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Secure Distributed State Estimation of an LTI system over

Time-varying Networks and Analog Erasure Channels

Aritra Mitra and Shreyas Sundaram

Abstract— We study the problem of collaboratively estimat-
ing the state of an LTI system monitored by a network of
sensors, subject to the following important practical consider-
ations: (i) certain sensors might be arbitrarily compromised
by an adversary and (ii) the underlying communication graph
governing the flow of information across sensors might be
time-varying. We first analyze a scenario involving intermittent
communication losses that preserve certain information flow
patterns over bounded intervals of time. By equipping the sen-
sors with adequate memory, we show that one can obtain a fully
distributed, provably correct state estimation algorithm that
accounts for arbitrary adversarial behavior, provided certain
conditions are met by the network topology. We then argue
that our approach can handle bounded communication delays
as well. Next, we explore a case where each communication
link stochastically drops packets based on an analog erasure
channel model. For this setup, we propose state estimate update
and information exchange rules, along with conditions on the
network topology and packet drop probabilities, that guarantee
mean-square stability despite arbitrary adversarial attacks.

I. INTRODUCTION

Consider a scenario where a group of sensors deployed

over a geographical network seek to cooperatively estimate

the state of a dynamical process. This general setup con-

stitutes the standard distributed state estimation problem and

finds applications in various domains such as power systems,

transportation networks, automated factories, and distributed

robotics. As envisioned in [1], to fully leverage the benefits

of a distributed sensor network as described above, one must

design algorithms and networks that can respond to dynamic

environments involving unreliable components. In particular,

the growing need for designing secure networked control

systems necessitates the design of localized algorithms that

operate reliably in the face of adversarial sensor attacks.

In this context, unavoidable network-induced issues such as

communication losses and delays offer additional degrees of

freedom for adversaries to devise carefully crafted attacks,

thereby significantly compounding the estimation problem.1

In light of the above discussion, the design of attack-resilient,

provably correct distributed state estimation algorithms that

account for various types of communication losses and

delays will be the subject of our present investigation.

Related Work: The classical distributed state estimation

problem as described above, has been studied extensively

over the past decade; however, single-time-scale algorithms

that solve such problems under the most general conditions
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1We discuss how adversaries can use communication losses and delays
to their advantage later in the paper.

on the system and network have been proposed only recently

in [2]–[5]. While the problem of detecting and mitigating

various forms of data-injection attacks in deterministic [6]–

[8] and stochastic [9], [10] centralized2 systems is now

well understood, tackling adversarial behavior in the context

of distributed state estimation remains largely unexplored.

The limited literature that seeks to address this problem

either provides no theoretical guarantees [11], [12] or limits

the class of admissible attacks [13]. In an initial effort to

bridge the gap between centralized and distributed secure

state estimation, we recently developed a distributed observer

that allows each non-compromised sensor to asymptotically

recover the entire state dynamics despite arbitrary adver-

sarial sensor attacks, under appropriate conditions on the

network topology [14]. However, our proposed technique did

not account for the challenges introduced by communication

drop-outs or delays. This leads us to the contributions of the

present paper.

Contributions: Our contributions are twofold. First, in

Section IV, we consider a communication loss model where

certain information flow patterns are preserved deterministi-

cally over bounded intervals of time. For this communication

loss model, we show how sensors equipped with memory

can process delayed state estimates received from neighbors

(some of whom can be potentially adversarial) to asymp-

totically estimate the state of the system. Our algorithm is

inspired by recent work that addresses the resilient consensus

problem in asynchronous settings [15], [16]. As a byproduct

of our analysis, we argue that the proposed strategy accounts

for bounded communication delays as well. We also char-

acterize the convergence rate of our algorithm in terms of

the system instability, the upper bound on the delay, and

certain properties of the underlying communication graph.

The second main result of the paper, presented in Section

VI, pertains to a network whose communication links are

modeled as analog erasure channels that may or may not

introduce random delays. We show how a graph metric

known as ‘strong-robustness’ (introduced in our prior work

[14]) can help tolerate higher erasure probabilities, while

guaranteeing mean-square stability of the estimation error

dynamics. Finally, we emphasize that all our results apply

to a sophisticated and worst-case adversarial model (termed

Byzantine adversaries) which is typically considered in the

literature on resilient distributed algorithms [17]–[20] .

2Here, by a centralized system, we refer to a system where the measure-
ments of all the sensors are available at a single location.
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II. SYSTEM AND ATTACK MODEL

Notation: A directed graph is denoted by G = (V , E),
where V = {1, · · · , N} is the set of nodes and E ⊆ V × V
represents the edges. An edge from node j to node i, denoted

by (j, i), implies that node j can transmit information to

node i. The neighborhood of the i-th node is defined as

Ni , {j | (j, i) ∈ E}. The notation |V| is used to denote the

cardinality of a set V . Throughout the rest of this paper, we

use the terms ‘edges’ and ‘communication links/channels’

interchangeably. The set of all eigenvalues (modes) of a

matrix A is denoted by sp(A) = {λ ∈ C | det(A−λI) = 0}
and the set of all marginally stable and unstable eigenvalues

of A is denoted by ΛU (A) = {λ ∈ sp(A) | |λ| ≥ 1}. We

use diag(A1, · · · ,A2) to refer to a block-diagonal matrix

with the matrix Ai as the i-th block entry. The notation Z≥0

is used to denote the set of all non-negative integers, and for

a random variable X, its expected value is denoted by E[X].
System Model: Consider the linear dynamical system

x[k + 1] = Ax[k], (1)

where k ∈ Z is the discrete-time index, x[k] ∈ Rn is the state

vector and A ∈ Rn×n is the system matrix. The system is

monitored by a network G = (V , E) consisting of N nodes.

