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Optimal Sparsely Distributed Static Output Feedback For
Publisher/Subscriber Networked Systems With Parametric Uncertainties

Ahmadreza Argha†, Steven W. Su? and Branko Celler†

Abstract— This paper develops a framework for the design
of H2-based block row/column-sparse distributed static output
feedback controllers for interconnected systems with polytopic
uncertainties. The application of the proposed method will be
in the networked systems using publisher/subscriber communi-
cation scheme in order to optimally select a subset of available
publishers and/or subscribers in the network. We propose to
incorporate two additional terms, that penalise the number of
publishers and subscribers, into the optimisation index function,
and then employ an explicit scheme and an iterative process
to deal with this problem. A numerical example is used to
demonstrate the effectiveness of the proposed approach in the
simultaneous identification of favourable networks topologies
and design of controller strategy.

Index Terms— H2 block row/column-sparse static output
feedback (SOF) problem; publisher/subscriber networked sys-
tems; polytope uncertain systems, linear matrix inequality.

I. INTRODUCTION

The modern practical systems such as power distribution
networks and transportation systems can be considered as
large-scale interconnected dynamical systems, for which
decentralised and distributed control schemes have been
proposed. The main idea behind the decentralised control
scheme is to use only the local state information in order to
control the subsystems and thus there is no control network.
This can be effective only when the interconnections between
the subsystems are not strong [1], [2]. When the intercon-
nections are strong, utilising distributed control frameworks
has been considered. In this strategy, each subsystem can
exploit local states as well as some of the other subsystems
states. Hence, compared to the decentralised control scheme,
distributed control scheme can ensure the stability of large
scale interconnected systems in the presence of stronger
subsystem interconnections [3]. Meantime, it also has less
complexity and improved computational aspects compared
to the centralised control scheme.

In interconnected systems, the structure of the distributed
controller network is usually restricted due to a number
of factors such as implementation-related concerns and
communication costs. This issue in distributed systems is
also referred to as information pattern, which means that,
unlike traditional distributed control schemes in which all
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the involving sub-controllers share the same information, the
sub-controllers can share or receive different information [4].
Since the fully distributed controller structure is not always
feasible, one may consider the design of distributed control
systems with imposing a priori constraints on communica-
tion network structure. Alternatively, another choice for the
distributed control systems is to design a control network
with the minimum number of communication links while
satisfying a global control objective [5], [6]. Indeed, a trade
off between the control performance and sparsity of the
feedback gain matrices should be considered [7]–[9].

Basically, to address network sparsification problem, one
has to, in worst case, check all possible topologies, implying
an exhaustive search for a number of configurations that can
grow exponentially with the number of communication links.
This is practically intractable and impossible to perform. As
explained in [10], to avoid performing an exhaustive search,
a trade-off can be made either in the choice of the search
strategy or in the choice of the selection criterion. Another
alternative to avoid solving a combinatorial problem is to
consider a multi-objective problem of controller structure
and control law co-design by incorporating secondary cost
functions which are convex approximations of the original
`0-quasi-norms and can promote sparsity of the distributed
controller, into a main cost function, which represents a
performance specification of the closed-loop system [7], [11].
The reweighted `1 (REL1) norm algorithms can further be
employed to identify the sparse optimal feedback gain [7].
The weights (entries of the weighting matrix), in the REL1
algorithms are updated at each step inversely proportional
to the strength of individual entries of feedback gain in the
previous step. This method has successively been applied to
the applications that the sparsity is required to be achieved at
the entry-wise level, i.e. minimising the number of communi-
cation links in distributed control networks exploiting the so-
called bilateral communication scheme [4]. However, the cur-
rent REL1 algorithms have shortcomings for the cases that
the sparsity is noted at a group (e.g. block row or column)
level, where the strength of groups of variables (block entries
of feedback gain) should be considered. Specifically, block
row/column sparse feedback gains have an application in the
so-called diffusion based networks [4], in which a published
information in the communication network is available to the
sub-controllers that are subscriber. In this case, the objective
is to minimise the number of subscribers/publishers in the
system rather than the number of bilateral communication
links. This is obviously equivalent to exploring for feedback
gains with maximum number of block rows/columns with



zero off-diagonal blocks. In this manuscript, we propose a
multi-objective optimisation problem by incorporating two
secondary index functions which penalise the number of
block rows/columns with non-zero off-diagonal blocks into
the main cost function. Then, in order to deal with the
underlying problem, we develop an iterative process, using
the relaxed block row/column sparsity promoting penalty
functions to penalise the number of publishers and sub-
scribers employed in the control network simultaneously.

