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Abstract— We consider the multi-task coordination problem
for multi-agent systems under the following objectives: 1.colli-
sion avoidance; 2. connectivity maintenance; 3. convergence to
desired destinations. The paper focuses on the safety guaranteed
region of multi-task coordination (SG-RMTC), i.e., the set of
initial states from which all trajectories converge to the desired
configuration, while at the same time achieve the multi-task
coordination and avoid unsafe sets. In contrast to estimating
the domain of attraction via Lyapunov functions, the main
underlying idea is to employ the sublevel sets of Lyapunov-like
barrier functions to approximate the SG-RMTC. Rather than
using fixed Lyapunov-like barrier functions, a systematic way is
proposed to search an optimal Lyapunov-like barrier function
such that the under-estimate of SG-RMTC is maximized.
Numerical examples illustrate the effectiveness of the proposed
method.

I. I NTRODUCTION

Assessing the stability properties of an equilibrium pointis
of fundamental significance in control and dynamical system-
s theory. For asymptotically stable equilibrium points, one
long-standing and in practice exceedingly difficulty problem
is the estimation of the region of attraction, i.e., of the set
of initial states from which all trajectories converge to the
equilibrium point.

In addition, with the rapid recent developments in com-
munication and sensing technologies, ubiquity of multi-agent
systems has spurred great research interest in areas such as
multi-robot path planning, surveillance (for more application-
s, refer to surveys [1], [2] and books [3], [4]). Apart from
stability of the concerned equilibrium points, efficient coordi-
nation of multi-agent systems typically requires connectivity
maintenance and collision avoidance amongst agents. Thus,
the following questions arise naturally: Is it possible to
compute the region of coordination for multi-agent systems
while guaranteeing convergence, collision avoidance and
connectivity maintenance? How can we estimate the region
of multi-task coordination? To the best of our knowledge,
these issues have not been addressed yet and still remain
challenging.
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In order to answer these questions, let us first review the
methods for estimating the region of attraction of isolated
dynamical systems. The sublevel set of Lyapunov function
is proven to be a useful way, in which different types of Lya-
punov functions are employed; from the simplest form, i.e.,
quadratic Lyapunov functions, to more complicated forms,
such as pointwise maximum Lyapunov functions or ratio-
nal polynomial Lyapunov functions (see [5] and references
therein). Nevertheless, the sublevel set of Lyapunov functions
cannot in principle guarantee cooperative objectives suchas
collision avoidance and connectivity maintenance.

To achieve multi-task coordination, Lyapunov-like barrier
functions are able to encode the constraints of each agent,
and provide simple but effective, gradient-based control
strategies. According to different objectives, various ele-
gant Lyapunov-like scalar functions are proposed, including
potential functions [6], navigation functions [7], harmonic
functions [8], barrier functions [9], and avoidance functions
[10]. However, the Lyapunov-like functions are usually se-
lected with fixed forms, which result in conservative results
when it comes to the estimation problem of SG-RMTC. In
[11], a compositional barrier function is proposed by using
logical operators, but the barrier functions are also fixed for
the corresponding objectives. In [12], a barrier certificate is
constructed using Sum-of-Squares decomposition. However,
this method is merely used for safety verification, without
guaranteeing the convergence of trajectories to desired equi-
librium points, thus not applicable to multi-task coordination.

Motivated by aforementioned results, and based on our
previous work [13], [14] that uses fixed Lyapunov-like barrier
functions, this paper proposes a systematic way to generatea
feasible Lyapunov-like barrier function, and gives a method
to maximize the largest estimate of SG-RMTC via the
optimal Lyapunov-like barrier function, which provides a
larger stability margin compared to the fixed ones. The
novelties of this paper lie in the following aspects:

• Based on the real Positivestellensatz, the estimation
problem of SG-RMTC boils down to a Sum-of-Squares
programming. By employing the Square Matrix Rep-
resentation technique, a lower bound of the largest
estimate of the SG-RMTC can be computed by solving
a generalized eigenvalue problem.

• Different from other work that uses fixed Lyapunov-
like barrier functions [15], [16], a systematic way is
proposed for searching feasible polynomial Lyapunov-
like barrier functions. In addition, a strategy is given
for pursuing the optimal Lyapunov-like barrier function
such that the estimate of SG-RMTC can be maximized.
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II. PRELIMINARIES

Notations:N,R: natural and real number sets;R+: positive
real number set;AT : transpose ofA; A > 0 (A ≥ 0):
symmetric positive definite (semidefinite) matrixA; A⊗B:
Kronecker product of matricesA andB; diag(a): a square
diagonal matrix with the elements of vectora on the main
diagonal; ‖a‖: Euclidean norm orl2 norm of vectora;
deg(f): degree of polynomial functionf ; (∗)TAB in a
form of Square Matrix Representation:BTAB. Let P be
the set of polynomials andPn×m be the set of matrix
polynomials with dimensionn×m. A polynomialp(x) ∈ P
is nonnegative ifp(x) ≥ 0 for all x ∈ Rn. A useful way
of establishingp(x) ≥ 0 consists of checking whetherp(x)
can be described as a sum of squares of polynomials (SOS),
i.e., p(x) =

∑k
i=1 pi(x)

2 for somep1, . . . , pk ∈ P . The set
of SOS polynomials is denoted byPSOS.

