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Abstract

The present paper proposes a novel broadcast control (BC) law for multi-agent coordination. A BC framework has been
developed to achieve global coordination tasks with low communication volume. The BC law uses broadcast communication,
which transmits an identical signal to all agents indiscriminately without any agent-to-agent communication. Unfortunately,
all of the agents are required to take numerous random actions because the BC law is based on stochastic optimization. Such
random actions degrade the control performance for coordination tasks and may invoke dangerous situations. In order to
overcome these drawbacks, the present paper proposes the pseudo-perturbation-based broadcast control (PBC) law, which
introduces multiple virtual random actions instead of the single physical action of the BC law. The following advantages of
the PBC law are theoretically proven. The PBC law achieves coordination tasks asymptotically with probability 1. Compared
with the BC law, unavailing actions are reduced and agents’ states converge at least twice as fast. Increasing the number of
multiple actions further improves the control performance because averaging multiple actions reduces unavailing randomness.
Numerical simulations demonstrate that the PBC improves the control performance as compared with the BC law.
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1 Introduction

Coordinations of multi-agent systems have recently at-
tracted attention in various engineering fields in line
with recent technological advancements in computing
and communication resources. Swarm robots, groups of
vehicles, embedded robotic systems, and electric power
networks are examples of multi-agent systems that re-
quire coordination in order to achieve desired global be-
haviors. Some common behaviors desired in multi-agent
systems include coverage control by agents deployed over
a given space, rendezvous with formation of the agents
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in a synchronized manner, and assignment at target lo-
cations (for examples, see [7, 9, 12, 17]).

Decentralized/distributed control approaches perform
multi-agent tasks using agent/supervisor-to-agent com-
munication, e.g., [8,11]. In distributed frameworks, each
agent takes action locally and individually, communi-
cating with its neighbor agents. Alternatively, central-
ized control systems use a supervisor to aggregate infor-
mation from all agents. Such aggregation is efficient for
achieving global coordination tasks. The supervisor eval-
uates a global objective based on information of agents
and transmits commands to all of the agents individu-
ally. However, such centralized systems require a mas-
sive communication volume between a supervisor and
agents, i.e., one-to-all and all-to-one communications.

For achieving global coordination tasks with a low com-
munication volume, the present paper focuses on an-
other structure of multi-agent systems called a broad-
cast system. The broadcast system can work with a
low communication volume because a supervisor broad-
casts an identical signal to all of the agents indiscrim-
inately and no agent-to-agent communication is used.
Table 1 indicates that the both-way communication vol-
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Table 1
Communication volumes of unicast and broadcast protocols.
The number of agents is denoted by N .

Protocol
one-to-all

communication
all-to-one

communication
Unicast O(N) O(N)

Broadcast O(1) O(N)

ume (O(N + 1)) of the broadcast system is lower than
that (O(2N)) of centralized systems employing unicast
protocols in one-to-all communication. The broadcast
system has the potential to realize global behaviors be-
cause the supervisor aggregates the information of all of
the agents. Broadcast systems are constructed even if
supervisors and all agents use broadcast communication
rather than unicast communication, e.g., connected ve-
hicles in traffic coordination [10]. Combining broadcast
communication with agent-to-agent communication en-
sures controllability and/or stability of distributed sys-
tems [22, 23].

The concept of broadcast control (BC) [2] has recently
been proposed for multi-agent coordination, which is ap-
plied to broadcast systems. The concept is related to
stochastic/biological systems [5, 21]. The BC law can
achieve global objectives, such as coverage, assembly,
and assignment tasks [14, 15]. A key scheme of the BC
is inspired by simultaneous perturbation stochastic ap-
proximation (SPSA) [1, 19, 20]. After each agent ran-
domly moves temporarily, a supervisor broadcasts a sig-
nal that corresponds to the achievement degree of an
objective, i.e., the value of the corresponding objective
function. The agents determine their next actions from
the received signal and their random movements. These
actions implicitly construct an approximate gradient of
the objective function. The BC law employs a stochastic
gradient method to minimize the objective function in
the manner of SPSA. However, such a process restricts
its applicability. The random actions of agents involve
significant traveling cost and time in order to achieve an
objective. In many systems, e.g., vehicular traffic sys-
tems, taking random actions should be avoided in con-
sideration of safety and operational efficiency.