The controller strategy proposed in this paper is static
output feedback (SOF) which means, unlike most of the work
in the current literature, it does not require all the system
states to be available, and instead it only uses the available
sensor outputs. Additionally, the overall networked system
considered in this work is assumed to involve parametric
uncertainties. Hence, this paper develops a novel framework
for the design of H2-based sparse block row/column-wise
SOF for polytope uncertain systems. An advantage of the
proposed SOF for polytope uncertain systems is that it is
applicable to the networked systems whose output matrix
involves parametric uncertainty; cf. [12].

Notation: We denote a (block) matrix with (block) entries
Φi j, i = 1, · · · ,r, j = 1, · · · ,r, as [Φi j]r×r. Furthermore,
diag [Φi]

r
i=1 is used to denote a (block) diagonal matrix

with (block) entries Φi, i = 1, · · · ,r. Moreover, col(νi(t))r
i=1

represents a (block) vector with (block) entries νi(t), i =
1, · · · ,r.

II. PROBLEM STATEMENT AND PRELIMINARIES

A. Problem statement

Consider the following large-scale linear-time-invariant
(LTI) networked system consisting of h subsystems:

ẋi(t) = Aixi(t)+
h

∑
j=1, j 6=i

Ai jx j(t)+B2,iui(t)+B1,iwi(xi),

zi(t) =Cz,ixi(t)+
h

∑
j=1, j 6=i

Cz,i jx j(t)+Dz,iui(t),

yi(t) =Cixi(t), i = 1, · · · ,h,
(1)

where xi ∈Rni , yi ∈Rpi , zi ∈Rqi and ui ∈Rmi are the system
state vector, output vector, performance output vector, and
control input vector of the i-th subsystem, respectively. The
matrices in (1) are constant and of appropriate dimensions.
Here, Ai j, i, j = 1, · · · ,h, j 6= i denotes the interactions
between the subsystems (Ai, i = 1, · · · ,h), i.e., Ai j = 0 if
the sub-system j does not influence directly the sub-system
i. Without loss of generality, it is also assumed that mi ≤
qi ≤ ni, and rank(B2,i) = mi. wi(t) ∈ Rmwi is the external
disturbance of the system. Define

x(t) := col(xi(t))h
i=1 ∈ Rn, u(t) := col(ui(t))h

i=1 ∈ Rm,

y(t) := col(yi(t))h
i=1 ∈ Rp, w(x) := col(wi(t))h

i=1 ∈ Rmw ,

z(t) := col(zi(t))h
i=1 ∈ Rq,

(2)

and

A := diag[Ai]
h
i=1 +

[
Ai j
]

h×h , B2 := diag[B2,i]
h
i=1,

B1 := diag[B1,i]
h
i=1,C := diag[Ci]

h
i=1, (3)

Cz := diag[Cz,i]
h
i=1 +

[
Cz,i j

]
h×h , Dz := diag[Dz,i]

h
i=1,

in which Aii = 0 and Cz,ii = 0. Using (1), (2) and (3), the
overall network can be presented as the following state space
realisation:  ẋ(t) = Ax(t)+B2u(t)+B1w(x),

z(t) =Czx(t)+Dzu(t),
y(t) =Cx(t).

(4)

Let the overall system matrices in (4) lie within the polytope

∆ ,

{
(A(λ ), B2(λ ), B1(λ ), C(λ ))

∣∣∣∣(A, B2, B1, C)

=
N

∑
l=1

λl(Al , B2,l , B1,l , Cl), λl ≥ 0,
N

∑
l=1

λl = 1

}
, (5)

where N denotes the number of vertices. It is assumed that
(Al ,B2,l) are stabilisable and there exists a static gain Ky such
that Al +B2,lKyCl are Hurwitz.