The i-th node has partial measurement of the state x[k]:

yi[k] = Cix[k], (2)

where yi[k] ∈ Rri and Ci ∈ Rri×n. We denote y[k] =
[
yT
1 [k] · · · yT

N [k]
]T

, and C =
[
CT

1 · · · CT
N

]T
.

In the standard distributed state estimation problem, each

node is required to estimate the state x[k] using its own mea-

surements and the information received from its neighbors,

where such information flow is restricted by the underlying

communication graph G. A challenging scenario emerges

when one seeks to solve the same problem in the presence of

malicious nodes in the network. We now formally describe

the adversary model considered throughout the paper.

Adversary Model: We consider a subset A ⊂ V of

the nodes in the network to be adversarial. We assume

that the adversarial nodes are completely aware of the

network topology (and any variations to such topology

due to communication drop-outs), the system dynamics and

the algorithm employed by the non-adversarial nodes. In

terms of capabilities, an adversarial node can leverage the

aforementioned information to arbitrarily deviate from the

rules of any prescribed algorithm, while colluding with

other adversaries in the process. Furthermore, following

the Byzantine fault model [21], adversaries are allowed

to send differing state estimates to different neighbors at

the same instant of time. This assumption of omniscient

adversarial behavior is standard in the literature on resilient

and secure distributed algorithms [17]–[20], and allows us to

provide guarantees against “worst-case” adversarial behavior.

In terms of their density in the network, we assume that

there are at most f adversarial nodes in the neighborhood of

any non-adversarial node; this property will be referred to as

the ‘f -local’ property of the adversarial set. Summarily, the

adversary model described thus far will be called an f -local

Byzantine adversary model. The non-adversarial nodes will

be referred to as regular nodes and be represented by the set

R = V \ A. Finally, note that the number and identities of

the adversarial nodes are not known to the regular nodes.

Objective: Given the LTI system (1), the measurement

model (2), a communication graph G, and the f -local Byzan-

tine adversary model described above, our objective in this

paper is to design state estimate update and information

exchange rules that guarantee asymptotic convergence (in

a deterministic or stochastic sense) of the estimates of the

regular nodes to the true state of the plant, under different

types of communication loss models.

III. PRELIMINARIES

Before developing our estimation strategy, we first es-

tablish certain terminology, notation, and key ideas in this

section. To begin with, the underlying communication graph

G that dictates the flow of information among nodes in the

absence of any communication losses will be referred to as

the baseline communication graph. The loss of communi-

cation between nodes is modeled by a time-varying graph

G[k] = (V , E [k]), where E [k] ⊆ E . Regarding system (1), we

make the following assumption for clarity of exposition.3

Assumption 1. The system matrix A has real, distinct

eigenvalues.

Based on the above assumption, one can perform a coordi-

nate transformation z[k] , Vx[k] on (1), with an appropriate

non-singular matrix V, to obtain4

z[k + 1] = Mz[k] = diag(λ1, · · · , λn)z[k],

yi[k] = C̄iz[k], ∀i ∈ {1, · · · , N}
(3)

where sp(A) = diag(λ1, · · · , λn), M = VAV−1 and C̄i =
CiV

−1. Commensurate with this decomposition, the j-th

component of the state vector z[k] will be denoted by z(j)[k],
and will be referred to as the component corresponding to

the eigenvalue λj . Since recovering z[k] is equivalent to

recovering x[k], we focus on estimating z[k]. To this end,

we will use the following definition of source nodes.

Definition 1. (Source nodes) For each λj ∈ ΛU (A), the set

of nodes that can detect λj is denoted by Sj , and called the

set of source nodes for λj .

Let ΩU (A) ⊆ ΛU (A) contain the set of eigenvalues of A

for which V \Sj is non-empty. Then, for each λj ∈ ΩU (A),
our strategy requires the source nodes Sj to maintain local5

Luenberger observers for estimating z(j)[k], while the non-

source nodes rely on a secure consensus protocol for the

same. For any node i, let the set of eigenvalues it can detect

be denoted by Oi, and let UOi = sp(A) \ Oi. Then, the

3The results presented in this paper can however be extended to system
matrices with arbitrary spectrum via a more detailed technical analysis.

4As this only relies on the knowledge of the system matrix A (which is
assumed to be known by all the nodes), all of the nodes can do this in a
distributed manner.

5Here, by ‘local’ we imply that such observers can be constructed and
run without any information from neighbors.



x[k + 1] = ax[k]

s1 s2

w1 wNwi· · · · · ·

Fig. 1. A scalar unstable plant is monitored by a clique of N + 2 nodes,
where s1 and s2 are the only source nodes. A single adversary corrupting
either of the two sources can render the distributed state estimation problem
impossible, irrespective of the choice of algorithm.

following result from [14] states that node i can estimate

the locally detectable portion of z[k], referred to as zOi
[k],

without interacting with its neighbors.

Lemma 1. Suppose Assumption 1 holds. Then, for each

regular node i ∈ R and each λj ∈ Oi, a local Lu-

enberger observer can be constructed that ensures that

limk→∞ |ẑ
(j)
i [k] − z(j)[k]| = 0, where ẑ

(j)
i [k] denotes the

estimate of z(j)[k] maintained by node i.

The real challenge is posed by the task of estimating the

locally undetectable dynamics, since it necessitates commu-

nicating with neighbors, some of whom might be adversarial.

In fact, the traditional metric of graph connectivity which

plays a pivotal role in the analysis of fault-tolerant and

secure distributed algorithms [22], [23], cannot capture the

requirements to be met by a sensor network for addressing

adversarial behavior in the context of distributed state esti-

mation. A simple illustration of this fact is as follows.