In order to overcome the limitations of the BC law, the
present paper proposes a control law called the pseudo-
perturbation-based broadcast control (PBC) law. In or-
der to avoid unavailing random actions and improve the
control performance for coordination tasks, a key con-
cept is employing multiple virtual random actions in-
stead of the single physical random action of the BC.
The PBC for broadcast systems is operated in a man-
ner similar to the BC and retains the basic features of
the BC. The present paper theoretically proves the fol-
lowing advantages and characteristics of the PBC law.
Coordination tasks for broadcast systems are asymptot-
ically achieved with probability 1. Unavailing random
actions of agents are reduced and coordination tasks are
achieved at least twice as fast, as compared to the BC
law. The execution of a task is accelerated by increas-

ing the number of multiple actions because the multi-
ple actions improve the approximation accuracy of the
gradient of an objective function for the task. The PBC
law is demonstrated through numerical simulations of
two types of multi-agent coordination tasks, which are
a coverage task and a rendezvous task with formation
selection.

This paper is an extension of our previous work (un-
der review) [6]. We modified the paper significantly and
added new points. Especially, this paper proposes the
PBC law based on multiple virtual actions of agents,
whereas the control law in the conference paper uses a
single virtual action. To discuss multiple actions, the
overview of the PBC in Section 3.1 and Theorem 6 were
modified. All of Section 3.3 is a new part. Numerical
simulations in Sections 4.2 and 4.3 to demonstrate the
PBC law are new. All appendices to prove theorems and
a proposition are new, where Appendices B and C were
a modified version of [6].

The remainder of this paper is organized as follows. Sec-
tion 2 states the primary problem and associated lim-
itations of the BC law. The PBC law with theoretical
analysis is presented in Section 3, which describes the
main results of the paper. In order to demonstrate the
effectiveness of the PBC law, two types of multi-agent
coordination tasks are simulated in Section 4. Conclu-
sions and future research are described in Section 5.

Notation: For a vector x := [x1, ..., xn]
T ∈ Rn with

nonzero elements, x(−1) represents the element-wise in-
verse of x, i.e., x(−1) := [1/x1, ..., 1/xn]

T ∈ Rn. The
partial derivative of f(x) ∈ R with respect to x ∈ R

n

is denoted by ∂xf(x) ∈ Rn. The operator E[f(σ)] de-
notes the expectation of f(σ) ∈ Rn with respect to all
random variables σ. The operators E[f(σ, x(σ))|x] and
Cov[f(σ, x(σ))|x] denotes the conditional expectation
and the conditional covariance of f(σ, x(σ)) ∈ Rn with
respect to all random variables σ for a fixed x, respec-
tively.

2 Problem setting via review of the BC

This section states the main problem and associated
drawbacks of the BC law. Section 2.1 introduces the tar-
get systems and the main problem. After Section 2.2 re-
views the BC law, which is a solution to the main prob-
lem, its limitations to be overcome are described in Sec-
tion 2.3.

2.1 Target systems and the main problem

Let us consider a multi-agent system Σ on an n-
dimensional state space, which is controlled as a broad-
cast system. The system consists of a global controller
(supervisor) G and N agents Ai equipped with local
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controllers Li (i = 1, ..., N). Note that, although agents
are indexed from 1 to N for notational convenience, it
is not necessary to discriminate among them.

The dynamics of the agent Ai at a discrete time step
t ∈ {0, 1, ...} is omni-directional and is given by

Ai : xi(t+ 1) = xi(t) + ui(t), (1)

where xi(t) ∈ Rn and ui(t) ∈ Rn are the state and the
control input of Ai, respectively. The collective state of
all of the agents is denoted by x := [xT

1 , ..., x
T
N ]T ∈ RnN .