Most of the frameworks developed in the literature of dis-
tributed control design for networked systems are applicable
to the systems whose communication network topology is
built based on the so-called bilateral communication scheme,
in which the sub-systems have bilateral communications.
Hence, for example, seeking for a sparse feedback gain is
equal to utilising less communication links in the control
network. Nevertheless, these frameworks have nothing to
do with the so-called publisher/subscriber communication
scheme; see Fig. 1. The diffusion based networks (see e.g.
[4]), such as the factory instrumentation protocol (see e.g.
EN 50170 and IEC 61158/IEC 61784 standards), is signifi-
cantly different from the bilateral one. In this communication
scheme, a published information in the communication net-
work is available to the sub-controllers that are subscriber.
In this paper, our major objective is the minimisation of
the number of subscribers and/or publishers in the system.
This is equivalent to exploring for feedback gains with
maximum number of block rows/columns with zero off-
diagonal blocks. More specifically, the main objective of this
paper can be stressed as the following problem:

Problem 1: Given a networked system with the state
space representation in Equation (4), select a subset of
available publishers/subscribers and simultaneously find a
distributed controller that employs only the available sparse
information while minimising the degradation of an opti-
misation metric, say H2 norm of the overall closed-loop
transfer function from w to z, relative to the case where all
the system information are exploited.
To address Problem 1, we firstly construct a framework for
the design of a controller which uses a priori specified subset
of system information. This framework can be employed to
cope with different control network topologies.
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Fig. 1. Networked System Architecture

Problem 2: Given a networked system with the state
space representation in Equation (4), find a distributed
controller employing a priori specified subset of system
information which minimises an optimisation metric, say H2
norm of the overall closed-loop transfer function from w to
z.
As the system in (1) or (4) involves the parametric un-
certainty, we need to develop a framework for the design
of sparsely distributed controllers for networked systems
employing publisher/subscriber communication scheme such
that it can deal with the existing parametric uncertainties.
For this purpose, the problem of structured static output
feedback synthesis with a H2 performance specification is
primarily considered. Before doing so, we present some
useful definitions.

Definition 1: A matrix whose elements are either 0 or 1
is said to be a structure matrix. Let Λ = [Λi j]m×n be a block
matrix with Λi j ∈ Rai×b j , then the structure matrix of Λ is
obtained as S(Λ), [γi j]m×n with

γi j =

{
0 if Λi j = 0
1 otherwise.

Definition 2: Two matrices Λ1 and Λ2 are structurally the
same if S(Λ1) = S(Λ2).

Definition 3: The matrix Λ1 with S(Λ1) , [γ1
i j]m×n is

structurally subset of Λ2 with S(Λ2) , [γ2
i j]m×n while γ2

i j−
γ1

i j ≥ 0. We denote this as S(Λ1)⊆ S(Λ2).

Definition 4: A block matrix Λ̃ is said to be sparse block
row-wise (column-wise) if its structure matrix Γ̃, i.e. S(Λ̃) =
Γ̃, includes (at least) one row (column) of all zeros.

B. LMI-Based H2 State Feedback Design for Polytope Un-
certain Systems

Lemma 1: The following three statements, involving X >
0, Z > 0, a general matrix variable V are equivalent.

i) ∃ K such that A + B2K is stable and∥∥(Cz +DzK)(sI−A−B2K)−1B1
∥∥2

2 < γ .

ii) ∃ X > 0 and Z > 0 such that[
AX +B2Y +XAT +Y T BT

2 ?
CzX +DzY −γI

]
< 0,[

−Z ?
B1 −X

]
< 0,

trace(Z)< 1

where Y = KX .
iii) ∃ X > 0, Y , Z > 0 and V such that −(V +V T ) ? ?

AV +B2Y +X +V −2X ?
CzV +DzY 0 −γI

< 0, (6)

[
−Z ?
B1 −X

]
< 0, (7)

trace(Z)< 1, (8)

where Y = KV .
Proof: For proof refer to [13].

