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Abstract— In this paper we propose a new Koopman operator
approach to the decomposition of nonlinear dynamical systems
using Koopman Gramians. We introduce the notion of an input-
Koopman operator, and show how input-Koopman operators
can be used to cast a nonlinear system into the classical state-
space form, and identify conditions under which input and
state observable functions are well separated. We then extend
an existing method of dynamic mode decomposition for learning
Koopman operators from data known as deep dynamic mode
decomposition to systems with controls or disturbances. We
illustrate the accuracy of the method in learning an input-
state separable Koopman operator for an example system, even
when the underlying system exhibits mixed state-input terms.
We next introduce a nonlinear decomposition algorithm, based
on Koopman Gramians, that maximizes internal subsystem ob-
servability and disturbance rejection from unwanted noise from
other subsystems. We derive a relaxation based on Koopman
Gramians and multi-way partitioning for the resulting NP-
hard decomposition problem. We lastly illustrate the proposed
algorithm with the swing dynamics for an IEEE 39-bus system.

I. INTRODUCTION

The design and control of complex systems is usually bro-
ken down into simpler modules, e.g. different geographically
dispersed subsystems such as different balancing authority
areas in power networks and various vertically integrated
functionalities such as routing and congestion control in
communication networks. Despite modular design being a
common practice, the decomposition of the system into
different modules is often based on engineering intuition
rather than principled methodologies.

For example, in some applications, the physical layout or
construction of a system dictates the subsystem structure.
For example, in multi-cellular biological systems, the sub-
systems are a natural consequence of physical separation by
the membrane barrier [1], [3], [2]. In critical infrastructure
systems, e.g. the power grid or water distribution systems,
the subsystem structure is traditionally defined based on dis-
tance and connectivity of buses, nodes or junctions [4], [5].
However, this choice of decomposition is critical since a poor
system or model decomposition can introduce fundamental
limits into distributed controller performance.

Moreover, there are many scenarios where a suitable
system decomposition may not be known a priori, e.g.
design of large-scale or ad-hoc communication networks [8],
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[9], [4] or cyber-physical systems made of agile teams of
agents. In such situations, the system decomposition must be
identified, using appropriate criteria that enable performance
of a distributed controller. This is especially true of extremely
large scale networks involving thousands of variables where
synthesis of a global controller may not be computationally
feasible.

There are many existing methods for model decomposition
[10], [11], [9]; each method decomposes systems based on
different properties. Sanchez-Garcia et al. [10] decomposes
a system into subsystems by examining the spectrum of a
matrix encoding connectivity in power networks. When that
matrix is the admittance matrix, the decomposition reflects
static connectivity structure; when the matrix is power flow,
the decomposition reveals islands with minimal power flow
disruption. Chiang, Low, and Doyle showed that system
decomposition for layered network design problems can
be thought of as vertical and horizontal decomposition of
optimization problems with utility functions corresponding
to different Quality of Service metrics, e.g. fairness, mini-
mal congestion, or efficiency [9]. Raak et al. [11] use the
Koopman operator to define a lifted linear representation of
an open-loop nonlinear system. They introduce a decompo-
sition method based on the point-spectrum of the Koopman
operator.

In this paper we adopt a similar Koopman operator
approach for system decomposition as Raak et al. [11],
but derive the decomposition from input-output properties
directly computed from Koopman Gramians [12]. Koopman
operators are especially powerful, since they allow us to
transform nonlinear analysis and control problems into linear
problems. Furthermore, system identification methods for
Koopman operators have made it possible to perform analysis
and control design in a purely data-driven fashion [13],
[14], [15], [16]. Such an approach is especially valuable
in data-driven control and analysis problems, e.g., Internet
of Things applications [8], intelligent load control problems
in infrastructure systems [17], or design of multicellular
biocircuits [3].

