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Abstract— In this paper we addressed the cooperative trans-
port problem for a team of autonomous surface vehicles (ASVs)
towing a single buoyant load. We consider the dynamics of the
constrained system and decompose the cooperative transport
problem into a collection of subproblems. Each subproblem
consists of an ASV and load pair where each ASV is attached
to the load at the same point. Since the system states evolve on
a smooth manifold, we use the tools from differential geometry
to model the holonomic constraint arising from the cooper-
ative transport problem and the non-holonomic constraints
arising from the ASV dynamics. We then synthesize distributed
feedback control strategies using the proposed mathematical
modeling framework to enable the team transport the load on
a desired trajectory. We experimentally validate the proposed
strategy using a team of micro ASVs.

I. INTRODUCTION

We are interested in cooperative manipulation strategies
that enable a team of robots to transport large objects that
cannot be transported by single robots alone. Specifically, we
are interested in cooperative manipulation and transportation
of objects in marine and littoral environment when the object
is attached to the robots via a cable. In these systems, the
holonomic constraints arise from the need to coordinate with
other members of the team and are imposed on agents’
states. The non-holonomic constraints arise from the agents’
dynamics. This is a highly constrained system that can
benefit from an optimal control solution that is scalable and
amenable to changes in the team size. Tabuada et al. in [1]
showed how it is possible to design trajectories and synthe-
size controllers for a group of agents that simultaneously
satisfy the dynamics of each agent and a set of holonomic
constraints. This problem is called the formation control
abstraction [2].

The problem of transporting a cable suspended load has
been extensively studied in the robotics domains [3]–[7]. The
kinematic problem was considered in for a team of aerial
vehicles [3]. Cooperative transport of a heavy load by a team
of quadrotors was accomplished using geometric feedback
control in [4]. A similar approach was used in [5], however
in this work the control action was decomposed into parallel
and normal components to the vehicle trajectories. A hybrid
control strategy was used in [6] to enable the vehicle to
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execute lift maneuvers while minimizing the load swing. The
cooperative load carry problem for mobile grounds robots
subject to hard input constraint was discussed in [7].

Since the cooperative transport problem is a specific
instantiation of a mechanical system with constraints, the
system can be analyzed using the techniques presented
in [8]. Similar control theoretic strategies which analyzes
controllability and motion planning for multi-body systems
with non-holonomic constraints include [9]–[11]. The op-
timal trajectory planning problem can be posed as finding
a geodesic path on the (sub)Reimannian manifold given
by the system’s configuration space is presented in [12].
Such geometric approaches provide a well-suited tool set
for designing optimal control policies for these systems [13].
The extension of these geometric approaches to mechanical
systems subject to non-holonomic constraints is discussed in
[14].

Nevertheless, cooperative transport of a cable towed cargo
by a team of autonomous surface vehicles (ASVs) introduce
new challenges. Similar to their non-marine counterparts,
these vehicles are subject to limitations on their maneuver-
ability. Vehicle and load inertial effects become more signif-
icant in the marine environment. In this work, we build upon
our existing work [15] and present a solution to the control
abstraction problem for cooperative load transport by a team
of ASVs. Different from our previous work, we explicitly
taking into account the vehicle dynamics in this work. Rather
than computing a set of trajectories for the vehicles and load,
we synthesize a set of control inputs for each vehicle to
enable the team to maintain the desired formation as they
transport the load along the desired trajectory. We show
the feasibility of the approach in experiment. Our results
suggest that the proposed strategy is robust in the presence
of disturbances and model uncertainties.

The rest of this paper is organized as follows: We for-
mulate our problem and present our modeling framework
in Section II. Section III presents our methodology. The
experimental results are presented in Section IV. The paper
concludes with a summary of our contribution and discussion
on future work in Section V.