Its initial state x(0) is given. The local controllerLi, with
which each agent Ai is equipped, is described as follows:

Li :

{

φi(t+ 1) = fφ(φi(t), ν(t), t),

ui(t) = fu(φi(t), ν(t), t),
(2)

where φi ∈ Rnφ is the state of the local controllerLi. The
collective state of all of the local controllers is denoted
by φ := [φT

1 , ..., φ
T
N ]T ∈ R

nφN . The initial state is set
to φ(0) = 0 ∈ R

nφN for simplicity of discussion. The
symbol ν(t) ∈ Rnν is a broadcast signal, which is sent to
all of the agents by the global controllerG. The functions
fφ : Rnφ ×R

nν ×Z → R
nφ and fu : Rnφ ×R

nν ×Z → R
n

determine the transition of φi and the input ui(t) of
the agent Ai, respectively. The global controller G is
expressed as

G : ν(t) = fν(x(t), φ(t), t) ∈ R
nν , (3)

where fν : RnN × RnφN × Z → Rnν determines the
broadcast signal ν(t).

Note the following three requirements with respect to
the communication and controllers in terms of cost and
equipment for the multi-agent system Σ. First, there
is no agent-to-agent communication. Second, the local
controllers fφ and fu must be identical for all of the
agents. Third, the broadcast signal ν(t) must be identi-
cal for all of the agents (each optimal signal cannot be
sent to each agent). Standard centralized, decentralized,
and distributed control approaches can no longer be ap-
plied due to these requirements, whereas the require-
ments are crucial for designing controllers for large-scale
multi-agent systems. The main problem of realizing co-
ordination tasks under these requirements is stated as
follows.

Main problem: For the multi-agent system Σ, find
global and local controllers (G,L1, L2, . . . , LN) (i.e., fν ,
fφ, and fu) that satisfy the three above-mentioned re-
quirements and

lim
t→∞

J(x(t)) = min
x∈RnN

J(x), (4)

where J : R
nN → R is an objective function that is

regarded as the performance index for a coordination

task of the system Σ. Convergence to a local minimum
of J(x) in (4) is allowed in this problem.

2.2 Review of the BC law

This subsection briefly introduces the BC law [2]. The
global controller G of the BC law is defined as

ν(t) = fν(x(t), φ(t), t) := J(x(t)) ∈ R. (5)

Each local controller Li is defined by

φi(t) :=

[

φi,1(t)

φi,2(t)

]

∈ {−1, 1}n × R, (6)

φi(t+ 1) = fφ(φi(t), ν(t), t) :=

[

σi(t)

ν(t)

]

, (7)

ui(t) = fu(φi(t), ν(t), t)

:=











c(t)σi(t) (t ∈ {0, 2, 4, ...})
−c(t)φi,1(t)− a(t)

ν(t)−φi,2(t)
c(t) φ

(−1)
i,1 (t)

(t ∈ {1, 3, 5, ...}),
(8)

where φi,1(t) ∈ {−1, 1}n and φi,2(t) ∈ R. The symbols
a(t) ∈ R and c(t) ∈ R are controller gains. The sym-
bol σi(t) := [σi,1(t), ..., σi,n(t)]

T ∈ {−1, 1}n is a random
variable, where σi,j(t) (i ∈ {1, ..., N}, j ∈ {1, ..., n},
t ∈ {0, 1, ...}) independently obeys the Bernoulli distri-
bution with outcome ±1 equal probabilities. The col-
lection of the random variables is denoted by σ(t) :=
[σ1(t)

T, ..., σN (t)T]T ∈ {−1, 1}nN . The BC law with
these definitions is a solution to the main problem.

Theorem 1 (BC law [2]) For the multi-agent system
Σ, an objective function J(x), and the BC law in (5),
(6), (7), and (8), x(t) converges to a (possibly sample-
path-dependent) solution to ∂xJ(x) = 0 with probability
1 if the following conditions hold.