Specifically, we introduce the notion of an input-Koopman
operator, show how input-Koopman operators can be used
to cast a nonlinear system into the classical state-space
form, and identify conditions under which input and state
observable functions are well separated. We then extend
an existing method of dynamic mode decomposition for
learning Koopman operators from data known as deep
dynamic mode decomposition to systems with controls or
disturbances. We illustrate the accuracy of the method in
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learning an input-state separable Koopman operator for an
example system, even when the underlying system exhibits
mixed state-input terms. We next introduce a nonlinear
decomposition algorithm, based on Koopman Gramians, that
maximizes internal subsystem observability and disturbance
rejection from unwanted noise from other subsystems. As
the resulting decomposition problem is NP-hard, we derive
a relaxation based on Koopman Gramians and multi-way
partitioning. We illustrate the proposed algorithm with the
swing dynamics for am IEEE 39-bus system

The rest of the paper is organized as follows. Section II
introduces input-Koopman operators and reviews the theory
of input-Koopman operators. Section III discusses several
results and techniques for learning Koopman operators and
the associated Koopman Gramians. Section IV presents the
proposed Koopman decomposition algorithm, and Section V
illustrates its application on an IEEE 39-bus system.

II. INPUT-KOOPMAN OPERATORS

In [18], [19], it was shown that the Koopman operator
could be generalized to model the effect of inputs or controls.
The authors showed that an input-Koopman operator K
could be defined that satisfies

ψ(xt+1, wt+1) = K ◦ ψ(xt, wt)

= ψ(f(xt, wt)).
(1)

where ψ(xt, wt) ∈ RnL, nL ≤ ∞ is a potentially infinite-
dimensional dictionary of observables defined on the state xt
and the input wt. Thus, K is a linear operator with a well-
defined spectrum, either discrete and countable, or continu-
ous and uncountably infinite. In this paper, we consider the
scenario where K is a finite or countably infinite dimensional
operator.

Assumption 1: We suppose that the system (14) has a
finite or countably infinite dimensional Koopman operator.
If the control inputs have their own dynamics, e.g. they are
defined by the state-space dynamics of a controller, then
ψ(xt+1, wt+1) defines a linear state-space model for xt and
wt. In the case where wt has no state-dynamics, e.g. it is
modeled as an exogeneous input or random disturbance, then
the input-Koopman operator K satisfies

ψ(xt+1, 0) = Kψ(xt, wt) (2)

For the purposes of this paper, both for defining Koopman
gramians and performing input-Koopman analysis, we model
inputs as disturbances without state-space dynamics.

Assumption 2: Given the Koopman model (1) for the
nonlinear time-invariant system (14)

ψ(xt+1, wt+1) = ψ(xt+1, 0) = Kψ(xt, wt) (3)
In essence, we model inputs as purely exogenous, impulse
functions, or random disturbances to the system of interest.
This assumption is equivalent to saying that wt is not
necessary to include into ψ(·) in order to satisfy the axiom
of state for the dynamical system (5). The consequence of
this assumption is that we can express the system in affine
Koopman control form.

Lemma 1: Consider a nonlinear system of the form

xt+1 = f(xt, wt) (4)

with exogenous disturbances wt and corresponding Koopman
model satisfying Assumption 2,

ψ(xt+1, 0) = Kψ(xt, wt). (5)

The same Koopman equation can be written as

ψx(xt+1) = Kxψx(xt) +Kuψu(ut) (6)

where ut = u(xt, wt) is a vector function consisting of
univariate terms of wt and multivariate polynomial terms
consisting of xt and wt.

Proof: Consider the nonlinear system (4). We remark
the form of equation (5) is a special instance of the form
derived in [18]. To be precise, the existence of a closed-loop
system Koopman operator that satisfies the relation

ψ(xt+1, wt+1) = Kψ(xt, wt) (7)

follows from the original Koopman papers [20], [21]. The
entire state-space dynamics of a closed-loop nonlinear sys-
tem, including both state and input, can be viewed as the
state-space dynamics of an autonomous dynamical system
which has a Koopman operator. Moreover, Assumption 2
guarantees that the system can be written in the form