II. PROBLEM FORMULATION

A. Preliminaries

We begin with some preliminaries and adopt the notation
presented in [16]. The trajectory of a system is a curve on
the topological manifold of the system states, γptq : RÑ Q.
The velocity along this curve at any point γp0q “ p P Q, is
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a linear map from the vector space of the smooth functions
on the manifold to the real numbers, and is defined as

C8pQq Q f ÞÑ vppfq “ pf ˝ γp0qq
1 P R. (1)

where the operator ˝ indicates function composition. At
each point of the manifold, the set of the velocities for all
trajectories passing through that point constitute a vector
space called the Tangent Vector Space of the manifold Q
at the point p, i.e., TpQ. This set is a vector space equipped
with addition and scalar multiplication [16].

Let
`

U Ă Q,X pUq P Rn
˘

be a chart on the smooth
manifold Q. A tangent vector, vγptq,p, is an operator which
acts on a function and returns a real number, and is given
by

vγptq,ppfq “ pf ˝ γq
1p0q “ pf ˝X´1 ˝X ˝ γq1p0q (2)

“ px i ˝ γq
1
p0q ¨ Bipf ˝X

´1qpX ppqq

where we employ Einstein’s summation notation. We note
that the second part of the tangent vector is independent
of the curve γptq and thus an independent entity on the
manifold. The representation of these objects in the chosen
chart is called the chart-induced basis of the tangent space,
tp B
Bxi qpu. We note that the partial differentials in B

Bxi pfq are
symbols and not operators since f is not a function of xis
but instead a function of the points on Q. The set of these
operators in a chart forms a basis for the tangent space of
the manifold Q at the point p, i.e., TpQ.

The set of all linear maps from the tangent space to the
real numbers equipped with the proper addition and scalar
multiplication operators forms a vector space called the
cotangent space. For example, the gradient of a function, df ,
is a covector, defined as TpQ Q χ ÞÑ pdfqppχq “ χppfq P R.
And, like any other vector, a co-vector can also be written
in components with respect to a chart,

`

U ,X
˘

:

rpdfqpsi “ pdfqp
` B

Bxi
˘

“ Bi
`

f ˝ x´1
˘`

xppq
˘

(3)

The components of the chart themselves are maps from a
subset of Q to the real numbers, xi : U P Q Ñ R. The set
of co-vectors defined using these functions constitutes a ba-

sis for the cotangent space,
"

`

dx1
˘

p
,
`

dx2
˘

p
, . . . ,

`

dxd
˘

p

*

.

These are the dual basis of the tangent basis,
`

dxi
˘

p

`

B
Bxj

˘

“
Bxi
Bxj “ δij , where, δij is Dirac’s delta function.

Vector fields are used to calculate the directional derivative
of a function defined on a manifold. In differential geometry,
connections (linear, covariant, or affine connection), ∇χ, are
operators with a predefined list of properties.

Definition 1: An (affine) connection on a smooth mani-
fold is a map which takes a pair consisting of a vector field,
χ, and a (p,q)-tensor field, T and S, and returns a (p,q)-tensor
field such that it satisfies the following axioms:

1) ∇χf “ Xpfq, for f P C8pQq;
2) ∇χpT ` Sq “ ∇χT `∇χS;
3) (Leibniz rule) ∇χ

`

T pω, ψq
˘

“
`

∇χT
˘

pω, ψq `
T p∇χω, ψq ` T pω,∇χψq;

This definition of the connection is complete when the list of
predefined properties results in a uniquely defined geometric

operator. However, to turn this object into a chart, one needs
an additional structure on the manifold. Since application of
the operator on the basis of the tangent vector space, t B

Bxi u

and should result in a tangent vector field that is spanned by
the tangent space at that point, this results in

∇p B

Bxi
qp
p
B

Bxj
qp “ ΓktXujip

B

Bxk
qp. (4)

We note that coefficients in the above expression are
pdimpQqq

3 and may be defined in many ways, Γk
tXuji : U P

QÑ R. The choice of these functions fixes the action of ∇
on any tensor field defined on the manifold.

