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Approximating the Region of Multi-Task Coordination
via the Optimal Lyapunov-Like Barrier Function

Dongkun Han, Lixing Huang, and Dimitra Panagou

Abstract— We consider the multi-task coordination problem
for multi-agent systems under the following objectives: 1colli-
sion avoidance; 2. connectivity maintenance; 3. convergea to
desired destinations. The paper focuses on the safety guaiteed
region of multi-task coordination (SG-RMTC), i.e., the setof
initial states from which all trajectories converge to the cesired
configuration, while at the same time achieve the multi-task
coordination and avoid unsafe sets. In contrast to estimatig
the domain of attraction via Lyapunov functions, the main
underlying idea is to employ the sublevel sets of Lyapunovie
barrier functions to approximate the SG-RMTC. Rather than
using fixed Lyapunov-like barrier functions, a systematic vay is
proposed to search an optimal Lyapunov-like barrier function
such that the under-estimate of SG-RMTC is maximized.
Numerical examples illustrate the effectiveness of the ppmosed
method.

I. INTRODUCTION

Assessing the stability properties of an equilibrium pdnt
of fundamental significance in control and dynamical syste

s theory. For asymptotically stable equilibrium pointsgon

long-standing and in practice exceedingly difficulty pexhl
is the estimation of the region of attraction, i.e., of th¢ s
of initial states from which all trajectories converge te th
equilibrium point.

In addition, with the rapid recent developments in com

munication and sensing technologies, ubiquity of multatg

systems has spurred great research interest in areas suc

multi-robot path planning, surveillance (for more apptioa-
s, refer to surveys [1], [2] and books [3], [4]). Apart fro
stability of the concerned equilibrium points, efficienbedi-
nation of multi-agent systems typically requires conngti

maintenance and collision avoidance amongst agents. Th
the following questions arise naturally: Is it possible to
compute the region of coordination for multi-agent system

while guaranteeing convergence, collision avoidance ar¥ . . i . . )
g g g ?orptlmal Lyapunov-like barrier function, which provides a

connectivity maintenance? How can we estimate the regi

of multi-task coordination? To the best of our knowledge
these issues have not been addressed yet and still rem

challenging.
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In order to answer these questions, let us first review the
methods for estimating the region of attraction of isolated
dynamical systems. The sublevel set of Lyapunov function
is proven to be a useful way, in which different types of Lya-
punov functions are employed; from the simplest form, i.e.,
qguadratic Lyapunov functions, to more complicated forms,
such as pointwise maximum Lyapunov functions or ratio-
nal polynomial Lyapunov functions (see [5] and references
therein). Nevertheless, the sublevel set of Lyapunov fanst
cannot in principle guarantee cooperative objectives susch
collision avoidance and connectivity maintenance.

To achieve multi-task coordination, Lyapunov-like barrie
functions are able to encode the constraints of each agent,
and provide simple but effective, gradient-based control
strategies. According to different objectives, various-el
gant Lyapunov-like scalar functions are proposed, incigdi

otential functions [6], navigation functions [7], harnion
unctions [8], barrier functions [9], and avoidance funas
[10]. However, the Lyapunov-like functions are usually se-

éected with fixed forms, which result in conservative result

when it comes to the estimation problem of SG-RMTC. In
[11], a compositional barrier function is proposed by using
logical operators, but the barrier functions are also fixad f
the corresponding objectives. In [12], a barrier certificest

ﬁjo&structed using Sum-of-Squares decompaosition. However
t

Is method is merely used for safety verification, without

mguaranteeing the convergence of trajectories to desirad eq

librium points, thus not applicable to multi-task coordioa.
Motivated by aforementioned results, and based on our
gevious work [13], [14] that uses fixed Lyapunov-like barri
uhctions, this paper proposes a systematic way to genarate
tseasible Lyapunov-like barrier function, and gives a metho
9 maximize the largest estimate of SG-RMTC via the

arger stability margin compared to the fixed ones. The
gﬂyelties of this paper lie in the following aspects:

- Based on the real Positivestellensatz, the estimation
problem of SG-RMTC boils down to a Sum-of-Squares
programming. By employing the Square Matrix Rep-
resentation technique, a lower bound of the largest
estimate of the SG-RMTC can be computed by solving
a generalized eigenvalue problem.

« Different from other work that uses fixed Lyapunov-
like barrier functions [15], [16], a systematic way is
proposed for searching feasible polynomial Lyapunov-
like barrier functions. In addition, a strategy is given
for pursuing the optimal Lyapunov-like barrier function
such that the estimate of SG-RMTC can be maximized.