ψx(xt+1) = Kψ(xt, wt) (8)

where ψx(·) is a vector consisting of the elements of
ψ(xt, wt) that only depend on xt. Due to Assumption 1 we
know that K is a linear operator that can be represented by
a matrix of countable dimension. Therefore, the right hand
side can be partitioned in terms of dependence of Koopman
basis functions on xt, wt or both xt and wt:

ψx(xt+1) = Kxψx(xt) +Kxwψxw(xt, wt) +Kwψw(wt)
(9)

where ψx(xt) represents the elements of ψ(xt, wt) that
directly depend on xt, ψxw(xt, wt) represents the elements
of ψ(xt, wt) that depend on a mixture of xt and wt terms,
and ψw(wt) represents the elements of ψ(xt, wt) that only
depends on wt. Now consider the last two terms on the right
hand side; we can write an exact expression according to
Taylor’s theorem for each term

ψxw(xt, wt) = Wxwν(xt, wt) (10)

where ν(xt, wt) is a vector containing the polynomial basis
with elements of the form

xliw
k
j , (11)

l, k ∈ N, xi is an element of the state vector x, i = 1, 2, ...
and wj is an element of the disturbance vector w, j = 1, 2, ...
Similarly, ν(wt) is a vector containing the polynomial basis
with elements of the form

wliw
k
j (12)
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where i, j = 1, 2, ... and l, k ∈ N. Define

ut =
[
wTt ν(xt, wt)

T
]T

It immediately follows that

Ku =

[
Kw

KxwWxw

]
and therefore

ψx(xt+1) = Kxψx(xt) +Kuψu(ut) (13)

Finally, we suppose that the observable functions retain the
information of the underlying output yt, via a projection.

Assumption 3: We suppose, as in [16], that there exists a
Wh ∈ Rp×nL such that

yt = h(Pxψx(xt)) = Whψx(xt)

is in the span of the observables ψ1
x(xt), · · · , ψNx (xt).

This assumption is important for the formulation of a Koop-
man observability gramian [12].

We now consider a class of nonlinear systems which have
state-control separability. Specifically, we consider systems
like (4) with the explicit form

xt+1 = f(xt) + g(wt)

yt = h(xt)
(14)

where f, g, h ∈ Rn is assumed to be continuously differen-
tiable functions (with f, g ∈ Cp [0,∞) where p ≥ 2) with
respect to x and w, respectively. Without loss of generality,
we suppose that wt = 0 implies that g(w) = 0, i.e.
any zeroth-order terms in a Taylor expansion of g(u) are
subsumed into the definition of f(x) as an affine constant
offset.

Lemma 2: Consider a state-input separable system of the
form (14). Suppose the system satisfies Assumptions 1 and
2. Let Kx denote a Koopman operator for the corresponding
open loop system

xt+1 = f(xt)

yt =h(xt)
(15)

such that

ψx(xt+1) = ψx(f(x)) = Kx ◦ ψx(xt) (16)

If there exists functions ψxw, ψw and matrices Kxw,Kw such
that

ψx(xt+1(xt, wt))− ψx(xt+1(xt, 0)) = Kxwψxw(xt, wt)

+Kwψw(xt, wt)
(17)

then ψx(xt+1)
ψxw(xt+1, wt+1)

ψw(wt+1)

 =
[
Kx Kxw Kw

]  ψx(xt)
ψxw(xt, wt)
ψw(wt)


(18)

and
K =

[
Kx Kxw Kw

]
(19)

is a Koopman operator for the wt-perturbed system (14).
Finally, if i) ψxw(x,w) defines a basis set on x even when
w = 0 and ii) ψx(x) is continuous, then

Kxw ≡ 0.
Proof: Suppose that there exists functions ψxw, ψw and

matrices Kxw,Kw such that

ψx(xt+1(xt, wt))− ψx(xt+1(xt, 0)) = Kxwψxw(xt, wt)

+Kwψw(xt, wt)
(20)

Since Kx is the open-loop Koopman operator,

ψx(xt+1(xt, 0)) = ψx(f(x) + g(0))

= ψx(f(x))

= Kxψx(xt)