Example 1. Consider a scalar unstable plant monitored by a

clique of N+2 nodes, as depicted in Figure 1. Nodes s1 and

s2 are the only nodes with non-zero measurements, i.e., they

are the source nodes for this system. Although this network

is fully connected, the presence of a single adversarial node

makes it impossible for any algorithm to guarantee estima-

tion of x[k] at every regular node. This remains true even

if every regular node possesses knowledge of the network

topology. Specifically, if the adversary compromises one of

the two source nodes, then it can behave in a way that

makes it impossible for the non-source nodes to distinguish

between two different state trajectories of the system, due to

the conflicting information from the two source nodes.6

The above example alludes to the need for a certain

amount of redundancy in the measurement structure and

the network topology. To this end, in [14], we proposed an

algorithm that made use of certain directed acyclic subgraphs

in addressing the secure distributed estimation problem;

properties of such subgraphs are described below.

Definition 2. (Mode Estimation Directed Acyclic Graph

(MEDAG)) For each eigenvalue λj ∈ ΩU (A), suppose there

exists a spanning subgraph Gj = (V , Ej) of G with the

6We omit details of such an attack strategy due to space constraints. For
centralized systems where f sensors are compromised, [6], [8] have shown
that for recovering the state of the system asymptotically, the system must
remain detectable after the removal of any 2f sensors.

following properties.

(i) If i ∈ {V \ Sj} ∩ R, then |N
(j)
i | ≥ 2f + 1, where

N
(j)
i = {l|(l, i) ∈ Ej} represents the neighborhood of

node i in Gj .

(ii) There exists a partition of R into the sets

{L
(j)
0 ,L

(j)
1 , · · · ,L

(j)
Tj

}, where L
(j)
0 = Sj ∩ R,

and if i ∈ L
(j)
m (where 1 ≤ m ≤ Tj), then

N
(j)
i ∩R ⊆

⋃m−1
r=0 L

(j)
r .

Then, we call Gj a Mode Estimation Directed Acyclic

Graph (MEDAG) for λj ∈ ΩU (A).

We say a regular node i ∈ L
(j)
m “belongs to level m”,

where the levels are indicative of the relative distances of

the regular nodes from the source set Sj . The first property

indicates that every regular node i ∈ V \ Sj has at least

(2f + 1) neighbors in the subgraph Gj , while the second

property indicates that all its regular neighbors in such a

subgraph belong to levels strictly preceding its own level. In

essence, the edges of the MEDAG Gj represent a medium for

transmitting information securely from the source nodes Sj

to the non-source nodes, by preventing the adversaries from

forming a bottleneck between such nodes. Intuitively, this

requires redundant nodes and edges, and such a requirement

is met by the first property of the MEDAG.7 Our estimation

scheme (described later) relies on a special information flow

pattern that requires a node i to listen to only its neighbors

in N
(j)
i for estimating z(j)[k]. The second property of a

MEDAG then indicates that nodes in level m only use the

estimates of regular nodes in levels 0 to m−1 for recovering

z(j)[k]. The implications of such properties will become

apparent during the analysis of our proposed algorithms.

Before proceeding further, we need to understand the prop-

erties of the baseline communication graph G that guarantee

the existence of a MEDAG Gj , ∀λj ∈ ΩU (A). To this end,

we require the following definitions and result from [14].

Definition 3. (r-reachable set) For a graph G = (V , E), a

set S ⊂ V , and an integer r ∈ Z>0, S is an r-reachable set

if there exists an i ∈ S such that |Ni \ S| ≥ r.

Definition 4. (strongly r-robust graph w.r.t. Sj ) For r ∈
Z>0 and λj ∈ ΩU (A), a graph G = (V , E) is strongly

r-robust w.r.t. to the set of source nodes Sj , if for any non-

empty subset C ⊆ V \ Sj , C is r-reachable.

Lemma 2. If G is strongly (2f+1)-robust w.r.t. Sj , for some

λj ∈ ΩU (A), then G contains a MEDAG Gj for λj .

Given a λj ∈ ΩU (A), there might be more than one

subgraph that satisfies the definition of a MEDAG Gj . In

[14], we proposed a distributed algorithm that allowed each

node i to identify the sets N
(j)
i , ∀λj ∈ UOi, by explicitly

constructing a specific MEDAG Gj for each λj ∈ UOi. In

this paper, we assume that these MEDAGs have already been

constructed during a distributed design phase using such an

algorithm, to inform each node i of the set N
(j)
i , ∀λj ∈ UOi.

7In particular, as regards measurement redundancy, note that for each
λj ∈ ΩU (A), a MEDAG Gj contains atleast (2f + 1) source nodes that
can detect λj .



It will be important to keep in mind that the sets N
(j)
i are

time-invariant as they correspond to specific MEDAGs.

IV. SECURE STATE ESTIMATION OVER TIME-VARYING

NETWORKS

In this section, we develop an algorithm that enables

each regular node to estimate its locally undetectable por-

tion subject to arbitrary adversarial attacks and intermittent

communication losses that satisfy the following criterion.

Assumption 2. There exists T ∈ Z>0 such that ∀k ≥
T,

⋃T

τ=0 G[k − τ ] contains the MEDAG Gj for each λj ∈
ΩU (A).

Note that under the above communication failure model,

G[k] may not contain the specific MEDAGs constructed dur-

ing the design phase for some (or all) k, thereby precluding

direct use of the technique developed in [14]. However, such

MEDAGs will be preserved in the union graph over the

interval [k − T, k], ∀k ≥ T . For this model, we assume that

all estimates being transmitted by regular nodes are properly

time-stamped, and propose the following algorithm.

For each λj ∈ UOi, a regular node i updates its estimate

of z(j)[k] in the following manner.

1) At every time-step k, node i collects the most recent

estimate of z(j)[k] received from each node l ∈ N
(j)
i ,

along with the corresponding time-stamp φil[k] ∈ Z≥0.