(c1) An objective function J : RnN → R is defined as

J(x(t)) := ρ(‖x‖)Jobj(x) + (1− ρ(‖x‖))xTx, (9)

ρ(‖x‖) :=
{

1 (‖x‖ ≤ l1),

0 (‖x‖ ≥ l2),
(10)

where J(x) and Jobj(x) are nonnegative C
2 continu-

ous on RnN , and there exists a solution to ∂xJ(x) =
0 for some l1 and l2.

(c2) The compact connected internally chain transi-
tive invariant sets 1 of a gradient system ż(τ) =
−∂zJ(z(τ)) are included in the solution set to the

1 Consider the system ż(τ ) = f(z(τ )) and one of its invari-
ant sets, Sz. The invariant set Sz is said to be internally
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equation ∂zJ(z) = 0 (i.e., to ∂xJ(x) = 0), and
there exists an asymptotically stable equilibrium for
the gradient system, where z(τ) ∈ RnN and the
stability is in the Lyapunov sense.

(c3) The controller gains satisfy a(t) = a(t + 1) > 0
and c(t) = c(t + 1) > 0 for every t ∈ {0, 2, 4, ...}
(i.e., a(0) = a(1) > 0, a(2) = a(3) > 0,... and the
same is true of c(t)), limt→∞ a(t) = 0,

∑∞
t=0 a(t) =

∞, limt→∞ c(t) = 0,
∑∞

t=0(a(t)/c(t))
2 < ∞, and

∑∞
t=0 a(t)c(t)

2 < ∞.

Remark 2 Convergence to a solution to ∂xJ(x) = 0
indicates that (4) (approximately) holds. Thus, the BC
law is a solution to the main problem.

Remark 3 The BC law is based on a two-stage transi-
tion of the state x(t). At the time t ∈ {0, 2, 4, ...}, the
agent Ai receives the broadcast signal ν(t) and takes the
random action ui(t) = c(t)σi(t). Such a random action
is essential in order to approximate the gradient of J(x)
based on SPSA [18]. The second term in (8) corresponds
to the approximate gradient (in an average sense) by ap-
plying Taylor’s theorem [2]

∀t ∈ {0, 2, 4, ...},

E
[ν(t+ 1)− φi,2(t+ 1)

c(t+ 1)
φ
(−1)
i,1 (t+ 1)

∣

∣

∣

x(t)

]

= E
[J(x(t) + c(t)σ(t)) − J(x(t))

c(t)
σ
(−1)
i (t)

∣

∣

∣

x(t)

]

= ∂xi
J(x(t)) +O(c(t)), as c(t) → 0,

(11)

where ν(t+1) = J(x(t+1)) from (5), xi(t+1) = xi(t)+
c(t)σi(t) from (1) and (8), [φi,1(t + 1)T, φi,2(t + 1)] =
[σi(t)

T, J(x(t))] from (6) and (7), and c(t+1) = c(t) from
the condition (c3) hold. The gradient becomes the moving
direction of Ai for minimizing J(x). At the time t+ 1 ∈
{1, 3, 5, ...},Ai moves in such a direction while canceling
the random action c(t+ 1)φi,1(t+ 1) = c(t)σi(t).

Remark 4 In the condition (c1), Jobj : R
nN → R de-

scribes the achievement degree of a coordination task to
be realized, such as coverage, rendezvous, and assign-
ment tasks. The function ρ(‖x‖) switches J(x) such that
J(x) = Jobj(x) for ‖x‖ ≤ l1 and J(x) = xTx for ‖x‖ ≥
l2. The term xTx is introduced for bounding the size of x.
The constants l1 and l2 determine the workspace of the
coordination. There exists ρ(‖x‖) in (10) such that J(x)
is C2 continuous, e.g., a spline type function [2].