A. Model Formulation

Each agent is modeled by the double-integrator model as
follows:

ẋi(t) = ρi(t)
ρ̇i(t) = ui(t), i ∈ N ,

(1)

whereN = {1, . . . , N}, xi(t) ∈ Rn denotes the position
state,ρi(t) ∈ Rn denotes the velocity state, andui(t) ∈ Rn
denotes the control input oni-th agent. In the sequel, we will
omit the argumentst andx of functions whenever possible
for the brevity of notations.

A weighted undirected dynamic graphG(t) =
(A, E(t), G) is used to describe a network of multi-
agents, with the set of nodesA = {A1, ..., AN}, the set of
undirected edgesE(t) = {(Ai, Aj)| Ai, Aj ∈ A}, and the
weighted adjacency matrixG = (Gij)N×N . Fig. 1 shows
the model of agents and the switching law of edgesE(t).

ra
rc

rz

rs − ε

rs

t = t0

t = t1

t = t2

Fig. 1. The agent model and changing rules of edges:ra denotes
the radius of each agent;rc is the radius of collision avoidance
area;rz denotes the radius of area that the control with collision
avoidance objective is active;rs denotes the radius of sensing area;
constantǫ ∈ [0, rs − rz] is a distance parameter for the hysteresis
in adding new edges. The solid line fort ∈ (t1, t2) shows the part
of trajectory when there is an edge between these two agents.

A graph G(t) is connectedat time t if there is a path
between any pair of distinct nodesAi andAj in G(t). The
Laplacian matrix is given asL(t) = ∆(t) − G(t) where

∆(t) = diag(
∑N

j=1Gij(t)). A relationship betweenL(t)
and the connectedness ofG(t) is given in [4]:

Lemma 1:Let λ1(L(t)) ≤ λ2(L(t)) ≤ · · · ≤ λN (L(t)) be
the ordered eigenvalues ofL(t). Then,1N is an eigenvector
of L(t) with the corresponding eigenvalueλ1(L(t)) = 0.
Moreover,λ2(L(t)) > 0 if and only if G(t) is connected.�
B. Problem Formulation

The distributed controller of agenti depends on the
local information of agenti, i.e., relative distances, relative
velocities, and the coupling weights of communications.
Specifically,

ui =
∑

j∈N s
i (t)

f
(
xi(t)− xj(t), ρi(t)− ρj(t), Gij(t)

)
, (2)

whereN s
i (t) = {j| (Ai, Aj) ∈ E(t)} is the neighborhood

set of agenti (in the sensing range of agenti). System (1)
can be rewritten as:

q̇ = g(q), (3)

by introducingyi = xi − τi, ̺i = ρi − ρ∗, qi = (yi, ̺i)
T ,

q = (qT1 , q
T
2 , . . . , q

T
N )T , where τi and ρ∗ are the ideal

displacement and the desired velocity of agenti in the desired
formation configuration, respectively.

Consider system (3),U ∈ R2N is an undesired set, and
the origin 02N is an equilibrium point of the system. Let
V (q) : R2N → R be a continuously differentiable function
onq such that: 1)V (02N ) = 0 andV (q) > 0 in R2N/{02N};
2) V̇ (q) < 0 in R2N/{02N}; 3) V (q) = ∞, for all q ∈ U .
Then, q̄ = 02N is asymptotically stable, andV (q) is called
a Lyapunov barrier function. In addition, if condition 3) is
changed to the condition of Barbashin-Krasovskii-LaSalle
invariance principle, i.e., only the trivial solution̄q = 02N
can stay identically in{q ∈ R2N |V̇ (q) = 0}, then q̄ = 02N
is asymptotically stable, andV (q) is called aLyapunov-like
barrier function.

Definition 1: Theregion of multi-task coordination(RMTC)
is expressed as

R =
{
q(0) ∈ R2N : limt→+∞ χ(t; q(0)) = 02N ,

G(t) is connected, ‖xi(t)− xj(t)‖ > ds, ∀t ≥ t0

}
,

whereχ is the solution of system (3),ds denotes a user-
defined safety distance for collision avoidance. �

In many practical implementations, an unsafe set is usually
given for the situations where the system is at a great risk.
The unsafe set in this paper is defined by polynomials as:

Ω(t) =
{
q(t) ∈ R2N : ωi(q) > 0, i = 1, . . . , h.

}
, (4)

and the safe setΩc(t) is the complement set ofΩ(t). Based
on this, we propose the set of interest as follows:

Definition 2: The safety guaranteed region of multi-task
coordination(SG-RMTC) is described as

RSG =
{
q(0) ∈ R2N : q(0) ∈ R, q(t) ∈ Ωc(t), ∀t ≥ t0

}
.

