
Lemma 5. The sequences {ω(t)} and {ω̃(t)} satisfy ∀ω ∈
Ω,

(ω − ω̃(t))THM(ω(t) − ω̃(t)) (24)

=
1

2

(
‖ω − ω(t+1)‖2H − ‖ω − ω(t)‖2H

)
+

1

2
‖ω(t) − ω̃(t)‖2R,

where R = 2HM−MTHM.
Proof. By the relation (19), we have

M(ω(t) − ω̃(t)) = ω(t) − ω(t+1). (25)

Applying the fact that

(a− b)TH(c− d) =
1

2

(
‖a− d‖2H − ‖a− c‖2H

)

+
1

2

(
‖c− b‖2H − ‖d− b‖2H

)
,

we have

(ω − ω̃(t))TH(ω(t) − ω(t+1))

=
1

2

(
‖ω − ω(t+1)‖2H − ‖ω − ω(t)‖2H

)

+
1

2

(
‖ω(t) − ω̃(t)‖2H − ‖ω(t+1) − ω̃(t)‖2H

)
. (26)

Additionally, we can also obtain from (19) that

‖ω(t) − ω̃(t)‖2H − ‖ω(t+1) − ω̃(t)‖2H (27)

=‖ω(t) − ω̃(t)‖2H − ‖ω(t) − ω̃(t) −M(ω(t) − ω̃(t))‖2H
=‖ω(t) − ω̃(t)‖2R,

where

R := 2HM−MTHM = 2Q−MTQ

=



βI− ρB̃T B̃ 0 0

0 ρ(I− ρB−T B̃T B̃B−1) ρB−T B̃T

0 −ρB̃B−1 I


.

By combining (26) and (27), we obtain (24), which concludes
the proof.

Note that R is skew-symmetric. With large enough β > 0
and small enough ρ > 0, both submatrices βI − ρB̃T and
ρ(I − ρB−T B̃T B̃B−1) can be PSD, leading R to be PSD
as well. With this observation, we are ready to present the
main result about the convergence of the algorithm under
Assumption 2.

Theorem 2. Under Assumption 2, if the parameters ρ > 0
and β > 0 satisfy: i) ρ ≤ 1/‖B−T B̃T B̃B−1‖2; ii) β ≥
ρ · ‖B̃T B̃‖2, then given the sequences {ω(τ)} and {ω̃(τ)}
and letting

ω̃(t) =
1

t+ 1

t∑

τ=0

ω̃(τ), (28)

we have, ∀t > 0, ω̃(t) ∈ Ω and

(ω̃(t) − ω)TF(ω) ≤ 1

2(t+ 1)
‖ω − ω(0)‖2H,∀ω ∈ Ω. (29)

Proof. First, due to the convexity of Ω, (28) implies that
ω̃(t) ∈ Ω. Second, with the conditions in the Theorem, the
parameters ρ and β make the matrix H and R both PSD.
Therefore by combining (20) and (24), we obtain that ∀τ >
0,

(ω − ω̃(τ))TF(ω) +
1

2

(
‖ω − ω(τ)‖2H − ‖ω − ω(τ+1)‖2H

)

≥ ‖ω(t) − ω̃(t)‖2R ≥ 0,∀ω ∈ Ω,

i.e., ∀ω ∈ Ω,

(ω − ω̃(τ))TF(ω) +
1

2
‖ω − ω(τ)‖2H ≥

1

2
‖ω − ω(τ+1)‖2H.

By summing up the inequality over τ ≥ 0, we obtain

(
(t+ 1)ω −

t∑

τ=0

ω̃(τ)
)T

F(ω) +
1

2
‖ω − ω(0)‖2H ≥ 0,

and equivalently we have

(
ω̃(t) − ω

)T
F(ω) ≤ 1

2(t+ 1)
‖ω − ω(0)‖2H,∀ω ∈ Ω,

(30)

which concludes the proof.
Theorem 2 shows that after t iterations of the updates
(17), the point ω̃(t) is an approximate solution to VI(Ω,F)
with accuracy O(1/t) (recall (16)), which establishes the
convergence of the algorithm.



Fig. 2. The IEEE 13-bus feeder case for distribution systems. The
dashed circles represent the partition of buses as areas under only a locally
connected communication network.