[l. PRELIMINARIES At) = diag(zjyzl Gi;(t)). A relationship betweerL(t)

Notations:N, R: natural and real number sel®; : positive and the connectedness G{t) is given in [4];

real number setA”: transpose ofd; A > 0 (A > 0):  Lemma 1:Let \;(L(t)) < Mao(L(t)) < --- < An(L(t)) be
symmetric positive definite (semidefinite) matuk A ® B:  the ordered eigenvalues @f(¢). Then,1y is an eigenvector
Kronecker product of matriced and B; diag(a): a square of L(t) with the corresponding eigenvalug (L(t)) = 0.
diagonal matrix with the elements of vectoeron the main Moreover,\;(L(t)) > 0 if and only if G(¢) is connected]
diagonal; ||a||: Euclidean norm orls norm of vectora; B. Problem Formulation
deg(f): degree of polynomial functiorf; (*)TAB in a -

form of Square Matrix Representatio®” AB. Let P be ~ The distributed controller of agent depends on the
the set of polynomials an®P™*™ be the set of matrix local information of agent, i.e., relative distances, relative
polynomials with dimensiom x m. A polynomialp(z) € P Velocities, and the coupling weights of communications.
is nonnegative ifp(z) > 0 for all z € R". A useful way Specifically,

of establishingp(x) > 0 consists of checking whethexx _ By

can be describe(d )as a sum of squares of polynomia:(s 280857 N Z f(mi(t) —2i(t), pilt) = pi(1), Gy (t))’ (2)

ie.,p(x) = Zlepi(xﬁ for somepy,...,pr € P. The set JENT) _ _
of SOS polynomials is denoted §5©S. where N3 (t) = {j| (4, 4;) € £(t)} is the neighborhood
set of agent (in the sensing range of ageit System (1)
A. Model Formulation can be rewritten as:
Each agent is modeled by the double-integrator model as q=9(q), ®)
follows: S - o by introducingy; = x; — 7, 0i = pi — p*, @ = (vi,0:)7,
zi(t) = pit) 1) q = (¢f.q3,...,9%)", wherer;, and p* are the ideal

pit) = uilt), €N, displacement and the desired velocity of agentthe desired
where N’ = {1,...,N}, z;(t) € R" denotes the position formation configuration, respectively. _
state,p;(t) € R denotes the velocity state, ang(t) € R” Consider system (3} € R*" is an undesired set, and
denotes the control input arth agent. In the sequel, we will the origin 02y is an equilibrium point of the system. Let
omit the arguments and = of functions whenever possible V(¢) : R* — R be a continuously differentiable function
for the brevity of notations. ong such that: 1)/ (02) = 0 andV(g) > 0in R2N /{02n};

A weighted undirected dynamic graptg(t) = 2) V(g) <0inR*/{02x};3) V(g) = oo, forall g € U.
(A,E(t),G) is used to describe a network of multi- Then,q = Oy is asymptotically stable, antd(q) is called
agents, with the set of node$ = {A;,..., Ay}, the set of 2 Lyapunov barrier fungtlonln addltlonz if condmorl 3) is
undirected edge§(t) = {(A;, 4;)| Ai, A; € A}, and the phan_ged to t_he_ con(_jltlon of Barba_shm-Kras_ovsku-LaSaIIe
weighted adjacency matri& = (G,;)nxn. Fig. 1 shows invariance principle, i.e., only the trivial solutiop = 0oy

the model of agents and the switching law of ed§és. can stay identically in{q € R2NW_(Q) = 0}, theng = Oan
is asymptotically stable, antf(¢) is called aLyapunov-like

barrier function

Definition 1: Theregion of multi-task coordinatio(RMTC)
is expressed as

R = {q(O) € R?N 1 limy_ 4 o0 X(¢; ¢(0)) = 02,
G(t) is connected, ||x;(t) —z;(t)]| > ds, Vt > to},

where x is the solution of system (3)/, denotes a user-
defined safety distance for collision avoidance. a

In many practical implementations, an unsafe set is usually
Te given for the situations where the system is at a great risk.