It is worth noting that as V +V T > 0, V is nonsingular and
thus if the LMI (6) is feasible, the state feedback would
be derived as F = YV−1. It should also be emphasised that
the specific LMI characterisation in (6) enables us to utilise
different Lyapunov matrices for each of the involved LMI
constraints in the problem. This is because in the LMI (6)
the product terms between the matrix A and the Lyapunov
matrix have disappeared. In such a case, the control gain can
be obtained independent of the Lyapunov matrix. This feature
has a significant implication in the design of controllers for
systems with parametric uncertainties.
Now, the H2 problem by assuming the control law as
u(t) = Kx(t) for the system (4), whose matrices belong to
the polytope (5), can be cast as the following optimisation
problem:

minimise γ (9)
subject to (6), (7) and (8).

Note also that from the item iii) of Lemma 1, for each vertex
l, we can employ the following inequalities: −(Vl +Vl

T ) ? ?
AVl +B2Yl +Xl +Vl −2Xl ?

CzVl +DzYl 0 −γI

< 0, (10)

[
−Zl ?
B1 −Xl

]
< 0, (11)

trace(Zl)< 1, (12)

where Xl > 0, Zl > 0, Yl and Vl are variables. However,
as seen, solving the optimisation problem in (9) subject
to the above inequalities (for l = 1, · · · ,N ) by exploiting
different Yl and Vl cannot give a unique state feedback
K. We will use these inequalities in the next subsection
to design a sparse row/column-wise SOF for parametric
uncertain networked systems by introducing two specific
matrix variable transformations.



C. Sparse row/column-wise H2 SOF

Based on the discussions given previously, we specify the
requirements of Problem 2 in the following problem.

Problem 3: Given a networked system with the state
space representation in Equation (4) involving the parametric
uncertainties, design a sparse row/column-wise SOF such
that it ensures the H2 performances, i.e. ‖Twz‖2

2 < γ , while
S(Ky)⊆ Γ, where Γ is a priori specified sparse row/column
wise structure matrix and Ky is the SOF.
The SOF problem can be considered as a constrained state
feedback problem; i.e. a state feedback (say K) which satis-
fies the additional constraint K =KyC [14]. Effective schemes
to address a similar non-convex optimisation problem for the
design of an H∞ SOF and mixed H2/H∞ SOF are proposed
in [12], [14]. In this paper, unlike [12], [14], the output matrix
C belongs to the polytope (5). We now introduce specific
LMI decision variables transformations as

Vl = ΣlVΣΣ
T
l +ΞlVΞΞ

T
l ,

Yl = YΞΞ
T
l , (13)

where VΣ ∈ R(n−p)×(n−p) and VΞ ∈ Rp×p are symmetric
matrices, and YΞ ∈ Rm×p. Besides, Σl = null(Cl) ∈ Rn×(n−p)

and Ξl ∈Rn×p is any matrix that satisfies ClΞl = I. In general
form, Ξl can be considered as Ξl =C†

l +ΣlΦl , where Φl ∈
R(n−p)×p is a given matrix and C†

l =CT
l (ClCT

l )
−1. As seen,

the matrix transformation proposed in (13) is essentially
different from the ones proposed in [12], [14]. Now by letting
the variables Vl and Yl be (13), the SOF gain can be obtained
through the following lemma.

Lemma 2: Let Vl = ΣlVΣΣT
l + ΞlVΞΞT

l and Yl = YΞΞT
l ,

then Vl is invertible if and only if VΞ is invertible. Also,
in such a case, YlV−1

l = KyCl with Ky = YΞV−1
Ξ

.
Proof: Left-multiply Vl = ΣlVΣΣT

l +ΞlVΞΞT
l by Cl to

find that ClVl =VΞΞT
l . As it is guaranteed that Vl is invertible,

ClVl is of rank p, and thereby VΞ should have rank p. Then,
as VΞ is a full rank square matrix, it is invertible as well.
As a result, ΞT

l = V−1
Ξ

ClVl , and thus from (13), we have
Yl = YΞV−1

Ξ
ClVl . Now, it can be seen that

YlV−1
l = YΞV−1

Ξ
Cl , KyCl .