A vector field, χ, is called Parallel Transported along an
smooth curve, γ : R Ñ Q, if ∇vγptq

χ ” 0. The curve γptq
is said to be Auto-Parallel Transported if ∇vγptq

vγptq ” 0.
This expression is written using a chart as

:γitXu ` ΓitXujk 9γ
j
tXu 9γ

k
tXu “ 0 (5)

A metric G on a smooth manifold is a (0,2)-tensor
field satisfying 1) Symmetry: Gpχ, ψq “ Gpψ, χq,@χ, ψ P
Γ8pTMq, and 2) Non-degeneracy: Gpχ, ψq “ 0 ô

`

χ “
0 , ψ “ 0

˘

. The length of a smooth curve is a real number

LGrγs “
şb

a

b

Gpvγptq, vγptqqdt. In a torsion free connection
the necessary and sufficient conditions for an auto-parallel
transported curve, i.e., the straightest curve, to be the shortest
one, measured by the metric G, is p∇Gq ” 0, called the
geodesic.

Consider the length of the trajectory as the cost functional.
The following differential equation is the Euler-Lagrange
equation written in the components of the curve γptq:

:γq ` pG´1qqm
´

BGmj
Bxi

`
BGmi
Bxj

`
BGij
Bxm

¯

9γi 9γj “ 0, (6)

where G´1 is defined as the inverse metric with components
satisfying pG´1qqmpG´1qmj “ δqj [16]. There is an obvious
similarity between the the Euler-Lagrange conditions in
(6) and the auto-parallel transported curve written in its
components, as in (5). By defining the connection coefficient
functions as:

Γqij fi pG
´1qqm

´

BGmj
Bxi

`
BGmi
Bxj

`
BGij
Bxm

¯

(7)

the auto-parallel transported curve will also be the geodesic
of the metric G. Such a torsion free connection is called
the Levi-Civita Connection, and the connection coefficient
functions for Levi-Civita connection are called Christoffel
symbols. In a manifold defined with these metric and con-
nection coefficients the straightest path will be the shortest
one [17].

B. Problem Statement

Consider a team of N Autonomous Surface Vehicles
(ASVs) which are transporting a load along a desired ref-
erence trajectory, as shown in Fig. 1. The load is con-
nected to each vehicle by a flexible inextensible cable. Let
qi “ rxi, yi, θis

T denotes the pose of the ith ASV and
qL “ rx, y, θs

T be the pose of the load. The ith vehicle’s
and the load’s configuration space together define a smooth
manifold, Q, for which a representative chart is given by
these state variables. The kinematics of the vehicle and the



Fig. 1: Schematic of cooperative transport of a buoyant load
by two autonomous vehicles. and attitude control objective.

load constitute non-holonomic constraints on this manifold.
These constraints can be expressed in terms of the derivatives
of the components of the chart map:

$

’

’

&

’

’

%

9x “ v cos θ

9y “ v sin θ

9θ “ ω

,

$

’

’

&

’

’

%

9xi “ vi cos θi

9yi “ vi sin θi

9θi “ ωi

. (8)

We note (8) are simply the kinematics of the ith vehicle and
the load. It also describes the non-holonomic constraints for
the system and are the generators of a distribution on the
tangent space of the configuration manifold, TQ [16]:

∆ “ span
!

e1 “ cos θ
B

Bx
` sin θ

B

By
, e2 “

B

Bθ
, (9)

e3 “ cos θi
B

Bxi
` sin θi

B

Byi
, e4 “

B

Bθi

)

.

Every tangent vector field along any trajectory of the system
can be written as a linear combination of the generators of
the distribution, i.e., vγptq “ v.e1 ` ω.e2 ` vi.e3 ` ωi.e4.