It then evaluates the delay τil[k] = k − φil[k] and

computes the quantity z̄
(j)
il [k] , λj

τil[k]ẑ
(j)
l [k−τil[k]].

8

Prior to receiving the first estimate from a node l ∈
N

(j)
i , the value z̄

(j)
il [k] is maintained at 0 by node i.9

2) The values z̄
(j)
il [k] are sorted from largest to smallest;

subsequently, the largest f and the smallest f of such

values are discarded (i.e., 2f values are discarded in

all) and ẑ
(j)
i [k] is updated as

ẑ
(j)
i [k + 1] = λj

(
∑

l∈M
(j)
i

[k]
w

(j)
il [k]z̄

(j)
il [k]

)

, (4)

where M
(j)
i [k] ⊂ N

(j)
i represents the set of nodes

whose (potentially) delayed estimates are used by node

i at time-step k after the removal of the 2f aforemen-

tioned values. Node i assigns the consensus weight

w
(j)
il [k] to node l at time-step k for estimating the

component of the state corresponding to the eigenvalue

λj . The weights w
(j)
il [k] are non-negative and satisfy

∑

l∈M
(j)
i

[k]
w

(j)
il [k] = 1, ∀λj ∈ UOi.

We refer to the above algorithm as the Sliding Window

Local-Filtering based Secure Estimation (SW-LFSE) algo-

rithm. We comment on certain features of this algorithm and

then proceed to analyze its convergence properties.

8For notational simplicity, while considering the eigenvalue λj , we drop
the superscript ‘j’ on the time-stamp φil[k] and the delay τil[k].

9If node i receives an estimate without a time-stamp from some node in

N
(j)
i ∩A, it simply assigns a value of 0 to such an estimate (without loss of

generality). Note that based on Assumption 2, node i is guaranteed to receive

a time-stamped estimate from every regular node l in N
(j)
i at least once over

every interval of the form [k−T, k], ∀k ≥ T , i.e., for each l ∈ N
(j)
i ∩R,

z̄
(j)
il

[k] will necessarily be of the form λj
τil[k]ẑ

(j)
l

[k− τil[k]], ∀k ≥ T .

Remark 1. Like the LFSE algorithm in [14], the SW-

LFSE algorithm also relies on a two-stage filtering strategy.

Specifically, the first stage of filtering corresponds to a

regular node i ∈ V \ Sj listening to only its neighbors

N
(j)
i ⊆ Ni in the MEDAG Gj .10 The second stage of

filtering requires node i to discard certain extreme values

received from nodes in N
(j)
i .11 A key point of difference

between the algorithms is that in the SW-LFSE approach,

at each time-step k, node i needs to store the most recent

(potentially) delayed estimate received from each neighbor in

N
(j)
i . Consequently, we require the regular nodes to possess

adequate memory.

Remark 2. Our approach does not require the nodes to have

a priori knowledge of the value of T in Assumption 2.

Remark 3. Our results will continue to hold if in step 2
of the SW-LFSE algorithm, node i simply uses the median

value of z̄
(j)
il [k], l ∈ N

(j)
i , in the update rule (4). Although

this can reduce computation, the present approach offers a

degree of freedom in choosing the weights w
(j)
il [k], that can

be potentially leveraged to account for issues like noise.

Remark 4. As alluded to earlier in the introduction, this

communication-loss model offers the adversaries the addi-

tional opportunity of sending false information regarding

the time-stamps of their estimates.12 Nevertheless, as we

establish in the next section, our proposed algorithm is

immune to such misbehavior.

V. ANALYSIS OF THE SW-LFSE ALGORITHM

The following is the main result of this section.

Theorem 1. Given an LTI system (1) and a measurement

model (2), let the baseline communication graph G be

strongly (2f + 1)-robust w.r.t. Sj , ∀λj ∈ ΩU (A). Further-

more, let Assumptions 1 and 2 be met. Then, the proposed

SW-LFSE algorithm guarantees the following despite the

actions of any set of f -local Byzantine adversaries.

• (Asymptotic Stability) Each regular node i ∈ R can

asymptotically estimate the state of the plant, i.e.,

limk→∞ ||x̂i[k] − x[k]|| = 0, ∀i ∈ R, where x̂i[k] is

the estimate of the state x[k] maintained by node i.

• (Rate of Convergence) Let e
(j)
i [k] = ẑ

(j)
i [k] − z(j)[k]

denote the error in estimation of the component z(j)[k]
by a regular node i ∈ V \ Sj . Then, if node i belongs

to level q of the MEDAG Gj , its estimation error e
(j)
i [k]

satisfies the following inequality ∀k ≥ (T + 1)q:

|e
(j)
i [k]| ≤ β(j)

[

(N − (2f + 1))
(

|λj |
γ(j)

)(T+1)
]q

(γ(j))
k
, (5)

10This operation ensures a uni-directional flow of information from the
source nodes Sj (some of whom might also be adversarial) to the rest of
the network.

11Whereas the first stage of filtering is specific to our distributed state
estimation approach, the second stage of filtering is similar to the W-MSR
algorithm employed in the secure consensus literature [17], [18].

12In other words, due to false time-stamp information, the quantity

ẑ
(j)
l

[k− τil[k]] may not represent the true estimate of an adversarial node
l at time (k − τil[k]). Thus, we resort to a slight abuse of notation here.



where β(j) > 0 and γ(j) ∈ (0, 1) are certain constants.

Proof. Note that for each regular node i, the state vector z[k]
can be partitioned into the components zOi

[k] and zUOi
[k]

that correspond to the detectable and undetectable eigenval-

ues, respectively, of node i. Based on Lemma 1, we know

that node i can estimate zOi
[k] asymptotically via a locally

constructed Luenberger observer. It remains to show that

node i can recover zUOi
[k], or in other words, for each λj ∈

UOi, we need to prove that limk→∞ |ẑ
(j)
i [k]− z(j)[k]| = 0.