(5)



The sublevel set of Lyapunov-like function is used to esti-
mate the SG-RMTC. Specifically, letW (q) be a Lyapunov-
like function of system (3) for the origin, which satisfies

W (02N ) = 0, ∀q ∈ R2N
0 : W (q) > 0, lim

‖x‖→∞
W (q) = ∞,

(6)
the time derivative ofW (q) along the trajectories of (1) is
locally non-positive, and02N is the only solution which can
stay identically in{q| Ẇ (q) = 0} [17]. To this end, we
introduce the sublevel set ofW (q) as

W(c) =
{
q ∈ R2N :W (q) ≤ c

}
, (7)

wherec ∈ R+. For system (3),W is an estimate ofR if

∀q ∈ W(c) : Ẇ (q) ≤ 0, (8)

and the time derivative ofW (q) along the trajectories of (1)
is locally non-positive, and02N is the only solution which
can stay identically in{q| Ẇ (q) = 0}. Let us propose the
main problem we are concerned with:

Problem 1: Find a polynomialLyapunov-like barrier func-
tion W (q) and a positive scalarc such that the estimate of
the SG-RMTC is maximized under certain selected criteria,
i.e., solving

µ = sup
c, W

ζ(W(c))

s.t. (6)− (8) hold,
(9)

whereζ is a measure ofW(c) as a user-defined criteria, e.g.,
the volume ofW(c). In addition, a gradient-based controller
ui can be obtained in the form of (2) such that

1) limt→∞‖(xi(t) − τi) − (xj(t) − τj)‖ = 0, and
limt→∞‖ρi(t)−ρj(t)‖ = 0, for all i ∈ N andj ∈ N f

i .
2) G(t) is connected, for allt > t0, wheret0 is the initial

time.
3) ‖xi(t)− xj(t)‖ > ds, for all t > t0, whereds denotes

a user-selected safe distance for collision avoidance.
4) q(t) ∈ Ωc, for all t ≥ t0. �

Some useful sets are introduced here:N f
i is the neigh-

borhood set to agenti in the desired configuration, i.e.,
N f
i = {j| (Ai, Aj) ∈ E f , ‖xi − τi − (xj − τj)‖ = 0},

whereτi is the ideal displacement of agenti in the desired
configuration, whose edge set isE f ; We also define sets
N sf
i (t) = {j| j ∈ N s

i (t), j ∈ N f
i } andN sz

i (t) = {j| j ∈
N s
i (t), ‖xi − xj‖ < rz}, which will be used in Section III.
For this problem, we assume that:
• Assumption 1: The desired configuration given byτi

is achievable, i.e.,rz ≤ ‖τi − τj‖ ≤ rs − ε, for all
i ∈ N , j ∈ N f

i . In other words, the desired distance
between agenti and agentj ∈ N f

i is always between
rs − ε andrz .

• Assumption 2: The neighbor set of agenti at time t0
satisfiesN f

i ⊆ N s
i (t0), which means that the desired

topology is contained in the initial graph.
• Assumption 3: To achieve both objectives of collision

avoidance and connectedness maintenance, we require
rs − ‖τij‖ > ds + ‖τij‖, for all i, j ∈ N .

III. M AIN RESULTS

A. Controller Design with Local Connectivity Maintenance

In this paper, we use Lyapunov-like barrier functions to
encode collision avoidance and connectedness maintenance.
Other than using fixed Lyapunov-like barrier functions, this
paper provides a systematic way to generate a feasible
Lyapunov-like barrier function, from which a gradient-based
controller can be obtained. For the brevity of expressions,let
τij = τi − τj , yij = yi − yj, andxij = xi − xj .

For connectedness maintenance, from Assumption 2, the
desired topology is contained in the initial graph. The main
idea is to preserve the desired topologyE f ⊆ E(t) such that
the network is always connected fort ≥ t0. To do this, we
would like to make the following condition satisfied:‖xij‖ <
rs, for all i ∈ N andj ∈ N sf(t) which holds ifrs−‖τij‖−
‖yij‖ > 0. Thus, the following barrier functionΥe

ij(‖yij‖)
is used with the constraints:

Υe
ij(‖yij‖) ≥ 0, Υe

ij(0) = 0, Υe
ij(r̂s) = µ1,

∂Υe
ij(‖yij‖)
∂(‖yij‖)

> 0, ∀0 ≤ ‖yij‖ ≤ r̂s,

∂Υe
ij(‖yij‖)
∂(‖yij‖)

· 1

‖yij‖
> 0, ∀j ∈ N sf

i (t),

(10)

where r̂s = rs − ‖τij‖, N sf
i (t) = {j| j ∈ N s

i (t), j ∈ N f
i }

defined in Sectioin II,µ1 is a positive scalar such thatΥe
i is

bounded when‖yij‖ tends tor̂s.
For collision avoidance, the basic idea is to keep the

distance between any two agentsi and j greater than a
minimum user-defined safety distanceds > 2rc, whererc
is given in Fig. 1. In other words, the condition is required
that ‖xij‖ > ds, which holds if ‖yij‖ − ds − ‖τij‖ > 0.
Thus, the following barrier functionΥc

ij is introduced:

Υc
ij(‖yij‖) ≥ 0, Υc

ij(d̂s) = µ2,

∂Υc
ij(‖yij‖)
∂(‖yij‖)

< 0, ∀‖yij‖ ≥ d̂s, ∀j ∈ N sz
i (t),

(11)

where d̂s = ds + ‖τij‖, and N sz
i (t) = {j| j ∈

N s
i (t), ‖xij‖ < rz} introduced in Section II.µ2 is a positive

scalar such thatΥc
i is bounded when‖yij‖ tends tod̂s.