There is a unique co-distribution which annihilates this
distribution, αipejq ” 0 for any αi P Λ. The number
of linearly independent co-vectors in this co-distribution is
equal to the dimension of the manifold, n “ 6, minus the
number of the generators of the distribution, m “ 4. One set
of generators for this co-distribution is calculated as:
Λ “ spantsin θidxi ´ cos θidyi, sin θdx´ cos θdyu. (10)

Cooperation among the vehicles to transport the load
imposes a set of holonomic constraints on the configuration
variables of each vehicle an the load given by

Ci :
`

x´ xi
˘2
`
`

y ´ yi
˘2
“ l2i (11)

for all i “ 1, . . . , N , where li denotes the length of the cable
connecting the ith vehicle to the load. The image of the map
Ci is a sub-manifold of Q and the differential of this map is
a co-distribution which annihilates all vectors in the tangent
space of this sub-manifold, dCi “

!

`

x ´ xi
˘

pdx ´ dxiq `
`

y´ yi
˘

pdy´ dyiq
)

. The unified single co-distribution Σ “

dCi‘Λ annihilates the part of the distribution ∆ which also
satisfies the holonomic constraint [15]. This co-distribution
has constant algebraic rank of three which guarantees the
existence of a distribution that will be globally annihilated by

it [16]. The components of this distribution are found as D “
span

!

B
Bθi ,

B
Bθ , hi cos θ B

Bxi ` hi sin θ B
Byi ` h cos θi

B
Bx `

h sin θi
B
By

)

, where h fi
`

x ´ xi
˘

cos θ `
`

y ´ yi
˘

sin θ and
hi fi

`

x ´ xi
˘

cos θi `
`

y ´ yi
˘

sin θi. The tangent vector
field along any trajectory of the system (8) that satisfies the
constraints (11) is a linear combination of the vectors in D.

In [15] we considered the kinematics of this problem.
Here, we incorporate the dynamics of the vehicles in the
synthesis of feedback controllers that enable them to coop-
eratively transport the load along the desired reference trajec-
tory. We do this by employing an Euler-Lagrange approach
and use the Lagrange-d’Alembert principle to include the
control forces in the system.

III. TRAJECTORY DESIGN FOR COOPERATIVE
TRANSPORT

A. Kinematics of the Cooperative Action

The distribution D consists of three tangent vectors. How-
ever, the tangent space of the configuration manifold, Q, is
of dimension six. We need to add three extra tangent vector
fields, X4 “ cos θ B

Bx`sin θ B
By , X5 “ sin θ B

Bx´cos θ B
By , and

X6 “ sin θi
B
Bxi´cos θi

B
Byi , to the set of basis of D to achieve

an involutive distribution and consequently an integrable one.
The integral manifold of this integrable distribution is an

immerse manifold in the base manifold of the distribution.
The generators of this distribution constitute a set of basis for
the tangent space of this immerse manifold. In the context
of this work, these two manifolds are the same. A similar
approach can be taken about the distribution ∆. Whereby,
adding two extra tangent vectors, e5 “ sin θ B

Bx ´ cos θ B
By

and e6 “ sin θi
B
Bxi ´ cos θi

B
Byi , turns it to an involutive one.

Again, the set teiu constitutes another alternative set of basis
for the tangent space of the configuration manifold.

Any tangent vector field in TQ, including the tangent vec-
tors along the trajectory of the system, can be written in these
three bases, namely, the chart-induced basis for the tangent
space of the state space,

 

B
Bx ,

B
By ,

B
Bθ ,

B
Bxi ,

B
Byi ,

B
Bθi

(

, the
involutive set of vector fields that constitute the kinematics,
 

ei
(

i“1,2...,6
, and the involutive set of vector fields of the

kinematics of the constrained system,
 

Xi

(

i“1,2...,6
.