Equivalently, we show that for each λj ∈ ΩU (A), every

regular node i ∈ V \ Sj can asymptotically recover z(j)[k].
Consider an eigenvalue λj ∈ ΩU (A). Since E [k] ⊆ E

for all k, Assumption 2 can hold only if the baseline graph

G contains Gj . The latter follows from the conditions of

the Theorem and Lemma 2. Next, based on Assumption

2, notice that for all k ≥ T , the union of the graphs over

the interval [k − T, k] contains the MEDAG Gj . Recall that

the sets {L
(j)
0 ,L

(j)
1 , · · · ,L

(j)
q , · · · L

(j)
Tj

} form a partition of

the set of regular nodes R in such a MEDAG. We prove

the desired result by inducting on the level number q. For

q = 0, L
(j)
0 = Sj ∩ R from definition, and hence all

nodes in level 0 can estimate z(j)[k] asymptotically by virtue

of Lemma 1. Next, consider a regular node i in L
(j)
1 and

let e
(j)
i [k] , ẑ

(j)
i [k] − z(j)[k]. We first analyze the SW-

LFSE update rule (4). To this end, at each time-step k,

let the neighbor set N
(j)
i of node i be partitioned into

the sets U
(j)
i [k],M

(j)
i [k] and J

(j)
i [k], where U

(j)
i [k] and

J
(j)
i [k] contain f nodes each, with the highest and the

lowest values of z̄
(j)
il [k] respectively, and M

(j)
i [k] contains

the remaining nodes in N
(j)
i . At any instant k, we can

either have M
(j)
i [k] ∩ A = 0 or M

(j)
i [k] ∩ A 6= 0. In the

former case, all nodes in M
(j)
i [k] belong to L

(j)
0 = Sj ∩R.

In the latter case, when node i uses values transmitted by

adversarial nodes in its update rule, it follows from the SW-

LFSE algorithm, the f -locality of the adversary model, and

the fact that |N
(j)
i | ≥ (2f+1), that for each l ∈ M

(j)
i [k]∩A,

there exists a node u ∈ U
(j)
i [k] and a node v ∈ J

(j)
i [k]

such that both u, v ∈ L
(j)
0 , and z̄

(j)
iv [k] ≤ z̄

(j)
il [k] ≤ z̄

(j)
iu [k],

i.e., z̄
(j)
il [k] can be expressed as a convex combination of

z̄
(j)
iu [k] and z̄

(j)
iv [k].13 Based on the above discussion and (4),

it follows that for all k, ẑ
(j)
i [k + 1] belongs to the convex

hull formed by λj z̄
(j)
il [k], l ∈ L

(j)
0 . Specifically, there exist

weights w̄
(j)
il [k] such that

∑

l∈N
(j)
i

∩L
(j)
0

w̄
(j)
il [k] = 1, and

ẑ
(j)
i [k + 1] = λj

(
∑

l∈N
(j)
i

∩L
(j)
0

w̄
(j)
il [k]z̄

(j)
il [k]

)

. (6)

Since
∑

l∈N
(j)
i

∩L
(j)
0

w̄
(j)
il [k] = 1, and z(j)[k+1] = λjz

(j)[k]

based on (3), we obtain

z(j)[k + 1] = λj

(
∑

l∈N
(j)
i

∩L
(j)
0

w̄
(j)
il [k]λj

τil[k]z(j)[k − τil[k]]
)

.

(7)

13Explicit dependence of u, v on the parameters represented by i, j, l and
k is not shown to avoid cluttering of the exposition.

Based on Assumption 2 and step 1 of the SW-LFSE update

rule, we have that for all k ≥ T , z̄
(j)
il [k] = λj

τil[k]ẑ
(j)
l [k −

τil[k]], l ∈ N
(j)
i ∩ L

(j)
0 . Subtracting (7) from (6), we then

obtain the following error dynamics for all k ≥ T :

e
(j)
i [k + 1] = λj

(
∑

l∈N
(j)
i ∩L

(j)
0

w̄
(j)
il [k]λj

τil[k]e
(j)
l [k − τil[k]]

)

. (8)

Noting that the weights w̄
(j)
il [k] belong to [0, 1], the delay

terms τil[k] are upper bounded by T for l ∈ N
(j)
i ∩ R, λj

satisfies |λj | ≥ 1, and using the triangle inequality, we obtain

the following based on (8) for all k ≥ T :

|e
(j)
i [k + 1]| ≤ |λj |(T+1)

(
∑

l∈N
(j)
i

∩L
(j)
0

|e
(j)
l [k − τil[k]]|

)

. (9)

For every l ∈ L
(j)
0 , since e

(j)
l [k] converges asymptoti-

cally, and hence exponentially (the local Luenberger ob-

server based dynamics are linear) based on Lemma 1, there

exist constants c
(j)
l > 0 and γ

(j)
l ∈ (0, 1) such that

|e
(j)
l [k]| ≤ c

(j)
l (γ

(j)
l )

k
. Let β(j) , max

l∈L
(j)
0

c
(j)
l and γ(j) ,

max
l∈L

(j)
0

γ
(j)
l . Then, we obtain the following inequality

based on (9) for all k ≥ T :

|e
(j)
i [k + 1]| ≤ |λj |

(T+1)|M
(j)
i [k]|β(j)(γ(j))

(k−T )
. (10)

Finally, note that based on the rules of the SW-LFSE

algorithm, at each time-step k ≥ T , node i discards 2f
values and does not use its own estimate in the update rule

(4). Hence, we have |M
(j)
i [k]| ≤ (N − (2f + 1)). Thus, we

obtain (5) for q = 1, implying exponential stability of the

error dynamics (8) for all nodes in level 1, since γ(j) ∈ (0, 1).
Suppose asymptotic stability holds for nodes in all levels

from 0 to q (where 1 ≤ q ≤ Tj − 1). It is easy to see that

the result holds for all nodes in L
(j)
q+1 as well, by noting that

(i) a regular node i ∈ L
(j)
q+1 has N

(j)
i ∩ R ⊆

⋃q

r=0 L
(j)
r ,

and (ii) any value z̄
(j)
il [k] used by node i in the update rule

(4) lies in the convex hull formed by z̄
(j)
iu [k], u ∈

⋃q

r=0 L
(j)
r .