Remark 1:We assumeµ1 and µ2 satisfying µ1 > µmax

and µ2 > µmax with µmax := 1
2

∑N
i=1(

∑
j∈N f

i
Υe
ij(‖r̂s −

ε̂‖)+ yi(t0)
T
∑N
j=1Gij(t0)yij(t0) + ρi(t0)

T ρi(t0)) + (N −
1)NΥc

ij(‖d̂s − ε̂‖), where0 < ε̂ < min{ 1
2ds − rc, ε}. The

barrier function proposed in this paper is different than what
is proposed in the existing relevant work [6], [9], [15], [16],
[18]. In addition, collision avoidance [6], [9], [12], [15],
[18], bounded control input [9], [12], [15], [16], and safety
guaranteeing [6], [9], [15], [16], [18] are not considered.�

For the brevity of notations, let us introduceΥe
i =∑

j∈N sf
i
Υe
ij , Υ

c
i =

∑
j∈N sz

i
Υc
ij , x = (xT1 , x

T
2 , . . . , x

T
N )T ,

ρ = (ρT1 , ρ
T
2 , . . . , ρ

T
N )T . A distributed controller is provided

as follows:
ui = −αe − αc − βy − βρ, (12)



where αe =
∑
j∈N sf

i (t) ∇yiΥ
e
ij(‖yij‖), αc =∑

j∈N sz
i (t) ∇yiΥ

c
ij(‖yij‖), βy =

∑
j∈N s

i (t)
Gij(t)yij ,

βρ =
∑
j∈N s

i (t)
Gij(t)ρij , Gij is the ij-th entry of

weighted adjacency matrix. The following result shows that
under conditions (10) and (11), the multi-task coordination
is guaranteed by the feasible gradient-based controller (12).

Theorem 1:If Assumption 1-3 holds, andG(t0) is connect-
ed, then, under the controller (12), the following conditions
hold for all i ∈ N :

1) G(t) is connected for allt ≥ t0;
2) Collision avoidance is ensured for allt ≥ t0.
3) limt→∞‖ρi − ρj‖ = 0, for j ∈ N ;
4) limt→∞‖xi(t)− τi − (xj(t)− τj)‖ = 0, for j ∈ N f

i .

Proof: For statement 1) and statement 2), we aim to show
the concerned set is a forward invariant set, which implies
the connectedness and collision avoidance. Specifically, we
assume that the edge setE(t) changes attl, l = 0, 1, 2, . . . .
For each[tl, tl+1), G is fixed. Based on (10) and (11), let us
introduce a Lyapunov-like function

W =
1

2

N∑

i=1

( ∑

j∈N sf
i (t)

Υe
ij(‖yij‖) +

∑

j∈N sz
i (t)

Υc
ij(‖yij‖)

+ yi

N∑

j=1

Gij(t)yij + ρTi ρi

)
. (13)

Consider the time interval[t0, t1), one hasΥe
ij > 0

from (10), Υc
ij ≥ 0 from (11), andρTi ρi ≥ 0. In addi-

tion,
∑N

i=1 yi
∑N
j=1Gij(t)yij =

∑N
i=1 yi

∑N
j=1 Lij(t)yi =

yT (L(t)⊗In)y ≥ 0 on account of the fact thatL(t) = L(t0),
G(t0) is connected. Thus, one has thatW0 = W (t0) > 0.
Moreover, fort ∈ [t0, t1), Gij(t) is fixed, one has

Ẇ =
1

2

N∑

i=1

( ∑

j∈N sf
i (t)

Υ̇e
ij(‖yij‖) +

∑

j∈N sz
i (t)

Υ̇c
ij(‖yij‖)

)

+

N∑

i=1

ẏi

N∑

j=1

Lijyj +

N∑

i=1

ρTi ρ̇i

=

N∑

i=1

∑

j∈N sf
i (t)

ẏTi ∇yiΥ
e
ij(‖yij‖) +

N∑

i=1

ẏi

N∑

j=1

Lijyj

(14)

+

N∑

i=1

∑

j∈N sz
i (t)

ẏTi ∇yiΥ
c
ij(‖yij‖) +

N∑

i=1

ρTi ρ̇i

= −ρT (L(t0)⊗ In)ρ. �

Taking into account thatG(t0) is connected, one hasL(t0) ≥
0, which implies thatẆ ≤ 0. Thus,W (t) ≤W (t0) ≤ µmax,
for t ∈ [t0, t1). From (10), (11) and Remark 1, one has that
Υe
ij(r̂s) = µ1 > µmax, andΥc

ij(d̂s) = µ2 > µmax, which
yields that no collision appears during[t0, t1), and no agent
j has left the setN sf

i for agenti. Hence, the networkG(t)
is still connected. Let us considert = t1, we assume that the
number of new agents added in the setN sz

i is ki for agenti.