(21)

which proves equation (18). Next, suppose that Kw has full
column rank and ψx(x) is continuous. Then taking the limit
as wt → 0 to obtain

lim
wt→0

ψx(xt+1(xt, wt))− ψx(xt+1(xt, 0)) = 0 (22)

which implies that

0 = lim
wt→0

Kxwψxw(xt, wt) +Kwψw(wt). (23)

Now −Kwψw(0) is a constant vector, if it is a non-zero
constant vector then we would obtain a contradiction since
ψxw(x, 0) is a function in x. Thus, −Kwψw(0) = 0, which
implies that

Kxwψxw(xt, 0) = −Kwψw(0) = 0 (24)

and since ψxw(xt, 0) is a basis with respect to xt, this means
that the matrix[

ψxw(x1, 0) | . . . | ψxw(xS , 0)
]

(25)

is right invertible as long as S ≥ dim(ψxw), which implies
that Kxw ≡ 0.

III. DEEP DYNAMIC MODE DECOMPOSITION FOR
CONTROL-KOOPMAN OPERATOR LEARNING

The traditional method for learning a Koopman operator
from data is extended dynamic mode decomposition. In ex-
tended dynamic mode decomposition for open-loop systems,
a dictionary of empirical observable functions

Ψ(x) = {ψ1(x), ψ2(x), ...ψnD
} (26)

is postulated to span a large enough subspace of the true
Koopman (and unknown observable functions).

In input-Koopman (or control-Koopman) learning prob-
lems [18], [19] for systems satisfying Assumption 2, a
dictionary of empirical observable functions is defined in
terms of the system state x ∈ Rn and input w ∈ Rm of the
form

Ψ(x, u) = {ψx(x), ψxw(x,w), ψw(w)} (27)

where ψx(x) ∈ RnL and (ψxw(x,w), ψw(w) ∈ RmL . Again,
the challenge is that the true Koopman state and input
observable functions are unknown.
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In general, there always exists a trivial Koopman observ-
able function ψx(x) ≡ 0 and (ψxw(x,w), ψw(w)) ≡ 0 with
corresponding trivial control and state Koopman matrices
Kx ≡ 0 and Kw ≡ 0. Such Koopman representations are
not of interest to us, since ultimately we are interested find-
ing concise representations that elucidate underlying system
dynamics, in terms of the state xt and wt. Thus, we adopt the
classical assumption of including the state xt and disturbance
wt in the dictionary functions.

Assumption 4: Let Ψ(x, u) denote the Koopman observ-
ables dictionary. We suppose that there exists a collection of
ψx,1(x), ..., ψx,n(x), ψw,1(w), ..., ψw,m ∈ Ψ(x, u) such that

(ψx,1(xt), ..., ψx,n(x)) = xt ∈ Rn (28)

and
(ψw,1(wt), ..., ψw,m(wt)) = wt ∈ Rm (29)

We refer to such a dictionary Ψ(x, u) satisfying these
properties as state and input inclusive.
Given a system (4), with time series data y1, ..., yt the
control-Koopman learning problem is to find a set of observ-
able functions ψx(x), ψw(w), and ψxw(x,w), and matrices
Kx ∈ RnL×nL ,Wh ∈ Rp×nL and

[
Kxw Kw

]
∈ RnL×mL

to solve the optimization problem

min
Wh,ψx,ψw,ψxw,Kxw,Kw,Kx

||Yt:1 − Ft−1:0|| (30)

where
Yt:1 =

[
yt yt−1 . . . y1

]
(31)

and
Ft−1:0 =

[
κ(t− 1) . . . κ(1),

]
(32)

with

κ(t− 1) = −Wh(Kxψx(xt−1) +Kxwψxw(xt−1, wt−1)

+Kwψw(wt−1)).
(33)

In general, learning the Koopman observable functions for
both the input and state can be computationally expensive.
Typically, a generic but expressive set of dictionary functions
such as Hermite polynomials, Legendre polynomials or thin-
plate radial basis functions are used [16]. However, the
number of dictionary functions required is not known a priori
and often the number of dictionary terms requires multiple
steps of manual refinement, even for the simple two or three
state systems.