Based on the induction hypothesis, asymptotic stability can

then be argued using the same reasoning as the q = 1 case.

Verifying (5) is a matter of straightforward algebra.

The above arguments can be used almost identically to

analyze the impact of bounded communication delays (poten-

tially random, time-varying) in the presence of adversaries,

for static networks.14 We formalize this observation below.

Corollary 1. Given an LTI system (1) satisfying Assumption

1, and a measurement model (2), let G[k] = G ∀k, where

G is strongly (2f + 1)-robust w.r.t. Sj , ∀λj ∈ ΩU (A).
Furthermore, let communication delays between any pair of

regular nodes in G be bounded by some T ∈ Z>0. Then, the

proposed SW-LFSE algorithm provides identical guarantees

as in Theorem 1.

We conclude this section with the following remark.

Remark 5. For each unstable/ marginally stable eigenvalue

of the system, Theorem 1 and Corollary 1 explicitly relate the

14Here, by a bounded communication delay we imply that if (i, j) ∈ E
and i, j ∈ R, then any estimate transmitted by node i to node j at time-step
k, is received by node j no later than time-step k+T , for some T ∈ Z>0.



rates of convergence of the different non-source nodes to the

the instability of the system mode under consideration, the

delay upper bound T , and the respective distances of such

nodes (captured by the different levels ‘q’ of a MEDAG) from

the corresponding sources of information.

VI. SECURE STATE ESTIMATION OVER ANALOG

ERASURE CHANNELS

In this section, we explore the problem of secure dis-

tributed state estimation over a network where each com-

munication link is modeled by an analog erasure channel as

defined in [24]. Specifically, the transmission of information

across any link (i, j) ∈ E is governed by a random process

ξij [k] that is memoryless, i.e., ξij [k] is i.i.d. over time.

Furthermore, across space, the packet dropping processes

over different links are independent. For any k, the random

variable ξij [k] follows a Bernoulli fading distribution, i.e.,

ξij [k] = 0 with erasure probability p and ξij [k] = 1 with

probability (1 − p); the implications of ξij [k] assuming the

values 0 and 1 will be discussed shortly.

Our objective in this section will be to design a secure

distributed state estimation protocol that guarantees mean-

square stability of the estimation error dynamics for each

regular node, in the following sense.

Definition 5. (Mean-Square Stability (MSS)) The estima-

tion error dynamics of the regular nodes is said to be mean-

square stable if limk→∞ E[||ei[k]||2] = 0, ∀i ∈ R, where

ei[k] = x̂i[k]−x[k], and the expectation is taken with respect

to the packet dropping processes ξij [k], (i, j) ∈ E .

A. Channels with no delay

We first consider the case where ξij [k] = 1 implies that

any data packet transmitted by node i at time k is received

perfectly by node j at time k, and when ξij [k] = 0, such a

packet is dropped completely. For this model, we propose a

simple algorithm described as follows.

For each λj ∈ UOi, a regular node i updates its estimate

of z(j)[k] in the following manner.

• At each time-step k, if it receives estimates from at least

(2f+1) nodes in N
(j)
i , it runs the LFSE algorithm, i.e.,

it removes the largest f and the smallest f estimates

ẑ
(j)
l [k], l ∈ N

(j)
i and updates ẑ

(j)
i [k] as

ẑ
(j)
i [k + 1] = λj

(
∑

l∈M
(j)
i

[k]
w

(j)
il [k]ẑ

(j)
l [k]

)

, (11)

where the set M
(j)
i [k] and the weights w

(j)
il [k] are

defined as in the description of the SW-LFSE algorithm

in Section IV. Otherwise, it runs open-loop as follows:

ẑ
(j)
i [k + 1] = λj ẑ

(j)
i [k]. (12)

The above algorithm provides the following guarantees.

Theorem 2. Given an LTI system (1) satisfying Assumption

1, and a measurement model (2), let the baseline communi-

cation graph G be strongly (mf +1)-robust w.r.t. Sj , ∀λj ∈
ΩU (A), where m ∈ Z>0. For each (i, j) ∈ E , let ξij [k] be a

Bernoulli packet dropping process with erasure probability

p, that is i.i.d. over time and independent of packet dropping

processes over other links. Suppose m ≥ 3 and that the

following is true:15

ρ2p̄ < 1, (13)

where ρ is the spectral radius of A, and

p̄ , 1−

(m−1)f+1
∑

l=(2f+1)

(
(m− 1)f + 1

l

)

(1− p)
l
p(m−1)f+(1−l).