One has that
∑N

i=1 ki+
∑N
i=1 numi(N sz

i ) ≤ N(N−1), and
numi(N sz

i ) is the number of agents inN sz
i . It yields that

W (t1) ≤W (t−1 ) +
N∑

i=1

kiΥ̃ ≤W (t0) +

N∑

i=1

kiΥ̃

≤ 1

2

N∑

i=1

( ∑

j∈N f
i

Υe
ij(‖r̂s − ε̂‖)+

+yi(t0)
T

N∑

j=1

Gij(t0)yij(t0) + ρi(t0)
Tρi(t0)

+
∑

j∈N sz
i (t)

Υc
ij(‖yij‖)

)
+

N∑

i=1

kiΥ̃

< µmax,
(15)

where Υ̃ = 1
2

∑
j∈N sz

i
Υc
ij(‖d̂s − ε̂‖). One can apply the

above analysis for time intervals[tl, tl+1). The condition still
holds thatẆ (t) ≤ 0, and one has

W (t) ≤W (tl) ≤ µmax, (16)

which implies that there is no collision during[tl, tl+1), and
no agentj has left the setN sf

i for agenti. Hence, the graph
G(t) is connected fort ∈ [tl, tl+1).

For the statement 3), let us assume that the edge setE(t)
changes attl, l = 0, 1, 2, . . . , and there is a timêtl such
that the topology ofG is fixed. For t ∈ [t̂l,∞), from the
construction ofW , one has that

1

2

N∑

i=1

yi

N∑

j=1

Gij(t)yij ≤ µmax,
1

2

N∑

i=1

ρTi ρi ≤ µmax.

When the topology ofG is fixed, one has thatGij is also
fixed for t ∈ [t̂l,∞). On account of the symmetry ofG, let
λmax be the largest eigenvalue ofG, one has that

1

2
yT (L(t̂l)⊗ In)y ≤ 1

2
λmax‖y‖2 ≤ µmax,

which yields that‖y‖ ≤
√

2µmax

λmax
. Via similar arguments, one

has that‖ρ‖ ≤ √
2µmax. Let us consider the setΞ = {y ∈

RNn, ρ ∈ RNn| W (y, ρ) ≤ µmax, ‖y‖ ≤
√

2µmax

λmax
, ‖ρ‖ ≤√

2µmax}, which is a compact set. Now, let us study the
largest invariant set inI = {y ∈ RNn, ρ ∈ RNn| Ẇ = 0}.

Based on (14), one has

Ẇ = −ρ(L⊗ In)ρ =
1

2

∑

i∈N , j∈N s
i

Gij‖ρi − ρj‖2,

which implies thatẆ = 0 if and only if ρ1 = · · · = ρN .
From LaSalle’s invariance principle [17], it yields that all
the trajectories started fromΞ will eventually converge to
I, i.e., ρ1 = · · · = ρN .

For statement 4), consider the case oft ≥ t̂l, one has



ρi − ρj = 0 for all i, j ∈ N . Then, (12) can be rewritten as

ui = −
∑

j∈N sf
i (t)

∇yiΥ
e
ij(‖yij‖)−

∑

j∈N sz
i (t)

∇yiΥ
c
ij(‖yij‖)

−
∑

j∈N s
i (t)

Gij(t)yij ,

= −
∑

j∈N sf
i (t)

∂Υe
ij(‖yij‖)
∂‖yij‖

· 1

‖yij‖
yij −

∑

j∈N s
i (t)

Gij(t)yij

−
∑

j∈N sz
i (t)

∂Υc
ij(‖yij‖)
∂‖yij‖

· 1

‖yij‖
yij .

From (10), one has that
∂Υe

ij(‖yij‖)
∂‖yij‖ · 1

‖yij‖ is positive and

bounded as‖yij‖ → 0, one has thatui = −(L̃(t) ⊗ In +
L(t) ⊗ In)y with L̃(t) ≥ 0 and L(t) ≥ 0 as t > t̂l.
From algebraic graph theory [1], it yields thatlimt→∞ y =
span(1Nn), i.e., yi − yj = 0, for all i, j ∈ N . �

B. Computing SG-RMTC via Lyapunov-Like Barrier Func-
tions

In this subsection, a method based on SOS programming
is proposed to enlarge the setW(c) by selecting fixedΥe

ij

and fixedΥc
ij , i.e., we aim at finding

γ = sup c (17)

such that (10) and (11) hold. To increase the scalability of
this method, we assume thatΥe

ij = Υe andΥc
ij = Υc.

To this end, we consider barrier functions in polynomial
vector fields. It can be extended to non-polynomial or rational
vector fields [5], which is outside the scope of this paper.
First, let us introduce the Real Positivestellensatz, which pro-
vides a powerful tool to check the positivity of polynomials
over semi-algebraic sets by exploiting the cone of SOS.

Lemma 2 ([19]): For polynomials a1, . . . , am, b1, . . . , bl
andp, define a set

B = {x ∈ Rn : ai(x) = 0, ∀i = 1, . . . ,m,
bi(x) ≥ 0, ∀j = 1, . . . , l}. (18)

Let B be compact. Condition∀x ∈ B : p(x) > 0 can be
established if

{ ∃r1, . . . , rm ∈ P , s1, . . . , sl ∈ PSOS,

p−∑m
i=1 riai −

∑l
i=1 sibi ∈ PSOS.

(19)

Remark 2:Condition (19) turns to be a non-conservative
condition if there is no degree bound forsi, and if there
is a polynomialb in B such thatb−1[0,∞) is compact. �

Based on the above result, a lower bound ofγ in (17) can
be calculated by an SOS programming.