Fig. 1. The agent model and changing rules of edgesdenotes The unsafe set in this paper is defined by polynomials as:

the radius of each agent; is the radius of collision avoidance _ 2N . .
area;r. denotes the ?adius of area that the control with collision () = {Q(t) €R™ rwilg) >0, i=1,..., h'}’ )
avoidance objective is active; denotes the radius of sensing areaznd the safe set°(t) is the complement set 6t (). Based
constante € [0,rs — r.] is a distance parameter for the hysteresis . h )
in adding new edges. The solid line foe (¢1,t2) shows the part on this, we propose the set of interest as follows:

of trajectory when there is an edge between these two agents. pefinition 2: The safety guaranteed region of multi-task

) ] ] ] coordination(SG-RMTC) is described as
A graph G(¢) is connectedat time ¢ if there is a path

between any pair of distinct nodel and 4; in G(t). The R = {q(O) € RNV . ¢(0) € R, q(t) € Q%(t), Vt > to}.
Laplacian matrixis given asL(t) = A(t) — G(t) where 5)



The sublevel set of Lyapunov-like function is used to esti- I11. M AIN RESULTS

mate the SG-RMTC. Specifically, 1&t'(¢) be a Lyapunov- A controller Design with Local Connectivity Maintenance

like function of system (3) for the origin, which satisfies In this paper, we use Lyapunov-like barrier functions to

W(02n) =0, Vg € R%N : W(g) >0, lim W(q)=oc0, encode collision avoidance and connectedness maintenance
lzll—o0 ©) Other than using fixed Lyapunov-like barrier functionssthi
the time derivative of¥(q) along the trajectories of (1) is PaPer provides a systematic way to generate a feasible
locally non-positive, and v is the only solution which can Lyapunov-like barrier function, from which a gradient-bds
stay identically in{g| W(q) — 0} [17]. To this end, we Controller can be obtained. For the brevity of expressitats,

introduce the sublevel set 6F (q) as Tij = Ti = Tj Yij = Yi — Y, anday; = z; — ;. _
For connectedness maintenance, from Assumption 2, the

W(e) = {q eRN :W(q) < c}, (7) desired topology is contained in the initial graph. The main
idea is to preserve the desired topoladgyC £(t) such that
wherec € R*. For system (3))V is an estimate oRR if the network is always connected foe> ¢,. To do this, we
Vg € W(e): W(q) <0, (8) would like to make the following condition satisfieftlz;; || <

_ o _ _ rs, for alli € N andj € N (¢) which holds ifrs — || ;]| —
and the time derivative off’(¢) along the trajectories of (1) lys;1l > 0. Thus, the following barrier functiof(s; (||y:;||)
is locally non-positive, and,y is the only solution which s used with the constraints:
can stay identically in{g| W(q) = 0}. Let us propose the .

. / TS (Jlysi]]) =0, Y¢.(0) =0, TS.(s) = p1,
main problem we are concerned with: i (llyisl) = 0, 75(0) =0, T45(7s) = p

Problem 1: Find a polynomial Lyapunov-like barrier func- M >0, V0 < |ly;;|| <7, (10)
tion W(g) and a positive scalat such that the estimate of (lwisl)
the SG-RMTC is maximized under certain selected criteria, 3T§}(||yin) 1 . of
: . : >0, Vj € N7 (1),
i.e., solving Alyisll) Myl
p=sup ((W(c)) R ¢ L o .
¢, W (9) wheres, =1y — |7;l[, N7 () = {j| 7 € NP(?), j € Nj}
s.t. (6) — (8) hold defined in Sectioin Iy, is a positive scalar such that is

bounded wherj|y;;|| tends tos.

For collision avoidance, the basic idea is to keep the
distance between any two agentsand j greater than a
minimum user-defined safety distande > 2r., wherer,
is given in Fig. 1. In other words, the condition is required
that ||$zj|| > dg, which holds InyUH —ds — ||TZ]H > 0.
Thus, the following barrier functioff’;; is introduced:

where( is a measure ofV(c) as a user-defined criteria, e.g.,
the volume ofW(c¢). In addition, a gradient-based controller
u; can be obtained in the form of (2) such that
1) limysoo|(2it) — 7) — (25(t) — 7)) = 0, and
limy o0 ||pi(t) —p; (t)|| = 0, for all i € N andj € N,
2) G(t) is connected, for alt > ¢y, wheret, is the initial

time.
3) ||lzi(t) —z;(t)|| > ds, for all ¢ > to, whered, denotes TS (llyijl) = 0, Tg,»(ds) = 1o,

a user-selected safe distance for collision avoidance. 67}0 (H. ) ! (11)
4) q(t) € Q¢, for all t > to. O 92 i \1%i511) <0, Y|yl > ds, Vj e N*(b),

. . _ A([lya11)

Some useful sets are introduced heké: is the neigh- . ‘ o
borhood set to agent in the desired configuration, i.e., Where ds = ds + |||, and N7*(t) = {j| j €
NI = {j] (A, A)) € &, o — 7 — (x; — 7))|| = 0}, NP (t), ||lzij|| < 7.} introduced in Section llu» is a positive
wherer; is the ideal displacement of agenin the desired scalar such thal’y is bounded whejy;;|| tends tod,.