We are interested in a trajectory for which the tangent
space is restricted to the distribution generated by X1, X2,
and X3. Such a trajectory satisfies both the non-holonomic
constraints resulting from the system kinematics and the
holonomic constraint posed by the cooperative transport of
the load. A projection map can be constructed from the
total tangent space of the configuration manifold, TQ, to
a subspace that is spanned by these vector fields, i.e., X1,
X2, and X3. The components of such a map in the basis
 

Xi

(

can conveniently be presented by

rP sXi “

«

I3ˆ3 0

0 0

ff

.

For the trajectory generation problem, we define the objective
functional to be the kinematic energy of the system. The



corresponding Riemannian metrics, G, is the differential
change in the kinetic energy of the system, and is defined as

G “Mpdxb dx` dy b dyq ` Jdθ b dθ (12)
`mipdxi b dxi ` dyi b dyiq ` Jidθi b dθi.

The variables M , J , mi, and Ji are the masses and the iner-
tias of the load and the ith ASV respectively. The trajectory
which minimizes this objective functional is the geodesic of
the Riemannian connection. The complete dynamics of the
constrained system can be written as:

$

&

%

G

∇vγptq
vγptq “ P pY ptqq

P 1pvγptqq “ 0
, (13)

where P 1 is the complementary map of P [18], [19]. Using
the basis tXiu, P 1 can be written as

“

P 1
‰

Xi
“

“

I
‰

Xi
´

“

P
‰

Xi
. The right hand side of the first equation, P pY ptqq,

is the consequence of d’Alembert’s principle which will be
discussed in the next section. To constrain the tangent space
of such a trajectory to the distribution D, we amend this
connection using the compliment of the map P [8], [16]. The
resulting connection is called the constrained connection:

D
∇vγptq

vγptq “
G

∇vγptq
vγptq ` p

G

∇vγptq
P 1qpvγptqq. (14)

The components of the covariant derivative of the map P 1

with respect to a tangent vector field, i.e., Y “ Y i B
Bqi , in the

chart induced coordinate frame are
“G

∇Y P
1
‰j

i
“

´

BP 1
j
i

Bqk
`

G

ΓjpqqkrP
1i
r ´

G

ΓrpqqkiP
1j
r

¯

Y k, (15)

where P 1
j
i “ dqi

`

P 1p B
Bqj q

˘

. Since the components of the

metric tensor G is constant, then
G

Γkpqqij “ 0, for any
i, j, k P 1, 2, ..., 6. Therefore, it is easier to write down the
components of the covariant derivative of this map in the
chart-induced coordinate frame. To do so, we first rewrite
the component matrix of this map, P 1, with respect to the
chart-induced basis, converted from

 

Xi

(

in which the map
originally introduced as rP sXi ; then, rewrite it in the basis
teiu which represents the kinematics of the system. Let
X “ RBq be the relationship between the components of
a tangent vector field written in these two different basis:

R “

»

—

—

—

—

—

—

—

—

–

h cos θi h sin θi 0 hi cos θ hi sin θ 0

0 0 1 0 0 0

0 0 0 0 0 1

cos θ sin θ 0 0 0 0

sin θ ´ cos θ 0 0 0 0

0 0 0 sin θi ´ cos θi 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (16)

The map P 1 expressed in the chart induced basis can be writ-
ten in matrix form as

“

P 1
‰

Bq
“ R´1

“

P 1
‰

X
R. To calculate

the coefficients of the constrained connection
D
∇vγptq

vγptq in
the chart induced coordinates, we substitute the derivatives
of the components of the

“

P 1
‰

Bq
into (15).

The control variables for the system given by (8) are
the coefficients of the generators of the distribution ∆.
The distribution ∆ is the subspace of D. We define the

generalized Christoffel symbols given by
D
Γipxqjk, as

D
∇ek

ej “
D
Γipeqjkei. The tangent vector field along the constrained

trajectory of the system can then be written as vγptq “ uiei.
We note that the Poincaré representation of the geodesic
yields the equations for the system dynamics which provides
the control inputs required to maintain the system along

this trajectory and are given by 9ui `
D
Γipeqjku

juk “ 0, for
i “ 1, 2, ..., 6. Comparing this representation to the kinematic
equations of the system for any trajectory γptq we have:
u1 “ v, u2 “ ω, u3 “ vi, u4 “ ωi.