Theorem 2:Assume there exist functionsΥe andΥc satis-
fying (10) and (11), respectively, and there exist polynomials
ri(q) ∈ PSOS, for all i = 1, . . . , h, and a polynomial

s(q) ∈ PSOS such thatc̄ is the solution of the following
optimization:

c̄ = sup
c, s

c

s.t.

{
−ψ(q, c, s(q), ri(q)) ∈ PSOS,
∀q ∈ W(c) \ {q̄},

(20)

whereq̄ = 02N is introduced in Section II, and

ψ(q, c, s(q), ri(q)) = Ẇ (q) + s(q)(c−W (q))

+
∑h
i=1 ri(q)wi(q).

(21)

Then, c̄ ≤ γ.
Proof: Suppose (20) holds, one has that

−ψ(q, c, s(q), ri(q)) and ri(q) as well ass(q) are SOS.
From Lemma 2, it yields that

Ẇ (q) < 0, (22)

for all q in {x ∈ R2N : c −W (q) ≥ 0} \ {q̄}. Therefore,
from (14) and the proof of Theorem 1,W(c̄) is an estimate
of the SG-RMTC. Taking into account the definition ofγ
in (17), it finally yields that̄c is a lower bound ofγ, which
completes this proof. �
Remark 3:Theorem 2 transforms the condition of (14) to
an SOS programming by using Lemma 2. It paves the way
for generating more tractable methods by using LMIs. Along
with Remark 2, the conservatism of above result relies on the
degree ofs andri, and the relaxations of Lemma 2 [20].�
C. Quasi-Convex Optimization via SMR

The condition (20) of Theorem 2 is usually not easy to
check since the product ofs(x) and c makes it a bilinear
inequality which is non-convex in nature. In this subsection,
we will show how a generalized eigenvalue problem is
obtained from the problem (20) by using the SMR technique.
Specifically, for the class of polynomialp0(x) ∈ PSOS, its
SMR is as follows:

p0(x) = (∗)T (P̄0 + L(δ))φ(n, dp0), (23)

where (∗)TAB is short for BTAB given in Section II,
P̄0 denotes the SMR matrix ofp0(x), n is the number of
variables,dp0 is the smallest integer not less thandeg(p0)2 ,
i.e., dp0 = ⌈deg(p0)

2 ⌉, φ(n, dp0 ) ∈ Rl(n,dp0) is called the
power vector including all monomials of degree less or equal
to dp0 , L(δ) is a parameterization of the space

L = {L(δ) ∈ Rl(n,dp0)×l(n,dp0) : L(δ) = LT (δ),
(∗)TL(δ)φ(n, dp0 ) = 0},

in which δ ∈ Rϑ(n,dp0) is a vector of free parameters. The
functionsl(n, dp0) andϑ(n, dp0) can be calculated as in [20].
For the purpose of clarity, an illustration is given:

Example 1:Given the polynomialp1(x) = 3x4 + 4x3 +
6x2 + 7, we havedp1 = 2, n = 1 and φ(n, dp1) =
(x2, x1, 1)T . Then,p1(x) can be written in (23) as:

P̄1 =




3 2 0
2 6 0
0 0 7


 , L(δ) =




0 0 −δ
0 2δ 0
−δ 0 0


 .



�
Define r(q) = (r1(q), . . . , rh(q))

T , ξ(q) =∑h
j=0 rj(q)ωj(q), and let deg(Ẇ ) − deg(W ) ≤ deg(s),

deg(Ẇ )− deg(ωj) ≤ deg(rj), for all j = 0, 1, . . . , h. From
(23), we have the following expressions of SMR:

W (q) = (∗)T ĎWφ(2N, dw), (24)

s(q) = (∗)T sSφ(2N, ds), (25)

rj(q) = (∗)T sRjφ(2N, drj ), (26)

ψ(q) = (∗)T sΨ(δ, c, sS)φ(2N, dψ), (27)

where δ ∈ Rϑ(2N,dψ) is a vector of free parameters,
ĎW ∈ Rl(2N,dw)×l(2N,dw), sS ∈ Rl(2N,ds)×l(2N,ds) and
Ψ̄(δ, c, sS,Ξ) ∈ Rl(2N,dψ)×l(2N,dψ) are symmetric matrices.
Let sD(δ), Ξ, Λ1(S) andΛ2(S) be SMR matrices ofẆ (q),
ξ(q), s(q) andW (q)s(q), respectively, with respect to the
power vectorφ(2N, dψ). From (21), it yields

Ψ(δ, c, sS,Ξ) = sD(δ) + Ξ(R̄j) + cΛ1(sS)− Λ2(sS),
whereδ ∈ Rϑ(2N,dψ) is a vector of free parameters. The fol-
lowing result transforms the condition (20) into a generalized
eigenvalue problem (GEVP).

Theorem 3:For given positive scalarsσ1, σ2, and a selected
polynomialW (q,Υe,Υc) = (∗)T ĎWφ(2N, dw) with chosen
Υe,Υc fulfilling (10) and (11), respectively, the polynomial
ς(q) = σ1s(q) + σ2W (q)s(q) = (∗)TΛ(sS)φ(2N, dψ), the
lower bound ofγ can be obtained by

γ̃ = − ẽ

σ1 + σ2ẽ
, (28)

whereẽ is the solution of the GEVP
ẽ = inf

δ, e, sS
e

s.t.