cogfiguratiqn,.whossfa edge setf&‘; We Sa;lso define.sets Remark 1:We assumeu; and o satisfying i > fimax
NET(H) = {5l 7 € AP0, 5 € N a0ONE(D) = (715 € and iy > s Wit f o= § 500150 e 15 (17
NE(t), ||z — x| < r.}, which will be used in Section . T N R

For this problem, we assume that: €l +wilto)™ 2251 Gij(to)yij (to) + pilto)” pilto)) + (N —

1)NYS;(||ds — €]|), where0 < é < min{}d, — rc,e}. The
barrier function proposed in this paper is different tharatvh
is proposed in the existing relevant work [6], [9], [15], [16
[18]. In addition, collision avoidance [6], [9], [12], [15]
r— e andr.. [18], bounded control input [9], [12], [15], [16], and safet
. AsssumptionZZ: The neighbor set of agenat time ¢, guaranteeing [6], [9], [15], [16], [18] are not consideréd.

satisfiesN] C N7 (to), which means that the desired For the brevity of notations, let us introduck =
topology is contained in the initial graph. Djenst Y55 T8 = 30 e 1§y @ = (2T, 27, aT)T,

. Ass_umptlon 3: To achieve both ob.Jectlves of coII|S|on. =L, .. T A distributed controller is provided
avoidance and connectedness maintenance, we requikfollows:

rs — || 75|l > ds + ||7i5]|, for all 4,5 € N. up = —a° —af — ¥ — B, (12)

« Assumption 1: The desired configuration given hy
is achievable, i.e.r, < || — 75| < s — ¢, for all
i € N, j € N!. In other words, the desired distance
between agent and agentj € N is always between
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Yi z] o -

Zje/v;(t) Gij (t)yi;,
i; 1S the ij-th entry of

where o = de
Z]EN“(:‘,)V%TZ](HZJ’LJ”)
pr = Ze/\ﬁ(t)Gw(t)Pm'

One has tha) ¥ | k; + > num; (M) < N(N —1), and
num, (NV3#) is the number of agents i3, It yields that

N N
weighted adjacency matrix. The following result shows that W(t) < W(ty) + Zkif < Wito) + Zkif

under conditions (10) and (11), the multi-task coordinatio
is guaranteed by the feasible gradient-based control@r (1

Theorem 1:If Assumption 1-3 holds, and(ty) is connect-
ed, then, under the controller (12), the following condiso

hold for all: € NV:
1) G(¢) is connected for alt > ¢;
2) Collision avoidance is ensured for alp> t,.
3) limi—yoollps — pjl| =0, for j e N;
4) limy—eo|mi(t) — 70 — (z;(t) — 7;)|| = 0, for j € NF.

Proof: For statement 1) and statement 2), we aim to show
the concerned set is a forward invariant set, which implieghere T —
the connectedness and collision avoidance. Specificadly,

assume that the edge s#ft) changes at;, [ =0,1,2,....

For eachlt;, t;4+1), G is fixed. Based on (10) and (11), let us

introduce a Lyapunov-like function

z( S 5l +

i=1 \jeNsi ()

Z T3 (lya;11)

JENT(t)

N
+yi > Gi()ysy + PZ-T,Oi) : (13)
j=1
Consider the time intervalto,t1), one hasYg, > 0

from (10), ¢, > 0 from (11), andplp; > 0. In addi-

tion, 271\;1 Yi Z;\;l Gij(t)yi; = ZZI\; Yi Z;V:1 Lij(t)y: =
yT(L(t)®1,)y > 0 on account of the fact thadt(t) = L(to),
G(to) is connected. Thus, one has tHah = W (ty) > 0.
Moreover, fort € [to,t1), Gi;(t) is fixed, one has

W%i( R Yo |yw||>

i=1 \jeN=f(t) JENTZ()

N N N
+> 3 Y Liyi+ > ol b
=1 =1 i=1
N N N
=3 > VUl + Y 6> Lijys

i=1 jENF (1) i=1 j=1

(lyis 1) +

(14)

+Z Z yTvszC ||yz]H)+Zp7 Pi

i=1 jeNT (1)
—p" (L(to) ® In)p. O
>

Taking into account tha§(to) is connected, one hds(to)
0, which implies thatV < 0. Thus,W (t) < W (to) < fmaxs

i=1 =1

N
ORI
=1 jeNf

N

+yi(to)" Z Gij(to)yij (to) + pilto)” pi(to)

+ Z |ywH))+ZkT

JENT=(t)
< Hmax

2 Zye/\/ﬁz w(”d

IN
N | —

(15)
£||). One can apply the

Wbove anaIyS|s for time intervalg, ¢;11). The condition still

holds thatl¥/(¢) < 0, and one has

W(t) S W(tl) S Hmax (16)
which implies that there is no collision durifg, ¢;4+1), and
no agentj has left the setV:! for agenti. Hence, the graph
G(t) is connected for € [t;, t14+1).