(14)

Then, the secure distributed state estimation algorithm de-

scribed by the update rules (11) and (12) guarantees mean-

square stability in the sense of Definition 5, despite the

actions of any f -local set of Byzantine adversaries

Proof. Note that the packet dropping processes do not affect

the estimation of the locally detectable portions of the state,

i.e., each regular node i can recover zOi
[k] asymptotically

based on Lemma 1. Consider λj ∈ ΩU (A). Since G is

strongly (mf + 1)-robust w.r.t. Sj , a trivial extension of

Lemma 2 implies that in the MEDAG Gj , |N
(j)
i | ≥ (mf +

1), ∀i ∈ {V \ Sj} ∩R. We induct on the level numbers q of

such a MEDAG Gj present in the baseline communication

graph G. Let i be a node in level 1. Let Ii[k] be an indicator

random variable16 such that Ii[k] = 1 if node i uses the

update rule (12) and Ii[k] = 0 if node i uses the update rule

(11). To make the presentation clear, we make the following

assumption. Suppose node i receives estimates from more

than (2f + 1) nodes in N
(j)
i at a certain time-step k. Then,

after removing 2f estimates based on the LFSE algorithm, it

listens to only a single node picked arbitrarily from M
(j)
i [k],

while running (11).17 Combining (11) and (12), we obtain

ẑ
(j)
i [k + 1] = λj

(

Ii[k]ẑ
(j)
i [k] + (1− Ii[k])ẑ

(j)
l [k]

)

, (15)

where l ∈ M
(j)
i [k]. It is easy to see that the error e

(j)
i [k] =

ẑ
(j)
i [k]− z(j)[k] follows the dynamics:

e
(j)
i [k + 1] = λj

(

Ii[k]e
(j)
i [k] + (1− Ii[k])e

(j)
l [k]

)

. (16)

Defining σ
(j)
i [k] , E[(e

(j)
i [k])

2
], and using (16), we obtain:

σ
(j)
i [k + 1] =λ2

jE[I2
i [k]]σ

(j)
i [k] + λ2

jE[(1− Ii[k])
2]σ

(j)
l [k]

+ 2λ2
jE[Ii[k]− I2

i [k]]E[(e
(j)
i [k])(e

(j)
l [k])]

︸ ︷︷ ︸

g[k]

,

=λ2
jp

(j)
i [k]σ

(j)
i [k] + λ2

j (1− p
(j)
i [k])σ

(j)
l [k],

≤ (λ2
j p̄)σ

(j)
i [k] + λ2

jσ
(j)
l [k], (17)

where l ∈ M
(j)
i [k] and p

(j)
i [k] is the probability that Ii[k] =

1. We now justify each of the above steps. For arriving at

the first equality, we used the fact that e
(j)
i [k] is independent

of Ii[k] for any i ∈ R, based on the update rules (11)

15The choice of m ≥ 3 is justified in Remark 8.
16To avoid cluttering the exposition, we drop the superscript ‘j’ on Ii[k]

and certain other terms throughout the proof, since they can be inferred
from context.

17The result continues to hold for the general update rule (11).



and (12), and the nature of the packet dropping processes.

The fact that e
(j)
l [k] (where l ∈ M

(j)
i [k]) is independent of

Ii[k] requires further arguments. In particular, suppose node

l is adversarial and has precise knowledge of the number of

packets received by node i at time-step k, i.e., suppose node l

knows Ii[k]. The estimate ẑ
(j)
l [k] it transmits to node i might

then be influenced by the knowledge of Ii[k]. Irrespective of

such knowledge, whenever l ∈ M
(j)
i [k], based on the LFSE

update rule (11) and the f -locality of the adversarial model,

it follows from arguments identical to those in Theorem

1 that e
(j)
l [k] can be expressed as a convex combination

of e
(j)
u [k] and e

(j)
v [k], for some u, v ∈ L

(j)
0 . Since such

nodes are regular, their errors at time k are independent

of Ii[k], and converge to 0 since L
(j)
0 = Sj ∩ R. Thus,

for any l ∈ M
(j)
i [k], e

(j)
l [k] and Ii[k] are independent, and

limk→∞ σ
(j)
l [k] = 0. Also, since Ii[k] is an indicator random

variable, E[Ii[k]] = E[I2
i [k]]. Hence, g[k] = 0 leading to the

second equality in (17).

For arriving at the final inequality, we first note that

p
(j)
i [k] can potentially vary over time and across different

nodes since the adversarial nodes are allowed to behave

arbitrarily. In particular, a compromised node may choose

not to transmit estimates even if all out-going communication

links from such a node are intact. Thus, since it is impossible

to exactly compute p
(j)
i [k], we instead seek to upper-bound

it. To this end, note that the probability that Ii[k] = 0, i.e.,

the probability that node i receives estimates from at least

(2f + 1) nodes in N
(j)
i at time k, is lower bounded by the

probability that it receives estimates from at least (2f + 1)

nodes in N
(j)
i ∩ R at time k. The latter probability can be

further lower bounded by (1− p̄) (where p̄ is given by (14))

by noting that |N
(j)
i ∩R| ≥ ((m− 1)f +1) based on the f -

locality of the fault model. In light of the above discussion,

we have p
(j)
i [k] ≤ p̄, leading to the last inequality in (17).

Finally, equation (13) implies that λ2
j p̄ < 1, and in turn

guarantees that limk→∞ σ
(j)
i [k] = 0, based on Input to State

Stability (ISS) and the foregoing discussion.

Suppose limk→∞ σ
(j)
i [k] = 0 for all nodes in levels 0 to

q. Consider a node i ∈ L
(j)
q+1[k]. Its error dynamics evolves

based on (17), with g[k] = 0 for reasons discussed above,

and e
(j)
l [k] = α

(j)
il [k]e

(j)
u [k] + (1− α

(j)
il [k])e

(j)
v [k], for some

α
(j)
il [k] ∈ [0, 1], and some u, v ∈

⋃q

r=0L
(j)
r . The last argu-

ment follows from the LFSE update rule (11). Since σ
(j)
u [k]

and σ
(j)
v [k] converge to 0 based on the induction hypothesis,

the term E[(e
(j)
u [k])(e

(j)
v [k])] appearing in σ

(j)
l [k] can be

upper-bounded by

√

σ
(j)
u [k]σ

(j)
v [k] by virtue of the Cauchy-

Schwartz inequality. This implies limk→∞ σ
(j)
l [k] = 0, ∀ l ∈

M
(j)
i [k]. The rest of the proof can be completed following

similar arguments as the q = 1 case.