Remark 5 To evaluate J(x(t)) (if it is not directly ob-
served), the global controller G requires the information

chain transitive if, for each (z0, zf ) ∈ Sz × Sz, ǫ > 0 ∈ R,
and T > 0 ∈ R, there exist m ∈ N and (z1, z2, ..., zm) ∈ S

m
z

such that ‖z(τ, zi) − zi+1‖ < ǫ (i = 0, 1, ..., m) for some
τ ∈ [T,∞), where zm+1 := zf and z(τ, zi) represents the
state z(τ ) of the system for the initial state z(0) := zi [3].

of all agents’ states x(t) ∈ RnN , via some means, such as
cameras, sensors, and direct all-to-one communications.

2.3 Drawbacks of the BC law

For large-scale multi-agent systems, the BC law in The-
orem 1 is advantageous because it satisfies the three re-
quirements described in Section 2.2: communications be-
tween agents are not used, local controllers are identical
for all agents, and the broadcast signal is identical. Such
characteristics are efficient for constructing controllers
that are not adversely affected by the system size. How-
ever, the BC law contains the following limitations.

• The control law using the random action c(t)σi(i) in
(8) causes an agent to move an unavailing extra dis-
tance to approximate the gradient of the objective
function J(x). If a broadcast system involves a distur-
bance (e.g., noise in observing the states of the agents),
a large random action may be needed for the system
to be robust against the disturbance. Furthermore, it
is impractical to enforce random actions of agents in
many applications because such a randomness invokes
dangerous situations.

• The minimization process in (4) using the BC law can
be slow because the state transition is a two-stage
transition with randomness, as shown in (8).

In order to overcome the above limitations, the next sec-
tion presents a novel control law, which is another so-
lution to the main problem, such that the moving dis-
tances of agents are reduced and the minimization of
J(x) is accelerated as compared with the BC law.

3 Proposed method: pseudo-perturbation-
based broadcast control law

In this section, we propose the PBC law in order to over-
come the drawbacks of the BC law. Section 3.1 presents
an overview of the PBC law based on a simple but novel
concept. Sections 3.2 and 3.3 derive the theoretical as-
pects that show the effectiveness of the PBC law as com-
pared with the BC law.

3.1 Overview of the PBC law based on a simple but
novel concept

The PBC law is derived by extending the BC law as fol-
lows. Recall that the agents under the BC law take the
random actions ui(t) = c(t)σi(t) in (8) in order to ap-
proximate the gradient of an objective function J(x), as
explained in Remark 3. In order to avoid the unavailing
random actions and improve the approximation accu-
racy of the gradient, a key concept is the introduction
of the following multiple virtual random actions rather

4



than the single physical random actions:

x̂
(k)
i (t+ 1) := xi(t) + û

(k)
i (t), (k = 1, 2, ...,K), (12)

û
(k)
i (t) := c(t)σ

(k)
i (t), (k = 1, 2, ...,K), (13)

where û
(k)
i (t) and x̂

(k)
i (t + 1) are a virtual input and a

virtual predictive state of each agent Ai, respectively.

The global controllerG calculates û
(k)
i (t) and x̂

(k)
i (t+1)

virtually using the information {xi(t), σ
(k)
i (t)} sent from

the agent Ai. The symbolK denotes the number of mul-

tiple actions. The K virtual inputs û
(k)
i (t) are deter-

mined by K random variables σ
(k)
i (t) ∈ {−1, 1}n. Each

component of the random variable σ
(k)
i (t) independently

obeys the Bernoulli distribution with outcome ±1 equal

probabilities. Let us define x̂(k) := [x̂
(k)T
1 , ..., x̂

(k)T
N ]T ∈

RnN and σ(k)(t) := [σ
(k)
1 (t)T, ..., σ

(k)
N (t)T]T.

Based on the multiple virtual random actions, the global
controller G of the PBC law is proposed as follows:

ν(t) = fν(x(t), φ(t), t)

:=











J(x̂(1)(t+ 1))− J(x(t))
...