For the statement 3), let us assume that the edgé (st
changes at;, | = 0,1,2,..., and there is a timé&; such
that the topology ofG is fixed. Fort € [t;,00), from the
construction ofi¥, one has that

1 N N
5 Z Z iJ (t Yij S Hmax,

N | —

N
> 0l pi < frmax
=1

When the topology oG is fixed, one has thaf;; is also
fixed for ¢t € [t;,00). On account of the symmetry @, let
Amax D€ the largest eigenvalue 6f, one has that

1 A 1
in(L(tl) ® I’n)y < EAmax”y”2 < Hmax,

which yields that|y|| < 2“‘““* . Via similar arguments, one
has that||p|| < v2tmax- Let Us consider the se&f = {y €

RN, p € RN W(y, p) < tmax, [yl < \/F=2=, o]l <

V2max }, Which is a compact set. Now, let us study the
largest invariant set if = {y € R¥", p e RN"| W = 0}.
Based on (14), one has

: 1
W=-pL&lp=3

> Gilei—pil?

€N, JENT

for t € [to,t1). From (10), (11) and Remark 1, one has that

(rs) = {1 > fmax, aNd Y, (d ) = pi2 > max, Which

which implies thati/’ = 0 if and only if p; = - = pn.

y|e|ds that no collision appears durifg, t1), and no agent From LaSalle’s invariance principle [17], it ylelds that al

j has left the setV:t for agenti. Hence, the network(t)

is still connected. Let us considek= ¢;, we assume that the Z, i.e., p1 =

number of new agents added in the A&¥ is k; for agent;.

the trajectories started fror& will eventually converge to
P pN
For statement 4), consider the casetof t;, one has



pi — p; =0 for all i, j € N. Then, (12) can be rewritten as s(q) € PS°S such thate is the solution of the following

optimization:
wi=— > V5wl = Y V5l o= supe
jefo(t) JENGF=(t) c, s sos 20
_ Z G(t) .. _'l/)(q,QS(q),Ti(q))EP ) ( )
ij \U)Yijs S.t. _
JENE(E) Vg € W(c) \ {q},
Y5 ([lyisl) 1 whereq = 0, is introduced in Section I, and
ST Tl Tl 2 Gl - |
JENF (1) / ! GENE (1) ¥(g,¢,8(q),ri(q) = Wi(g) + s(a)(c—W(q)) 21)
B Z 3TZ(”ZJ1JH) 1 Vi +Z?:1 ri(qQ)wi(q).
e
o vl Tl Then.e < -,

Proof: Suppose (20) holds, one has that

From (10), one has tha?%’@%m L js positive and —%(q,¢ s(q);7i(g)) and ri(¢) as well ass(q) are SOS.

Tyl S
bounded ad|y;;|| — 0, one has that;, = —(L(¢) ® I, + From Lemma 2, it yields that

L(t) ® I,)y with L(t) > 0 and L(t) > 0 ast > fi,. W(q) <0, (22)
From algebraic graph theory [1], it yields thiin, ,., y = ) -
span(lyy,), €.,y —y; =0, for all i, j € N o forallgin{z e R*N : ¢c—W(q) > 0}\ {g}. Therefore,

from (14) and the proof of Theorem ¥/ (¢) is an estimate
of the SG-RMTC. Taking into account the definition of
B. Computing SG-RMTC via Lyapunov-Like Barrier Funcin (17), it finally yields thatc is a lower bound ofy, which
tions completes this proof. d

In this subsection, a method based on SOS programmifgemark 3:Theorem 2 transforms the condition of (14) to
is proposed to enlarge the set(c) by selecting fixed(§; an SOS programming by using Lemma 2. It paves the way

and fixedYs;, i.e., we aim at finding for generating more tractable methods by using LMIs. Along
with Remark 2, the conservatism of above result relies on the
y=sup ¢ (17)  degree ofs andr;, and the relaxations of Lemma 2 [20].