Recently, it was shown that deep (and shallow) neural
networks can be used to generate Koopman observable
dictionaries that automatically update during the training
process [22], [23]. Moreover, the dictionaries learned using
neural networks appear to be efficient at encoding Koopman
dictionaries for larger systems, e.g. a partially observed large-
scale linear system and a glycolytic oscillator with 7 states.

We extend the methods developed in [22], to address the
input-Koopman operator learning problem. In particular, we
suppose that ψx, ψx,w, and ψw are the outputs of three sepa-
rate neural networks that multiply against decision variables
Kx, Kx,w and Kw respectively. The learning objective is thus

defined as the Frobenius norm of objective function (30). In
particular, the deep neural networks allow us to parameterize
the Koopman observable functions as follows:

ψx(x) = (x,Dx(x, θx))

ψw(w) = (w,Dw(w, θw))

ψxw(x,w) ≈ Dxw(x,w, θxw)

(34)

with
θx = (W 1

x , ...,W
xD
x , b1x, ..., b

xD
x );

θxw = (W 1
xw, ...,W

xwD
xw , b1xw, ..., b

xwD
xw )

θw = (W 1
w, ...,W

wD
w , b1w, ..., b

wD
w )

(35)

and for a variable v = x,w or mixed terms from (x,w),

Dv(v, θv) ≡ hvD ◦ hvD−1
◦ . . . ◦ h1(v) (36)

and hi(v) = σ(W i
vv+ biv) and σ(·) is an activation function,

e.g. a RELU(v), ELU(v), tanh(v), or cRELU(v).
Example 1: Deep Koopman Learning on an 2 State

System with a Single Input We first illustrate the use
of deep control Koopman learning on a simple two state
example system with a single input. Consider the system

x1t+1 = −a1x2t + a3x
1
t sin(ωut)

x2t+1 = sin(ωx1t ) + a2x
2
t + x1tx

2
tut

(37)

where a1 = −0.96, a2 = 0.88, a3 = −0.95, and ω = −2.0.
The input signal is defined as a step function

ut =

{
0 t < 250

1 t ≥ 250.
(38)

A simulation of the system for the initial condition x0 =
(0.5,−0.1) is given in Figure 1 and the outcome of a multi-
step prediction task is given in Figure 1. 250 points of train-
ing data are provided to the Koopman learning algorithm,
while the remaining 250 data points are withheld during
training for test and evaluation. In Figure 1, we provide
a single initial condition for which no forward prediction
training data was provided and evaluate the predictive capa-
bility of the Koopman operator. We see in Figure 1 that the
average error of the approximate input-Koopman operator
learned by the deep neural networks is approximately 1%,
per time-point, over a 120 step forward prediction task.

IV. MODEL DECOMPOSITION ALGORITHM

We now consider a system decomposition approach for
nonlinear dynamical systems, where subsystems are selected
to satisfy two criteria: 1) each subsystem’s ability to infer
its internal states given local output measurements is max-
imized, 2) the influence of all disturbances wt from other
subsystems on a given subsystem Si is minimized.

We use the Koopman controllability and observability
gramians to compute the decomposition criterion. Following
the Koopman operator approach outlined in [12], we can

4



Fig. 1. The time-lapse response of a two-state control system to initial
condition x0 = (0.5,−0.1) and a step input ut. The output of the first
state and second states, x1t and x2t are marked with blue and green dots
respectively.

Fig. 2. Multi-step forward prediction (120 steps, plotted as dashed lines)
for the system (plotted as dots) outlined in Example 1 .

define observability Xψ
o and controllability gramian Xψ

c

Xψ
o =

∞∑
t=0

WT
h (Kt

x)TKt
xWh,

Xψ
c =

∞∑
t=0

Kt
xKuK

T
u (Kt

x)T .