Now the sparse row/column-wise H2 SOF problem, by
exploiting LMI approach, can be set as the following op-
timisation problem:

minimise γ (14)
subject to (10), (11), (12), for l = 1, · · · ,N ,

S(YΞ)⊆ Γ, S(VΞ) = I, and (13).

Remark 1: Matrix Φl plays an important role in the
proposed method for SOF design. A trivial choice is Φl = 0.
However, other choices for Φl can be considered, such
as Φl = (ΣT

l Σl)
−1ΣT

l VlCT
l (ClVlCT

l )
−1. However, this choice

requires solving the optimisation problem in (9) subject to
LMIs in (10)-(12) in advance to find Vl associated with each
vertex l. Clearly, if no solution can be attained by solving

(9), the SOF design problem would not be feasible and no
further action is required to be taken for the output feedback
problem.

III. IDENTIFYING FAVOURABLE SPARSE
ROW/COLUMN-WISE STRUCTURES

The previous section developed a framework for the design
of an H2-based SOF while constraining the structure of the
feedback gain. In this section, we aim to address the objective
mentioned in Problem 1; i.e. seeking for an optimal subset
of available publishers/subscribers in the networked system
while the H2-norm degradation of the closed-loop system
is minimised relative to the fully distributed topology, or
equivalently, finding favourable sparse block row/column-
wise SOF gains. This problem can also be seen as searching
for the redundant publishers and subscribers of the networked
system. We indeed aim to construct a multi-objective opti-
misation program, where the block row/column sparsity of
the SOF gain is directly incorporated into the index function.
This is encapsulated in the following problem.

Problem 4: Given a system with the state space repre-
sentation in Equation (4), find Ky =YΞV−1

Ξ
and γ > 0 in the

following optimisation program:

minimise γ +‖ΨsYΞ‖off-row−0 +
∥∥YΞΨp

∥∥
off-col−0 , (15)

subject to the constraints in (14),

where YΞ is a full decision matrix; i.e. S(YΞ), Γ= 1m×p, the
off-row-0 (off-col-0) is a quasi-norm that counts the number
of non-zero off-diagonal block rows (columns) of YΞ, and
Ψs = diag [ψs,iImi ]

h
i=1 (Ψp = diag

[
ψp, jIp j

]h
j=1

), with ψs,i ≥ 0
(ψp, j ≥ 0), is a weighting matrix that implies the emphasis
on the off-diagonal block row-sparsity (column-sparsity) of
YΞ, and thus the SOF Ky. For example, a larger ψs,i (ψp, j)
will lead to not employing i-th subscriber ( j-th publisher) in
the control system.
Obviously, an intractable combinatorial search is required to
address the optimisation problem above, hence the compu-
tation time would grow faster than polynomial, as the order
of the networked system system grows [11]. A number of
convex approximation of quasi-zero-norms are proposed yet,
such as `1-norm or weighted `1-norm [15]. In addition, the
paper [15] proposes the reweighted `1 (REL1) minimisation
method which is nothing but an iterative program that solves
a sequence of weighted minimisation problems, in which at
each iteration the weights are updated based on the previous
iteration’s solution. The REL1 algorithm has recently been
used by a number of researchers (e.g., see [16], [8]) for the
design of sparse controllers for the distributed systems. Nev-
ertheless, the developed REL1 schemes in these references
do not promote row/column-sparsity of the feedback gain
which is required in (15). Here, we need to develop a novel
method in which the variable selection should amount to the
selection of the important groups of variables (block rows
and/or columns), rather than important individual variables
(elements in the feedback gain).