such that (10) and (11) hold. To increase the scalability d¢- Quasi-Convex Optimization via SMR
this method, we assume thdf; = T¢ and T§; = Y. The condition (20) of Theorem 2 is usually not easy to
To this end, we consider barrier functions in polynomiatheck since the product of(z) and ¢ makes it a bilinear
vector fields. It can be extended to non-polynomial or ration inequality which is non-convex in nature. In this subsettio
vector fields [5], which is outside the scope of this papemwe will show how a generalized eigenvalue problem is
First, let us introduce the Real Positivestellensatz, wpim- obtained from the problem (20) by using the SMR technique.
vides a powerful tool to check the positivity of polynomialsSpecifically, for the class of polynomiah(z) € PS°S, its
over semi-algebraic sets by exploiting the cone of SOS. SMR is as follows:

Lemma 2 ([19]): For polynomials a4, ..., am, bi,...,b po(x) = (x)T(Py + L(8))p(n, dy, ), (23)

andp, define a set where (x)7AB is short for BT AB given in Section I,

— {zeR":az) = =1 Py denotes the SMR matrix ofy(z), n is the number of
? zgl( SR SO T 48) aables.d, s th llest int t less thapEwo)
(2) >0, Vj=1,...,1} variables,d,,, is the smallest integer not less o,

N ie., dy, = [2&r)] 4(n,d, ) € RI(Do) is called the
Let B be compact. ConditioVz € B : p(x) > 0 can be power vector including all monomials of degree less or equal
established if to dp,, L(d) is a parameterization of the space

Ity T €P, S1,...,8 € PSOS L = {L(6) € Rindng)xI(ndno) ; [(§) = LT(6),
p— " ria; — Y sibi € PSOS ()T L(8)¢(n, dp,) = 0},

in which § € R?("dr) is a vector of free parameters. The

Remark 2:Condition (19) turns to be a non-conservativeunctionsi(n, d,,, ) andd(n, d,, ) can be calculated as in [20].
condition if there is no degree bound fey, and if there For the purpose of clarity, an illustration is given:

is a polynomialb in B such thath—1[0, o0) is compact. [

(19)

Example 1:Given the polynomialp;(z) = 32* + 423 +
Based on the above result, a lower boundyan (17) can 622 + 7, we haved,, = 2, n = 1 and ¢(n,d,,) =

be calculated by an SOS programming. (22,21, 1)T. Then,p; (x) can be written in (23) as:

Theorem 2:Assume there exist functiorif® and Y°¢ satis- 3 20 0 0 —¢
fying (10) and (11), respectively, and there exist polyralsi P = , L(6) = 0 26 O

ri(q) € PSOS for all i = 1,...,h, and a polynomial -6 0 0



O

Define r(q) = (ri(a),...ra(@)", &) =

> =0 7i(@w;(q), and letdeg(W) — deg(W) < deg(s),

deg(W) — deg(w;) < deg(r;), for all j = 0,1,..., h. From
(23), we have the following expressions of SMR:

W(g) = (0)"We(2N,dy), (24)
s(@) = (x)"5p(2N,dy), (25)
ri(e) = (x)"R;6(2N,d,,), (26)
lg) = (0)TU(,¢,5)(2N,dy), 27)

W e RICN.)xI2Ndw) § ¢ RUSN.d)xIU2N,ds) gnd

U (d,¢,S,E) € RICN.dw)xI2N.dy) are symmetric matrices.

Let D(9), =, A1(S) andA,(S) be SMR matrices o/ (¢),

&(q), s(q) and W(q)s(q), respectively, with respect to the

power vector¢(2N, dy,). From (21), it yields
\I/((S, C, g, E) = D(é) + E(R]) + CAl(g) - Ag(g),

wheres € R?(2N.dv) s a vector of free parameters. The fol-
lowing result transforms the condition (20) into a geneedi

eigenvalue problem (GEVP).

Theorem 3:For given positive scglarcsl, o9, and a selected
polynomial W (g, Y¢,Y¢) = (x)TW¢(2N, d,,) with chosen
Te, T fulfilling (10) and (11), respectively, the polynomial

s(q) = o15(q) + 02W(q)s(q) = (*)TA(S)p(2N,dy), the
lower bound ofy can be obtained by

e

y=—-—, (28)
o1 + 02e
wheree is the solution of the GEVP
e= inf e
4, e, S
o1+ 02e > 0, (29)
S >0,

eA(S) > D(5) — Z(R;) — As(S).

Proof: In this proof, we first show that 1) (29) is a GEVP.