The term p̄ appearing in (13) and (14) can be interpreted as

the effective packet drop/erasure probability for the problem

under study. With this in mind, the implications of the above

result are described as follows.

3 4 5 6
0

1

2

3

4
p=0.5

p=0.3

p=0.1

Fig. 2. Plot illustrating how the effective packet drop probability p̄ can be
reduced by increasing the level of robustness m. For this example, ρ = 2
and f = 3.

Remark 6. (Increasing ‘network robustness’ reduces ‘ef-

fective packet drop probability’) Given knowledge of the

spectral radius ρ of A, an upper-bound f on the number

of adversaries in the neighborhood of any regular node,

and the erasure probability p of the communication network,

suppose we are faced with the problem of designing a

network topology that guarantees mean-square stability in

the sense of Definition 5. Theorem 2 provides an answer

to this problem by quantitatively relating our notion of

‘strong-robustness’ in Definition 4 to the effective packet

drop probability p̄. For instance, as shown in Figure 2,

given the parameters ρ, f and p, one can generate a plot

for ρ2p̄ offline, and choose m to satisfy the MSS criterion

ρ2p̄ < 1. Subsequently, one can proceed to design a network

that is strongly (mf +1)-robust w.r.t. Sj , λj ∈ ΩU (A). It is

easy to verify that p̄ is monotonically increasing in p, and

monotonically decreasing in m. In other words, for a fixed

ρ and f , one can tolerate higher erasure probabilities p by

increasing the robustness parameter m.

Remark 7. Note that when f = 0, i.e., in the absence

of adversaries, equation (13) reduces to ρ2p < 1. This

condition is reminiscent of the MSS criterion for remote

stabilization of an LTI system over a Bernoulli packet

dropping channel [25]. This observation can be explained by

viewing the contribution due to the LFSE update (11) (that

helps stabilize the error dynamics (16)) as an analogue of

the stabilizing input in the remote stabilization problem.

Remark 8. We must justify the need for m ≥ 3 in Theorem

2. For a network that is strongly (mf+1)-robust with m ≤ 2,

each adversarial node may follow the simple strategy of

never transmitting its estimate. If the adversaries compromise

f nodes in some set N
(j)
i , where i ∈ R and λj ∈ UOi,

then such a strategy might cause the regular node i to

run open-loop forever based on the algorithm described by

the update rules (11) and (12). Instead of running open-

loop, suppose that if a regular node i does not hear from

some neighbor in N
(j)
i at time k, it assigns a value of 0

to the corresponding estimate, and then employs the LFSE

update rule (11). Such an approach will in general not work

either, due to the following reason. Unlike the communication

loss model studied in Section IV, where each regular node

was guaranteed to receive estimates from ‘enough’ regular

neighbors over bounded intervals of time, no such guarantees

can be claimed for the analog erasure channel model studied

here. Thus, while strongly (2f + 1)-robust networks sufficed



in Section IV, the choice of m ≥ 3 is in fact necessary in

the present context for achieving MSS based on our specific

approach. However, m = 2 does suffice for certain variants

of the analog erasure channel model, as we discuss next.

B. Channels with erasure and delay

In this section, we consider a variant of the analog erasure

channel that accounts for the presence of random delays. To

this end, let (i, j) ∈ E , and let v[k] be a message transmitted

by node i to node j at time-step k. Then, a channel with delay

and erasure causes node j to receive the following message:

r[k] = ξij [k]v[k] + (1− ξij [k])v[k − τij [k]], (18)

where ξij [k] is the memory-less packet dropping process

described earlier, τij [k] ∈ Z>0 is a random delay satisfying

1 ≤ τij [k] ≤ T , and T ∈ Z>0. In words, the channel output

r[k] is either equal to the present channel input v[k] with

probability (1 − e), or equal to a delayed channel input

with probability e, where the delay is upper bounded by

some positive constant T . It should be noted that the erasure

channel model considered here is a generalization of the

erasure channel with delay in [24], where the delays are

constant. For this model, we have the following result.

Proposition 1. Given an LTI system (1) satisfying Assump-

tion 1, and a measurement model (2), let the baseline

communication graph G be strongly (2f + 1)-robust w.r.t.

Sj , ∀λj ∈ ΩU (A). Let each communication link of G be

modeled as a channel with delay and erasure as described

by equation (18). Then, the SW-LFSE algorithm provides

identical guarantees as in Theorem 1, with probability 1.

Proof. The proof follows from the following simple obser-

vation: based on the channel model (18), note that for each

λj ∈ ΩU (A), every regular node i ∈ V \Sj is guaranteed to

receive a state estimate that is at most T time-steps delayed,

from each of its regular neighbors in N
(j)
i , at every time-step

k, ∀k ≥ T . This corresponds to a special case of the bounded

delay model in Corollary 1, and the result thus follows.

VII. CONCLUSION

We developed secure distributed state estimation algo-

rithms that account for adversarial nodes in the presence of

communication losses, both deterministic and stochastic. For

the former case, we characterized the convergence rate of our

algorithm in terms of certain system and network properties,

and for the latter scenario involving analog erasure channels,

we established that our notion of ‘strong-robustness’ plays an

important role in tolerating high erasure probabilities while

ensuring mean-square stability. As future work, it would be

interesting to explore if exploiting sensor memory like the

SW-LFSE approach in Section IV can help tolerate higher

erasure probabilities for the analog erasure channel model

considered in Section VI-A.
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