σ1 + σ2e > 0,
sS > 0,
eΛ(sS) > sD(δ)− Ξ(R̄j)− Λ2(sS).

(29)

Proof: In this proof, we first show that 1) (29) is a GEVP.
Then, we demonstrate 2) (28) is the lower bound ofγ̃.

First, we aim to prove the optimization (29) is a GEVP:
From [21], we haveΛ > 0 on the condition thatĎW > 0 and
sS > 0, which makes (29) a GEVP.

Second, we are trying to show thatγ̃ in (28) is the lower
bound ofγ̃: Based on the last inequality of (29), we have

Φ̃(δ, c, sS) = sD(δ)− Ξ(R̄j)
−eΛ(sS)− Λ2(sS)

< 0.

Considering (27) and

ψ̃(q, c, s(q), r(q)) = Ẇ (q)− ξ(r(q), q) −W (q)s(q)
−e(σ1 + σ2W (q))s(q),

one can rewriteψ̃(q, c, s(q), r(q)) into:

ψ̃(q, c, s(q), r(q)) = ψ̃(q, −e
σ1+σ2e

, (σ1 + σ2e)s(q), r(q)).

Notice that−e/(σ1 + σ2e) is a monotonically decreasing
function which maps from the range(−(σ1/σ2), 0] into the
range[0,+∞). Thus, (28) gives the lower bound ofγ̃. �

For more details of the GEVP, please see the book [21].

D. The Optimal Lyapunov-Like Barrier Functions

In this subsection, strategies for finding the optimalΥe(q)
andΥc(q) are proposed. First, let us recall thatρ in Problem
1 is a user-selected measure which is often chosen as

ρ(W(γ)) = vol(W(γ)),

where vol(W(γ)) denotes the volume ofW(γ), and γ is
introduced in (17). This paves a way to pursue the optimal
W (q,Υe,Υc) via maximizing the volume ofW(γ). How-
ever, vol(W(γ)) is highly non-convex, which makes (17) a
non-convex optimization. To solve this problem, a typical
method is to approximate vol(W(γ)) by introducing

η = max
γn

det(ĎW (sΥe, sΥe))
, vol(W(γ)) ∝ η, (30)

where ĎW is the SMR matrix ofW (x) in (24), sΥe and sΥc

are SMR matrices ofΥe andΥc with

Υe(q) = (∗)T sΥeφ(2N, dw),
Υc(q) = (∗)T sΥcφ(2N, dw),

(31)

and vol(W(γ)) is proportional toω. Then, a linear approx-
imation of vol(W(γ)) can be provided as

vol(W(γ)) ≈ γ

trace(ĎW )
. (32)

The underlying idea is to minimize trace(ĎW ) instead of the
non-convex objective with det(ĎW ). Thus, a strategy is given
for searching the optimalΥe andΥc:

Assume that there exists ∈ PSOS and rj ∈ PSOS, for all
j = 1, . . . , h, such that

ζ = inf
sΥe,sΥc

trace(ĎW (sΥe, sΥc))

s.t.





W (sΥe, sΥc, q) ∈ PSOS,
(10)− (11) hold,
−ψ(q, sΥe, sΥc, s, r) ∈ PSOS.

(33)

Then,κ1 = γ
ζ is an under-estimate ofρ.

The condition of (33) could be transformed to SOS pro-
grammings. Specifically, from Lemma 2, it is not difficult to
obtain that (10) holds if there existz ∈ R, Υe(Ῡe, z) ∈ PSOS,
s̃1(z) ∈ PSOS, and s̃2(z) ∈ PSOS, such that

{
Υe(Ῡe, r̂s) = µ1, r

e(Ῡe, z) ∈ PSOS,
−de(Ῡe, z)− s̃1z − s̃2(r̂s − z) ∈ PSOS.

(34)

wherede(Ῡe, z) = ∂Υe

∂z andre(Ῡe, z) = ∂Υe

∂z · 1
z . Moreover,

(11) holds if there existz ∈ R, Υc(Ῡc, z) ∈ PSOS, and
s̃3(z) ∈ PSOS such that

{
Υc(Ῡc, d̂s) = µ2,
−dc(Ῡc, z)− s̃1z − s̃2(r̂s − z) ∈ PSOS.

(35)

wheredc(Ῡc, z) = ∂Υc

∂z . Then, (33) can be transformed to
tractable conditions as follows:

Proposition 1: Assume that there exists ∈ PSOS and local
SOS polynomialsΥe, Υc, s̃1(z), s̃2(z), s̃3(z), rj , ∀j =



0, 1, . . . , h, such that

ζ = inf
sΥe,sΥc,c

trace(ĎW (sΥe, sΥc))

s.t.





W (sΥe, sΥc, q) ∈ PSOS,
(34)− (35) hold,
−ψ(q, sΥe, sΥc, s, r, c) ∈ PSOS.

(36)

Then,κ2 = γ
ζ is an under-estimate ofρ.