(39)

As shown in [12], the Koopman gramians provide a direct
approach for quantifying nonlinear controllability and non-
linear observability. When considering a linear time-invariant
system, the Koopman gramians are identical to the original
gramians. Furthermore, when a nonlinear system is locally
controllable or observable, there exists a projection of the
Koopman gramian that is positive definite.

In addition, the Koopman gramians characterize the input-
output properties of the linear system defined by the control-
Koopman operator. Thus, the traditional interpretations of
output energy and input energy [24] can be articulated in
terms of Koopman gramians. In particular, given an initial
condition ψx(x(0)) ∈ RnL , the energy of the output yt ∈ Rp
is given by

||yt||22 = yTt yt = ψx(x0)TXψ
o ψx(x0), (40)

Moreover, given a target state x0, the minimum input energy
is quantified using the inverse of the Koopman controllability
gramian. As in classical linear systems theory, the inverse
of the Koopman controllability gramian exists if the pair
(Kx,Ku) is controllable.

‖ψoptw ‖22 = ψx(x0)T (Xψ
c )−1ψx(x0), (41)

where ||ψoptw || denotes the minimum disturbance energy to
drive the system from x−∞ = 0 to x0.

The Koopman gramians are nL by nL matrices. In partic-
ular, not every column in the Koopman gramian coincides
with a physically meaningful state. However, leveraging
Assumption 4, we have that the first n columns (or rows)
of Xψ

o and (Xψ
c )−1 are directly tied to the original state

x contained within the observable function ψx(x). Thus,
instead of considering unit perturbations directly to the
observable function ψ(x) of the form

(ψx(x[0]) + ei)
TXo(ψx(x[0]) + ei) (42)

we consider unit perturbations along the first n observable
functions, coinciding with actual physical states of the
system.

||ψx(x(t))Tψx(x(t)|| = ψx(x[0] + ei)
TXψ

i ψx(x[0] + ei)
(43)

where Xψ
i = Xψ

o or Xi = (Xψ
c )−1. The Koopman

observability and controllability gramian are thus used to
efficiently compute the energy of the input-output response,
in response to unit perturbations to the input of the nonlinear
function of ψx(x).

Based on our decomposition criterion, for one subset Si
of original states x, we define

κoSi
=

ψx(x = ISi
)TXψ

o ψx(x = ISi
)

ψx(x = (I − ISi
))TXψ

o ψx(x = (I − ISi
))
, (44)

κcSi
=

ψx(x = ISi)
T (Xψ

c )−1ψx(x = ISi)

ψx(x = (I − ISi))
T (Xψ

c )−1ψx(x = (I − ISi
))
,

(45)
where I is the n-dimension vector whose elements are all
1, ISi

is the vector that states in Si are 1 while the rest is
0. We can see that κoSi

expresses this subsystem’s ability
to infer its internal states compared to other subsystems
given local output measurement. In the meanwhile, κoSi

reveals the influence of disturbances from other subsystems
on subsystem Si compared to its own internal disturbances.
We want both to be maximized simultaneously. We define
our objective function as a linearization of these two terms.

κSi
= κoSi

+ λκcSi
, (46)

where λ is a positive constant to reveal the relative important
of κoSi

and κcSi
in our concerns. Because usually κoSi

and
κcSi

are with different magnitudes, we normalize the term
by its average value before we do the decomposition. Also,
in many applications, it is better to optimize the worst
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case minS1,··· ,Sk
(κSi

), so we get the following optimization
problem to decompose the system into k subsystems:

max min
S1,··· ,Sk

κSi

s.t. ∪Si = x, ∩ Si = ∅, ∀i
(47)

However, there are two issues with this optimization.
First, it is NP-hard that all possible set of subsystems is
combinatorial number. Second, it is not a convex problem.
We thus consider the following relaxations. First, suppose
that Si and κSi

both are continuous set; then we can verify
(47) can be approximated by

min max
S1,··· ,Sk

κSi

s.t. ∪Si = x, ∩ Si = ∅, ∀i.
(48)

Note that in ideal situation, (47) and (48) will result in an
equal partition which means κSi

= κSj
,∀i, j. So we can

relax the original problem as follows

min
∑
i,j

|κSi
− κSj

|

s.t. ∪Si = x, ∩ Si = ∅, ∀i
(49)

Although the (49) is still NP-hard, it gives us more intuition
about the nature of the problem. As we can see, the (49) is
trying to minimize the total difference among subsystems.
That is, we want the decomposition to result in a more
balanced partition, where balance is defined in terms of
subsystem controllability (κc) and subsystem observability
(κo).