Then, we demonstrate 2) (28) is the lower boundyof

D. The Optimal Lyapunov-Like Barrier Functions

In this subsection, strategies for finding the optirfa(q)
andY°(q) are proposed. First, let us recall thain Problem
1 is a user-selected measure which is often chosen as

p(W(7)) = vol(W(v)),

where vo(WW(y)) denotes the volume ofV(y), and~ is
introduced in (17). This paves a way to pursue the optimal
W (g, Y¢,T°) via maximizing the volume obV(y). How-
ever, vo(W(~)) is highly non-convex, which makes (17) a

where § € RY(N.dv) is a vector of free parameters, non-convex optimization. To solve this problem, a typical

method is to approximate volV(v)) by introducing

n

i

aAxX—————————

de(W (Te, T¢))’

where ¥ is the SMR matrix of W (x) in (24), Y¢ and Y°
are SMR matrices of"® and T with

T(q) = (x)TT°¢(2N,dy),

TC(Q) = (*)TTCQS(QN» dw)v

and vo[W(v)) is proportional tow. Then, a linear approx-

imation of vol)V()) can be provided as

~ 77 —
tracg W)’

n=m vol(W(v)) o<y, (30)

(31)

vol(W (7)) (32)
The underlying idea is to minimize tradé&’) instead of the
non-convex objective with dgi’). Thus, a strategy is given
for searching the optimdr® and Y°:
Assume that there existe P55 andr; € P55, for all
j=1,...,h, such that
¢ = inf trace(W(Y°, Y))
Ye, Ye
W(TC, Tc’ q) c /PSOS’ (33)
s.t.< (10)— (11) hold
{ —(q, Y, ¢, s,7) € PSOS

First, we aim to prove the optimization (29) is a GEVP:Then,x; = Z is an under-estimate ¢f.

From [21], we have\ > 0 on the condition thatV > 0 and
S > 0, which makes (29) a GEVP.

Second, we are trying to show thatin (28) is the lower
bound of4: Based on the last inequality of (29), we have

®(0,c,8) = D(8)—E(R;)
—eA(S) — Ay(S)
< 0.

Considering (27) and

d(q,c,5(0),7(q)) = Wi(q)—&(r(a),q) — W(a)s(q)

—e(o1+02W(q))s(q),
one can rewrita)(q, ¢, s(¢), 7(¢)) into:

¥(g.¢,5(9),7(q)) = (¢, 577552, (01 + 02¢)5(q),7(q)).

whered®(T*, z) = &L andr*(T*, 2) =

The condition of (33) could be transformed to SOS pro-
grammings. Specifically, from Lemma 2, it is not difficult to
obtain that (10) holds if there existc R, T¢(Y*°, z) € PSOS,
51(z) € PSOS, andsy(z) € PSOS such that

{ Ye(Ye,7s) = pp,re(Ye, 2) € PSOS,

—d®(Y¢, 2) — 512 — 5a(Fs — 2) € PSOS (34)

= & . 1. Moreover,
(11) holds if there exist € R, T¢(Y¢,2) € PSOS and
33(z) € PSOS such that

{ TC(chdS) = p2,

—d°(Y¢, 2) — 512 — 5a(Fs — 2) € PSOS (35)

oY

Notice that—e/ (o1 + o2e) is a monotonically decreasing whered®(Y¢, z) = W Then, (33) can be transformed to

function which maps from the rande-(o1/02), 0] into the
range[0, +o00). Thus, (28) gives the lower bound §f O

tractable conditions as follows:

Proposition 1: Assume that there exist € PS°S and local

For more details of the GEVP, please see the book [21]SOS polynomialsY®, Y¢, §(z), $2(2), 33(z), r;, Vi =



0,1,...,h, such that avoid collision with car 2 when it is merging in the middle
. — e AAc lane.
¢= Tel,%fc,c trace(W (1%, 1°)) Then, let us consider fixed Lyapunov-like barrier functions
W(Ye,T¢,q) € PSOS @6)  With T° = ci(llys)* and T = ea(llyi|I? — 72)*, where
s.t. (34)—(35) hold = % andcy = &
—(q, Y, YC, 5,7, ¢) € PSOS Lyapunov-like barrier functlon by using Theorem 3 and
Then, kg — 2 is an under-estimate of Proposition 1, and one hgs= 16.3245. The computational

¢ results are shown in Fig. 5, from which the estimate of
Observe that the last constraint of (36) can be rewritten &G-RMTC is significantly enlarged by using the optimal

—w(q) — s(g)(c —
w(q) =
this, one useful way is by iterating amonr(y) andc (using
the technique for the fixed Lypuanov-like barrier functions
shown in Section 1Il.B-C) andr®, Y¢, which returns an

a’,,a—ik:x\a sz oo e

15

W(Ye, 1)) + Zle ri(q)w;(q) where Lyapunov-like barrier function compared to the method of
—pT(L(t) ® I,)p from (14). In order to cope with fixed Lyapunov-like barrier functions.