Observe that the last constraint of (36) can be rewritten as
−w̃(q) − s(q)(c − W (sΥe, sΥc)) +

∑h
i=1 ri(q)wi(q) where

w̃(q) = −ρT (L(t) ⊗ In)ρ from (14). In order to cope with
this, one useful way is by iterating amongs(q) andc (using
the technique for the fixed Lypuanov-like barrier functions
shown in Section III.B-C) andsΥe, sΥc, which returns an
iterative LMIs problem and it can be solved by existing
delicate softwares, as illustrated in the following section.

IV. SIMULATIONS

To illustrate the proposed approach, a numerical example
of smart cars platooning is provided. We execute the com-
putation using MATLAB R2017a on a desktop with a 16GB
DDR3 RAM and an Intel Xeon E3-1245 processor (3.4
GHz). The MATLAB toolbox SeDuMi is used for solving
semi-definite problems.

In this example, an implementation with autonomous
driving is considered. The safe platooning of cars can be
achieved if the proposed method ensures the multi-objective
coordination of smart cars without entering the unsafe areas,
which are represented as construction areas and a broken
yellow car as shown in Fig. 2. Each smart car (red) is
assumed to be an agent, whose model is set up with the
following parameters:ra = 0.75, rs = 11, rz = 3.5,
rc = 1.25ra, ds = 2rc, andǫ = 0.1.

The unsafe areaΩ = Ω1 ∪ Ω2 ∪ Ω3 ∪ Ω4 ∪ Ω5 given by
(4) is expressed by following polynomial inequalities,

Ω1 = {x ∈ R2|(xi(1)− 8)2 + (xi(2)− 4)2 − 4 < 0},
Ω2 = {x ∈ R2|xi(1) > 7, xi(2) < −2},
Ω3 = {x ∈ R2|xi(1) < 0, xi(2) > 2},
Ω4 = {x ∈ R2|xi(2) < −6},
Ω5 = {x ∈ R2|xi(2) > 6},

whereΩ1 encodes the area of the broken car,Ω2 and Ω3

describe the areas under construction,Ω4 andΩ5 describe
the boundaries of road.

First, let us check whether the multi-objective coordination
is achieved by the proposed controller (12). From Fig. 3, we
could see that the platooning of smart cars is obtained and
the differences of velocities converge to 0, and these smart
cars are kept away from the unsafe areas. In addition, for the
connectivity maintenance, distributed controllers preserve the
edges(A1, A2) and (A2, A3), and allow break of the edge
(A1, A3) as system evolves, which ensures the connectivity
of the whole network. Demonstrated by Fig. 4, the collision
avoidance amongst smart cars is also guaranteed. As we
could see from Fig. 3, the car 3 moves backward first to

avoid collision with car 2 when it is merging in the middle
lane.

Then, let us consider fixed Lyapunov-like barrier functions
with Υe = c1(‖yij‖)4 and Υc = c2(‖yij‖2 − r̃2z)

2, where
c1 = µ1

r̂4s
and c2 = µ2

d̂s−r̃2z
. Then, we compute the optimal

Lyapunov-like barrier function by using Theorem 3 and
Proposition 1, and one hasζ = 16.3245. The computational
results are shown in Fig. 5, from which the estimate of
SG-RMTC is significantly enlarged by using the optimal
Lyapunov-like barrier function compared to the method of
fixed Lyapunov-like barrier functions.

(a) (b)

(c) (d)

Fig. 2. The motion of cars and the set of edges for t = 0, 1, 3, 9, respectively.
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Fig. 3. The trajectories of agents and the differences of velocities.

TABLE I

THE COMPUTATIONAL TIME tc [sec] FOR DIFFERENT NUMBERS OF

ITERATIONSnt , AND DEGREES OF BARRIER FUNCTIONSdb .

db = 2 db = 4

nt=5 nt=10 nt=20 nt=5 nt=10 nt=20

tc 17.52 29.63 68.51 112.3 214.5 407.2
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Fig. 4. The minimal distance between smart cars.

Fig. 5. Computational results of the estimates of SG-RMTC for car 1.
The solid red lines depict the boundaries of unsafe sets; thesolid green
line represents the estimate via a fixed Lypaunov-like barrier function with
degree 4; the dashed blue line represents the estimate via the optimal
Lyapunov-like barrier function with degree 2.

Note that static unsafe sets are considered in this case,
this method is flexible to extend to the situation with moving
unsafe sets by considering additional barrier terms [22].

V. CONCLUSION AND DISCUSSION

Multi-task coordination of multi-agent systems is con-
sidered, with objectives including convergence, collision
avoidance, connectivity maintenance, and safety assurance.
The problem of estimating the safety guaranteed region of
multi-task coordination (SG-RMTC) is formulated. To cope
with this problem, the sublevel set of Lyapunov-like barrier
function is used, and a systematic way of constructing such
kind of functions is proposed via Sum-of-Squares (SOS)
programming and Square Matrix Representation (SMR). By
searching the optimal Lyapunov-like barrier function, the
best estimate of SG-RMTC can be obtained.

Future efforts will be devoted to designing a less-
conservative convex approach for approximating the SG-
RMTC, e.g., using themoment theory[23], enlarging the
lower bound of µ via rational ploynomial Lypunov-like
barrier functions, and combiningmultiple sublevel setsof
Lypunov-like barrier functions. In addition, we are interested
to compare this approach with other stability verification
methods, like the contraction theory [24].
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