This problem is equivalent to the multi-way number parti-
tioning problem. [25] gives an efficient and error-bounded
heuristic algorithm to approximate the optimal solution.
While [25] only considers minimizing the difference among
sum of numbers in each subset, our problem is more compli-
cated because when we introduce a new state into the cluster,
the objective function can not be computed by directly
adding the value of new state and the original rank value
of the cluster, since this would require that the Koopman
observable is linear in the state xt. We thus propose a
revised version of the original algorithm that accounts for the
nonlinearity of the Koopman observable function (see Figure
3). Note that this algorithm does not consider the underlying
connections in the network. For the application who has this
requirement. We can slightly change the algorithm such as
each time, we choose the neighborhood nodes of the clusters
to do the update.

V. DECOMPOSITION OF AN IEEE-39 BUS SYSTEM

In this section we apply our Koopman controllability and
observability decomposition algorithm on a swing dynamics
model for the IEEE 39 bus system. We consider the problem
of modeling disturbances to the swing dynamics; specifically,
we model perturbations to the relative speed and relative
angle states of individual generators. The perturbed system
dynamics, assuming a disturbance ∆i to the initial condition

K-way Partitioning function (a, k)
———————————————————————
Input : Array a and cluster number k, each a[j] is the

value of κSi when Si only contains state j.
Output: k clusters and κoSi

and κcSi
for each cluster Si.

Initialize an empty heap heap()
for aj ∈ a do

– Construct tuple set: bi =< ai, 0, 0, · · ·︸ ︷︷ ︸
k−1

> .

– Define bmax
i as the first element in tuple bi, also

for each element in bi, we will have a label to
reveal if this element is a member of xt or an
auxiliary Koopman observable function (not a state
variable).

– heap.push(bi).
end
while More than one tuple remains do

– bmax
i = heap.pop() ## largest element

– bmax
j = heap.pop() ## second largest element

for each permutation p for [1, · · · , k] do
– Define bnew = bmaxi ∪ bmaxj (p), ∪ is

element-wise operator, p means that bmaxj

rerranged by the permutation p.
– Compute κSi for each dimension of bnew and

record bmaxnew and corresponding p
– Record bout as the minimum of bmaxnew and the
corresponding pout.

end
bin = bmax

i ∪ bmax
j (pout)

– Compute κSi
for each dimension of bin and put

value into the corresponding dimension (insert in
the first slot of the array).

– Normalize the first place’s value of each
dimension by their minimum.

end
cluster = heap.pop(), compute κoSi

and κcSi
for each

cluster.
return [cluster, κoSi

,κoSi
]

———————————————————————

Fig. 3. Koopman gramian multi-way partitioning algorithm

of the relative angle δi(0) is modeled as

δ̇i = ωi +D(∆i + δi(0)) = ωi + 1ui(t),

ω̇i =
1

Mi
(−Di ωi + Pm,i − Pe,i) +D(Ωi + ωi(0)) ,

(50)

where conservation of power flow dictates

Pe,i = Vi

n∑
j=1

Vj (Gij cos(δi − δj) +Bij sin(δi − δj)) .

(51)
where Gij and Bij are the transfer conductance and sus-
ceptance between buses i and j, and i = 1, ..., n, where
n = 9. Here we have taken generator 10 as a reference
frame for the relative speed ωi and relative angle δi of

6



Fig. 4. A figure showing the multi-step time-lapse prediction (dashed lines)
of a deep input-Koopman operator learned from training time-series data of
the 39 bus system, using 100 random initial conditions for the relative speed
and relative angle. The ground truth is plotted as dots.

each system. The nonlinearity of the power flow equations
couple directly into the swing dynamics, defining an implicit
nonlinear dynamical system with sinusoidal terms.