a8 @ 86 88 & & 8

iterative LMIs problem and it can be solved by existing - Ty o
delicate softwares, as illustrated in the following settio = ¥ e
5 sh % LB 2 >

IV. SIMULATIONS

To illustrate the proposed approach, a numerical examp
of smart cars platooning is provided. We execute the com-
putation using MATLAB R2017a on a desktop with a 16GB
DDR3 RAM and an Intel Xeon E3-1245 processor (3.2 *
GHz). The MATLAB toolbox SeDuMi is used for solving

15 —
>0 0

400 2e s ae e e

s o0 e s aeeee

e 28 80 d8 8 b8

semi-definite problems. s = S @
In this example, an implementation with autonomou: :‘ -—“ g ‘ -—-—-
driving is considered. The safe platooning of cars can k s = s

achieved if the proposed method ensures the multi-obgecti
coordination of smart cars without entering the unsafesree
which are represented as construction areas and a brol..
yellow car as shown in Fig. 2. Each smart car (red) is
assumed to be an agent, whose model is set up with the
following parametersr, = 0.75, r, = 11, r, = 3.5, Fig.
re = 1.257,, ds = 2r., ande = 0.1.
The unsafe are® = Q; U Qs U Q3 U Q4 U Q5 given by

5

2 o080 se s e e

..Q“GO..‘

2.

(4) is expressed by following polynomial inequalities, 5

Q= {eeR(w(l)— 8?2+ (@i(2)—4)? —d<0}, \ <

Q = {zeR%z(1)>7, :(2) < —2}, T T = -

Qs = {zeR¥z;(1) <0, ;(2) > 2}, 28

Q = {reR?z(2) < -6}, i 0 10 20

Qs = {zeR¥z(2) > 6}, il '

where Q); encodes the area of the broken c@s, and Q23
describe the areas under construction, and Q5 describe
the boundaries of road.

First, let us check whether the multi-objective coordinati
is achieved by the proposed controller (12). From Fig. 3, we
could see that the platooning of smart cars is obtained an
the differences of velocities converge to 0, and these smart
cars are kept away from the unsafe areas. In addition, for the

TABLE |

(b)

Fig. 3. The trajectories of agents and the differences ajoitids.

d THE COMPUTATIONAL TIME t, [sec] FOR DIFFERENT NUMBERS OF

ITERATIONS N, AND DEGREES OF BARRIER FUNCTIONS®},.

connectivity maintenance, distributed controllers presé¢he d, =2 dp, =4
edges(A1, A;) and (Aq, As), and allow break of the edge
(A1, A3) as system evolves, which ensures the connectivity m=5 =10 ne=20 =5 ne=10 ny=20
of the whole network. Demonstrated by Fig. 4, the collision

. 1752 2963 6851 1123 2145 4072

avoidance amongst smart cars is also guaranteed. As we
could see from Fig. 3, the car 3 moves backward first to
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Fig. 4. The minimal distance between smart cars. [7]
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Fig. 5. Computational results of the estimates of SG-RMTCdar 1.
The solid red lines depict the boundaries of unsafe setssdfid green
line represents the estimate via a fixed Lypaunov-like baftinction with ~ [12]
degree 4; the dashed blue line represents the estimate @iapgtimal
Lyapunov-like barrier function with degree 2.
[13]

Note that static unsafe sets are considered in this case,
this method is flexible to extend to the situation with moving
unsafe sets by considering additional barrier terms [22]. [14]

V. CONCLUSION AND DISCUSSION [15]

Multi-task coordination of multi-agent systems is con-
sidered, with objectives including convergence, colhsio
avoidance, connectivity maintenance, and safety asselranE1 6]
The problem of estimating the safety guaranteed region of
multi-task coordination (SG-RMTC) is formulated. To copé?l’]
with this problem, the sublevel set of Lyapunov-like barrie[18]
function is used, and a systematic way of constructing such
kind of functions is proposed via Sum-of-Squares (805@9]
programming and Square Matrix Representation (SMR). B
searching the optimal Lyapunov-like barrier function, the
best estimate of SG-RMTC can be obtained. [20]

Future efforts will be devoted to designing a less-
conservative convex approach for approximating the SGz21]
RMTC, e.g., using thanoment theon|23], enlarging the
lower bound ofu via rational ploynomial Lypunov-like [22]
barrier functions and combiningmultiple sublevel setsf
Lypunov-like barrier functions. In addition, we are intsted
to compare this approach with other stability verificatior{zs’]

methods, like the contraction theory [24].
[24]
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