B. Dynamics of the Cooperative Action

So far, we have only considered the kinematics of the
system and have not yet introduced any dynamics. The
Lagrange-d’Alembert’s Principle on Riemannian Manifold
tells us how to introduce the control forces into the equa-
tions of motion. A curve γptq : ra, bs Ñ Q satisfies the
principle for a smooth one-form F as a force and the smooth
Lagrangian LG if and only if

G

∇vγptq
vγptq “ G#pF pt, γptqqq, (17)

in which, G# : T˚Q Ñ TQ is the musical isomorphism
associated with the Riemannian metric G [16], [20].

An extension to the Lagrange-d’Alembert’s principle ne-
cessitates the introduction of the input control force to
a constrained system described by (13). This results in
following dynamical system equations for the constrained
system:

D
∇vγptq

vγptq “ P pY ptqq, (18)

with Y ptq “ G#pF pt, γptqqq. Only the components of the
external forces that live in the subspace spanned by the
generators of the distribution D contribute to the motion of
the system. The other components of the forces ensure the
satisfaction of the constraints.

Given the unicycle model for each agent considered in this
work, the external force consists of the Newtonian force and
torque acting on the agents and the load. In geometric terms,
the force is a one-form in the vector space of the differen-
tial operators, F “ 1

m cos θfdx ` 1
mf sin θdy ` 1

J τdθ `
1
mi
fi cos θidxi `

1
mi
fi sin θidyi `

1
Ji
τidθi. The constraint

force is the projection of F to the subspace spanned by
X, X2, X3, and can be expressed in the chart-induced basis
as:

P pY ptqq “ hi
hif ` hfi
h2 ` h2i

´

cos θ
B

Bx
` sin θ

B

By

¯

` τ
B

Bθ

`h
hif ` hfi
h2 ` h2i

´

cos θi
B

Bxi
` sin θi

B

Byi

¯

` τi
B

Bθi
; (19)

or in the more useful form given by P pY ptqq “ hif`hfi
h2`h2

i
e1`

τe2 `
hif`hfi
h2`h2

i
e3 ` τie4. This generalized force along with

the equations describing the system dynamics completes the
constrained dynamics.



(a) Trajectories (b) Angular Velocities (c) Speed

(d) Length of the Connecting Cables (e) Torques (f) Forces

Fig. 2: The Experimental results for the proposed dynamic Closed-Loop control algorithm. In (a) the dotted line indicates the
desired position of the load, while the solid line is the position of it read by the motion capture system. At the beginning large
torque inputs are applied to the boats to turned them inline with the reference trajectory. During this period the magnitude
of the force is high to move the force sufficiently to satisfy the constraints.

C. Controller Synthesis

In this work, we assume all vehicles know the position
of the load. We first synthesize a virtual controller for the
load to ensure it achieves the desired trajectory. Then, we
synthesis the control inputs of the ASVs that will enable co-
operative transport of the load along the computed trajectory.

To compensate for the inertial effects of the load during
transport, we propose a closed-loop control strategy based
on the estimate of the load’s pose [15]. This is achieved by
designing an inner control loop to regulate the movement of
the load to ensure it asymptotically approaches the reference
trajectory. We employ an extended backstepping control
design scheme to achieve such a feedback structure [21].

To derive the control inputs for each ASV from the control
input obtained for the load, we note that the first or the third
components of the equations in (18) provides a feedback
structure that can be used to calculate the necessary force the
ith vehicle should apply to satisfy the constrained dynamics.