We consider a Koopman operator approach, motivated by
several observations [26]. First, our approach is data-driven,
which is suitable for wide-area monitoring applications when
working with uncalibrated or parametrically varying models
(due to changes in operational context or uncertainty). Sec-
ond, the approach is potentially scalable, since an increase
in the number of system states can be captured using larger
Koopman dictionaries, generated by scalable deep learning
algorithms in Tensorflow. Third, Koopman modes naturally
reveal coherency or incoherency among generators [27],
[26], which can be useful for distributed control design and
transient stability analysis[14], [28].

We trained an input-Koopman operator for the 39 bus
using our deep dynamic mode decomposition algorithm.
We implemented a 20-wide, 10 layer deep ResNet with
exponential linear unit activation functions (ELUs) [29] and
Dropout [30] in TensorFlow. We generated 100 random
trajectories of the IEEE 39 bus swing dynamics (1 second
resolution) and used 50 of the trajectories as training data
for learning a deep Koopman operator. The remaining 50
trajectories were reserved for the test stage. All trajectories
were defined on a normalized scale, to ensure convergence
of the Adam optimizer. Model accuracy was evaluated in
two ways: 1) one-step prediction error on test data (less than
0.01%) and 2) multi-step prediction error on a previously
unseen initial condition drawn from the test data (less than
0.4% error per time-step). The results of the multi-step
prediction task are plotted in Figure 4.

We next applied our decomposition algorithm to compute
a partition on the generators (see Figure 6) that accounted for
balancing of κo (subsystem observability) and κc (subsystem
controllability). This decomposition results in subsystems
that maximize internal observability while simultaneously
maximizing resiliency to external disturbances. The raw
values of κo and κc for each generator are plotted in Figure
5. We noted that generator 2 exhibited high κo scores, but

Fig. 5. Bar charts of κo (subsystem relative observability) and κc
(subsystem relative controllability) for each generator.

had a low κc score, indicating susceptibility to external
disturbances from other generators in the swing equations.

Our algorithm identified a clustering of generators result-
ing in a maximum variation in κc of

max
i,j
|κc,i − κc,j | = 0.33434

and a maximum variation in κo of

max
i,j
|κo,i − κo,j | = 0.09744.

Since our algorithm normalized the contributions of both κc
and κo, we were able to balance despite the separation in
scales. Interestingly, our algorithm identified zonal cluster-
ings for generators that were for the most part closer to each
other than generators outside their cluster (see Figure 6).
However, this was not always the case; generator 6 exhibited
a weak κc score and relatively weak κo score and thus was
included in a separate clustering to ensure balanced subsys-
tem controllability and observability across clusters. These
observations illustrate the input-output focus of our Koopman
decomposition approach. Whereas area assignments are often
allocated based on spatial criteria, our algorithm seeks to
minimize subsystem sensitivity to disturbances from other
subsystems and internal observability, to ensure accurate
state estimation [31].

VI. CONCLUSION

In this paper we introduced a method for learning input-
Koopman operators from data by integrating deep learn-
ing and dynamic mode decomposition. In particular, we
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Zone Key

Fig. 6. A figure showing the area/zone assignment of generators by our
modified multi-way partitioning algorithm, based on Koopman controllabil-
ity and observability.

explored the conditions under which a input-state separa-
ble form exists for the input-Koopman equations, enabling
construction of Koopman gramians. We showed that deep
dynamic mode decomposition is able to recover a high
fidelity approximation involving input-state separable Koop-
man operators, even when the underlying system is not
input-state separable. These results underscore the power of
learning representations for approximate data-driven control.
We introduced a nonlinear decomposition algorithm, based
on Koopman gramians, that maximizes internal subsystem
observability and disturbance rejection from unwanted noise
in other subsystems. Future work will focus on scalability
and analysis of system with hybrid dynamics.
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