J(x̂(K)(t+ 1))− J(x(t))











∈ R
K ,

(14)

where ν(k)(t) := J(x̂(k)(t + 1)) − J(x(t)) and ν(t) :=
[ν(1)(t), ..., ν(K)(t)]T. Each local controller Li with its
state φi(t) of the PBC law is proposed as

φi(t) :=











φ
(1)
i (t)
...

φ
(K)
i (t)











:=











σ
(1)
i (t)
...

σ
(K)
i (t)











∈ {−1, 1}nK (15)

ui(t) = fu(φi(t), ν(t), t)

:= −a(t)
1

K

K
∑

k=1

ν(k)(t)

c(t)
φ
(k)(−1)
i (t).

(16)

Unlike the BC law, a function fφ(φi(t), ν(t), t) as in
(7) is not needed because the state φi(t) of the local

controller is nothing but the random variables σ
(k)
i (t)

(k = 1, ...,K). Note that fν in (14) is indeed a function
of x(t) and φ(t) because x̂(k)(t + 1) is given from xi(t)

and φ
(k)
i (t) = σ

(k)
i (t), as shown in (12) and (13). Three

important properties of the PBC law are as follows.

First, the PBC is a solution to the main problem and
overcomes the limitations of the BC. The objective func-
tion J(x) is minimized in a manner similar to the BC
law. For the following reasons, the unavailing actions are
reduced, and the agents’ states are converged at least

twice as fast as the BC law under some conditions. The
physical random actions ui(t) = c(t)σi(t) in (8) are no
longer used for approximating the gradient of J(x). The
approximation accuracy of the gradient of J(x) is en-
hanced by taking multiple actions with large K > 1. In
a manner similar to (11), the right-hand side of (16) ap-
proximates the gradient as follows:

E
[ 1

K

K
∑

k=1

ν(k)(t)

c(t)
φ
(k)(−1)
i (t)

∣

∣

∣

x(t)

]

= ∂xJ(x(t)) +O(c(t)),

(17)

as c(t) → 0. The operator (1/K)
∑K

k=1{·} in (17) re-
duces the randomness. These properties are shown the-
oretically in Sections 3.2 and 3.3.

Second, the communication volume of the PBC
law is slightly greater than that of the BC law.
The global controller G of the PBC law broad-
casts K-dimensional signal ν(t), whereas the broad-
cast signal of the BC law is one-dimensional. In
the PBC law, each agent Ai transmits the signal

{xi(t), φi(t)} = {xi(t), σ
(1)
i (t), ..., σ

(K)
i (t)}. The BC law

requires that Ai transmits only xi(t) or that G ob-
serves xi(t) for all i ∈ {1, ..., N}, in general (see Remark
5). However, these differences between the two laws
are not critical. The number K of multiple actions is
(significantly) smaller than the number N of agents.
The information volume is not so different between
{xi(t), φi(t)} and xi(t) because σ

(k)
i,1 (t) = ±1 is binary

(2-bit) and is significantly smaller than a quantized real
vector xi(t) ∈ Rn.

Third, the advantages of the BC law for large-scale
multi-agent systems are preserved in the PBC law. The
PBC law satisfies the three requirements described in
Section 2.1, which are that communications between
agents are not used, that local controllers are identical
for all of the agents, and that the broadcast signal is
identical.

The following subsections derive the theoretical aspects
to show that the PBC law improves the control perfor-
mance, such as the moving distances of agents and the
convergence speed for minimizing an objective function
J(x), as compared with the BC law. Section 3.2 ana-
lyzes the convergence and performance improvement of
the PBC law. The effect of taking multiple actions with
K > 1 is analyzed in Section 3.3.

3.2 Theoretical analysis of the PBC law: convergence
and performance improvement

This subsection presents a theoretical analysis of the
PBC law proposed in Section 3.1. In the following, The-
orem 6 shows that the PBC law is a solution to the main
problem. For the case in which the number K of mul-
tiple random actions is 1, Theorems 8 and 10 indicate

5



that the control performance of the PBC law is enhanced
compared with the BC law.