Conveniently, the torque input for the ith ASV could
be designed independently. We leverage this property to
design torque inputs that ensures the force applied by the
ASVs are feasible and satisfy the system constrains. We
accomplish geometrically where vehicles move parallel to
the reference trajectory (see Fig. 1) to guarantee the existence
of a solution and prevent sudden changes in their linear or
angular velocities so as to not require excessive torque or
force. We have designed a simple linear controller for the
vehicle torque to minimize the attitude error, eθ.

Fig. 3: multi-Robot Coherent Structure Testbed (mCoSTe).
This is an indoor testbed that consists of a 3mˆ 3mˆ 1m
water tank covered with motion capture cameras and a fleet
of micro Autonomous Surface Vehicles (mASVs)

IV. RESULTS

We validate the proposed control strategy in the multi-
Robot Coherent Structure Testbed (mCoSTe), see Fig. 3. The
mCoSTe is an indoor laboratory testbed that consists of a
3mˆ3mˆ1m water tank and a fleet of micro Autonomous
Surface Vehicles (mASVs) [22]. The mASVs are differential
vehicles equipped with a micro-controller board, a XBee
radio module, and an inertial measurement unit (IMU). Each
mASV is approximately 12 cm long with a mass of about
45 g. Localization for the vehicles and load is provided by
an external motion capture system.

The objective of the cooperative control is to transport



a load such that it tracks the reference trajectory. The
chosen reference trajectory in this experiment is given by
yptq “ tanp 2πxptqq. The reference trajectory was selected to
demonstrate that the proposed strategy can synthesize control
inputs to enable the team to maneuver along trajectories with
large curvatures while remaining within the physical confines
of the tank. Fig. 2 shows the results of the closed-loop
experiment. While the initial attitude of the load is far off
from the reference trajectory, the closed-loop strategy ensures
the ASVs steer the load to settle along the reference trajec-
tory. In the transient, the vehicles must move fast enough to
satisfy the constraints on the length of the connecting cables.
After the load is maneuvered onto the right track, the force
and torque inputs applied by the ASVs reduce significantly.
The oscillations in the bearings and speeds are the result of
the low-level speed controllers running onboard the ASVs.
Using larger vehicles would most likely result in much
smoother control commands. Videos of more experiments are
available at https://www.youtube.com/playlist?
list=PLmamVA9vIjfpon8IbsvSVVQO88HqlsOCt.

By design, the ASVs steer themselves such that they are
on trajectory that is parallel to the reference trajectory. Si-
multaneously, each vehicle’s speed is controlled such that the
constraint forces move the load on the desired trajectory. The
ASV control inputs should ensure that the cable connecting
the vehicle to the load remains taut at all times. In this work,
we assume the system initializes in a configuration where the
cables are taut. Without this assumption, the vehicles may not
succeed in transporting the load along the desired trajectory.
Fig. 2(d) shows how the controller successfully achieves a
taut cable configuration when the load drifts closer to the
vehicle. When this happens (« 5´ 10sec) the controller for
the load reduces the load’s speed leading in a decrease in the
vehicle speeds. These combined effects result in tightening
of the cables that connect the load to the vehicles and shows
the robustness of the strategy in the presence of disturbances
in the load position.

V. CONCLUSION

In this paper, we addressed the cooperative transport
problem involving a team of ASVs towing a buoyant load.
We considered the dynamics of the constrained system where
each vehicle is attached to the load at the same point. The
approach decomposes the cooperative transport problem into
a collection of subsystems each consisting of one ASV and
the load whose states evolve on a smooth manifold. Using
a differential geometric approach, our strategy integrates
the non-holonomic constraints, defined by the system dy-
namics, and the holonomic constraints, defined by the task
requirements, into a single modeling and controller synthesis
framework. We validated the proposed strategy in experiment
using a team of ASVs. Our results show not only feasibility
of the strategy but its ability to synthesize controllers that
are robust to external disturbances. For future work, we
are interested in extending this approach to handle hard
constraints on control inputs and develop new strategies to
recover from cables losing tension.
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