Remark 2: In the existing literature, a scalar is used to
weight the sparsity of the feedback gain; cf. [7], in an



extended objective function, with the value of this scalar
determining the emphasise on the sparsity of the feedback
gain. However, in real cases, there may be prior information
available about the control network. For example, some
communication links can be infeasible or unattractive due
to the high implementation costs. In this case, to assist
the optimisation-based program proposed for the sparity
pattern recognition, it would be advisable to incorporate
this a priori knowledge into the optimisation problem by
using different scalars for weighting different off-diagonal
block rows (columns). This can be implemented simply by
specification of diagonal matrices (Ψs and Ψp) of separate
weights corresponding to individual off-diagonal block rows
(columns).
Let us now recast the objective function of the optimisation
problem (15) as follows

Problem 5: Given a system with the state space repre-
sentation in Equation (1), find Ky =YΞV−1

Ξ
and γ > 0 in the

following optimisation program:

minimise γ + fs(ΨsYΞ)+ fp(YΞΨp), (16)
subject to the constraints in (14),

excluding the structural constraint on YΞ. Here, fs(·) ( fp(·))
denotes the relaxed off-diagonal block-row-sparsity (block-
column-sparsity) promoting function.
The following subsection proposes candidates for fs(·) and
fp(·).

A. REL1 for row sparsity promoting penalty function

A convex alternative for the non-convex off-row-0 quasi-
norm, can be the following function

fs(ΨsYΞ) =

h

∑
i, j, i6= j

Ws,iψs,i
∥∥YΞ,i j

∥∥
F , (17)

where ‖·‖F denotes the Frobenius norm, and similarly

fp(YΞΨp) = ∑
i, j, i6= j

∥∥YΞ,i j
∥∥

F ψp, jWp, j, (18)

is a convex approximation for the non-convex off-col-0 quasi-
norm in (16). Moreover, the update rule for Ws,i can be
considered as

W k
s,i =

1

∑
j

j 6=i

∥∥∥K(k−1)
y,i j

∥∥∥
F
+ ε

, (19)

where k denotes the current iteration and we use 0< ε� 1 to
provide stability and to ensure that a zero valued off-diagonal
block row in YΞ does not strictly prevent a non-zero value
at the next step. The weighting matrix will be formed as
Ws = [ws,i j]h×h, where

ws,i j =

{
0mi×pi if i = j
Ws,i1mi×p j otherwise. (20)

As seen, the weights are updated without considering the
Frobenius norm of the block diagonal entries of the SOF

gain, because local measurements should not raise the com-
munication cost. It is also worth noting that the obtained
relaxed sparsity promoting function do not promote sparsity
within the blocks, but at the level of block rows. Similarly,
Wp, j can be updated as

W k
p, j =

1

∑
i

i 6= j

∥∥∥K(k−1)
y,i j

∥∥∥
F
+ ε

. (21)

Additionally, we form the weighting matrix as Wp =
[wp,i j]h×h, where

wp,i j =

{
0mi×pi if i = j
Wp, j1mi×p j otherwise. (22)

Remark 3: It is worth mentioning that minimising the
number of subscribers and publishers or either of them
have the possibility of promoting a completely decentralised
control structure which is equal to a control network with
no subscriber and publisher.

B. An algorithm for solving Problem 5

Now, define the matrix Π = [πi j]h×h with

πi j =

{
0mi×pi if i = j
1mi×p j otherwise.

The optimisation problem in (16), by letting fs(YΞ) and
fp(YΞ) as (17) and (18), respectively, is equivalent to

minimise γ + trace(ΠT
ΨsY1)+ trace(Y2ΨpΠ

T ) (23)
subject to the constraints in (15),

−Y1 ≤Ws ◦YΞ ≤ Y1,

−Y2 ≤Wp ◦YΞ ≤ Y2,

where ◦ denotes the Hadamard product (entry-wise product).
For addressing the above convex problem and identifying
a sparse row/column-wise SOF, the following algorithm is
proposed.

Algorithm 1:
1) Given ε > 0, α > 0, Ψs > 0 and Ψp > 0, initialise Ws =

[ws,i j]h×h, Wp = [wp,i j]h×h, with ws,i j and wp,i j as in (20)
and (22), respectively, by letting Ws,i = 1 and Wp, j = 1,
k = 1 and Kk

y = 0.
2) Solve the minimisation problem (23) to obtain K?

y =

Y ?
Ξ

V ?−1

Ξ
.

3) Update W k
s,i and W k

p, j using the update rules in (19) and
(21), respectively, and form Ws = [ws,i j]h×h and Wp =
[wp,i j]h×h as in (20) and (22), respectively.