V. NUMERICAL SIMULATIONS

In this section, we evaluate the performance of voltage
control under local communications via numerical simula-
tions. The IEEE 13-bus feeder case for distribution systems
[26] are tested, where the partition of buses into commu-
nication areas is illustrated in Fig. 2. The line impedances
are assumed to be uniform with 0.233 + j0.366Ω under
the base of 4.16 kV and 100 kVA. We choose γ = 1,
the desired voltage µ = 1, and quadratic cost function
Cj(qj) = cj/2‖qj‖22 with identical cj = 10−4,∀j ∈ Np.
In this case, the mapping Φ defined in (9) becomes a
linear mapping and is strongly monotone with the smallest
eigenvalue 9.85 × 10−5. Hence by Lemma 2 the GNE is
unique in this example. The feasible set of VAR injection at
each bus is Qj = [−0.8, 0.8] p.u..

We first compare the performance of the GNE and the
global optimum of the problem P0 when the communica-
tion network is strongly-connected. To this end, we solve
the equilibrium conditions for the GNE (8) directly, by
transforming the complementary slackness equations into a
mixed integer linear programming (MILP) as the technique
developed in [27]. The MILP can be attacked readily by
standard solvers as Gurobi [28]. As shown in Fig. 3, in
contrast to the global optimization result, the equilibrium
has global objective values that are 1.57 times greater. This
loss of efficiency characterizes the value of communication
links in voltage control.

We then implement the proposed algorithm at all buses
with only neighbor-to-neighbor information exchange. The
value of β is chosen to be ρ · ‖B̃T B̃‖2. As illustrated in Fig.
3, the equilibrium-learning algorithm successfully converges
to the unique GNE as solved by the MILP approach with
sublinear rate as proved. The greater the value ρ is, the
faster the algorithm converges. Nonetheless, ρ has to be
small enough to avoid oscillation or possible divergence. Fig.
4 shows the difference (`2-norm) between the convergent
VAR injection at the GNE and the optimal one. The same
convergence as for objective values is exhibited for VAR
injections. Note that in this example, the algorithm delivers
desired convergence even without Assumption 2 since the

Fig. 3. The operational cost of the global optimum, the GNE computed
by solving the MILP, and the GNE attained by the proposed algorithm with
various values of ρ.

Fig. 4. The difference (`2-norm) of the optimal VAR injection and the
injections at the GNE attained by the proposed algorithm using various
values of ρ.

matrix ∇F has negative smallest eigenvalue.
We also compare the convergence speed of the proposed

algorithm and the extra-gradient algorithm whose global
convergence requires the weakest monotonicity assumption
on the mapping F, see Remark 1. We vary the value of cj
to vary the monotonicity of F. The numbers of iterations
needed for convergence to ‖q(t) − q∗‖ ≤ ε = 10−8 are
listed in Table I. The best parameters such as the step-size
for the EG algorithm or ρ and β for our algorithm, are
chosen and fixed for all test cases. ’−’ represents the case the
algorithm either ges or takes more than 500000 iterations to
converge. It is shown that the EG algorithm is much slower,
or even fails to converge, compared to our algorithm, which
numerically corroborates the applicability of our algorithm
under unfavorable monotonicity conditions of F.

TABLE I
THE NUMBERS OF ITERATIONS NEEDED FOR THE EG AND OUR

ALGORITHM TO CONVERGE UNDER VARIOUS MONOTONICITY

CONDITIONS OF F DETERMINED BY cj .

cj 10−4 10−2 10−1 1
EG Alg. - 456841 88536 5089
Our Alg. 844 620 524 422



Fig. 5. The difference (`2-norm) of the optimal VAR injection and the
injections at the GNE attained by the proposed algorithm with various
update delay bounds T .

In addition, we have also numerically investigated the
performance of asynchronous updates with bounded update
delays caused by intermittent communication within each
area. As the model in [11], we assume each area conducts
the update at least every T iterations. As shown in Fig.
5, the proposed GNE learning algorithm is robust to this
asynchronous update.

VI. CONCLUSIONS AND FUTURE WORK

The performance of voltage control using DERs is limited
by the under-deployed communication infrastructure in most
of the existing power distribution systems. In the present
work, we propose a game-theoretic characterization of volt-
age control with only locally connected communication
networks. DERs are partitioned into communication areas
and information exchange is allowed only within each area.
Existence and uniqueness conditions for the equilibrium
are analyzed, followed by the design of a fully distributed
equilibrium-learning algorithm. We have shown that under
a certain monotonicity assumption, the algorithm converges
to the GNE at the rate of O(1/t). Numerical tests are also
presented to verify its superior convergence property.

As future work, it would be interesting to analyze how
the structure of the communication network impacts the
efficiency of the GNE compared with the global optimum,
so as to further understand the fundamental value of commu-
nication links in voltage control. It is also worth attempting
to establish convergence results under weaker assumptions
on the monotonicity of F.
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