5) If
∥∥K?

y −Kk
y
∥∥≤ α go to Step 6, else Kk

y = K?
y , k = k+1

and return to Step 2.
6) Let the unnecessary block rows and columns of K?

y be
zero and return Γ? = S(K?

y ).
Eventually, in order to find the H2 structured SOF with the
identified Γ?, we turn to the minimisation problem in (14).



]001.0,001.0,1,[ 2Idiags  ]1,001.0,1,[ 2Idiags 

0p 0p

]1,001.0,1,001.0[diagp  ]1,001.0,1,1[diagp 

0s 0s

]001.0,001.0,001.0,[ 2Idiags 
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]1,001.0,001.0,[ 2Idiags 

]1,001.0,001.0,1[diagp 

]1,1,1,[ 2Idiags 
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]1,1,1,1[diagp 

0s

]1,001.0,1,[ 2Idiags 

]1,001.0,1,1[diagp 

Fig. 2. Structure of block row/column-sparse SOF gains for different values
of Ψs and Ψp

IV. NUMERICAL EXAMPLES

Consider a decentralised interconnected system, presented
in [4], that consists of four subsystems:

A =


−1 2 1 −1 0 1
0 1 2 0 0 0

0.5 −0.5 −2 0 1 1
1 −1 −1 −2 0.4 0
0 0 0 1 −3 1
2 0 −1 −2 0 −4

 , (24)

B2 =


1 0 0 0 0
0 0.5 0 0 0
0 0 1 0 0
0 0 0 2 0
0 0 0 1 0
0 0 0 0 2

 , C =

 0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

 ,
B1 = I6, Cz =

[
I6

05×6

]
, Dz =

[
06×5

I5

]
.

We additionally assume that there exists an uncertainty in
the entry (4,6) of the output matrix C by up to ±50% of its
nominal value. As seen this interconnected system is fully
coupled and open-loop unstable. Solving the convex problem
in (14), by letting Γ = 1m×p and assuming a block diagonal
structure for Vl , l = 1,2 as Vl = ΣlVΣΣT

l +ΞlVΞΞT
l where

VΣ ∈ R2×2 and VΞ = diag[VΞ,i]
4
i=1 ∈ R4×4, with VΞ,i ∈ R, are

symmetric matrices, and Φl = 0, results in a true H2-norm
of 3.7689 (with nominal C). We now exploit Algorithm 1
with α = 0.01 and ε = 0.001. By increasing Ψs and Ψp
from zero, the number of block rows and columns with
non-zero off-diagonal blocks in the SOF gain decreases;
see Fig. 2. Once the sparsity structures of controllers are
identified for different Ψs and Ψp, the resulting patterns are
used to solve (23), by identified Γ, in order to obtain the H2
block row/column-sparse structured controllers.

V. CONCLUSIONS

This paper has been devoted to the design of optimal
sparse block row/column-wise feedback gains for dynamical

systems. Firstly, we developed an explicit LMI-based method
for the design of H2 SOF gain for systems with polytopic
uncertainty, which is capable of incorporating additional
structural constraints on the feedback gain matrix. Following
this, an iterative process for the identification of favourable
sparse block row/column-wise SOF gains has been proposed.
Then, in order to find the optimal structured feedback gain,
we solved the developed H2-based SOF problem subject
to the identified pattern. This scheme has an immediate
application in publisher/subscriber networked systems for
selecting a subset of available publishers and/or subscribers,
aimed at, for example, reducing the communication costs etc.
In addition, we have not involved the Lyapunov function
used for checking system performances in the controller
variables, resulting in less conservatism compared to the so-
called quadratic approach. This technique can also widen the
applicability region of the proposed static output feedback
design method for parametric uncertain systems. However, it
is worth noting that increasing the number of matrix variables
in the optimisation-based controller design problem may
increase the computation time. Nevertheless, it is evident
that, it is practically not necessary to wait for the termination
criterion in the REL1 algorithms, and mostly they can
identify the favourable patterns after a few iterations. A
numerical example has clearly demonstrated the effectiveness
of the proposed approach.
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