The condition (c3) is modified for the PBC law:

(c3’) The controller gains satisfy a(t) > 0 and c(t) >
0 for every t ≥ 0, limt→∞ a(t) = 0,

∑∞
t=0 a(t) =

∞, limt→∞ c(t) = 0,
∑∞

t=0(a(t)/c(t))
2 < ∞, and

∑∞
t=0 a(t)c(t)

2 < ∞.

We first show that the PBC law is a solution to the main
problem.

Theorem 6 (Convergence of the PBC law) For
the multi-agent system Σ, an objective function J(x),
and the PBC law in (14), (15), and (16) with anyK > 0,
if the conditions (c1), (c2), and (c3’) hold, then x(t)
converges to a (possibly sample-path-dependent) solution
to ∂xJ(x) = 0 with probability 1.

PROOF. The proof is given in Appendix A.

Remark 7 As explained in Remark 2, convergence to a
solution to ∂xJ(x) = 0 indicates that (4) (approximately)
holds, and thus the PBC is a solution to themain problem.
The PBC retains the essential feature of the BC law.

In the following, we show that the PBC law is superior
to the BC law in terms of the convergence speed and the
moving distances of agents in the case of K = 1. The
symbols {·}|PBC and {·}|BC denote the results obtained
by applying the PBC and BC laws, respectively, where
the symbols can be omitted if we discuss either the PBC
or the BC. The following theorem shows that coordina-
tion tasks can be performed twice as fast.

Theorem 8 (Achieving tasks at twice the speed)
Suppose that K = 1, a(t)|PBC = a(2t)|BC, c(t)|PBC =
c(2t)|BC, and σ(1)(t)|PBC = σ(2t)|BC hold for all t ≥ 0.
Then, the following relations hold

x(t)|PBC = x(2t)|BC, ∀t ≥ 0, (18)

J(x(t))|PBC = J(x(2t))|BC, ∀t ≥ 0. (19)

PROOF. The proof is given in Appendix B.

Remark 9 The speed for achieving the task of the PBC
law with K = 1 is twice that of the BC law. An intuitive
reason for this result is that the two-stage transition of
the BC law explained in Remark 3 is simply combined
into a one-stage transition.

We next analyze the moving distances of agents. Let us
define the total moving distance:

D(t) :=

t−1
∑

s=0

N
∑

i=1

‖xi(s+ 1)− xi(s)‖ =

t−1
∑

s=0

N
∑

i=1

‖ui(s)‖.

(20)

The following theorem shows that the moving distance
D(t)|PBC of the PBC law is reduced compared with the
moving distance D(2t)|BC of the BC law in statistical,
deterministic, and probabilistic senses.

Theorem 10 (Reduction of the moving distance)
Suppose that, K = 1, a(t)|PBC = a(2t)|BC, c(t)|PBC =
c(2t)|BC, and σ(1)(t)|PBC = σ(2t)|BC hold for all t ≥ 0.
Let a binary function P(t) be 1 if J(x) is (locally) convex
or quasi-convex on the minimum convex set including
all possible x(t+1)|BC, and otherwise let be 0. Then, for
all t ≥ 1, the following relations hold:

E[D(2t)|BC −D(t)|PBC] ≥
√
nN

t−1
∑

τ=0

P(2τ)c(2τ)|BC

≥ 0, (21)

D(2t)|BC −D(t)|PBC ≥ 0, ∀σ(1)(0)|PBC, ..., σ
(1)(t)|PBC,

(22)

Pr{D(2t)|BC > D(t)|PBC} ≥ 1−
t−1
∏

τ=0

(

1− P(2τ)

2

)

.

(23)

PROOF. The proof is given in Appendix C.

Remark 11 The local convexity of J(x) increases the
effectiveness of the PBC law because the binary function
P(2t) is activated from 0 to 1 by the local convexity. If
J(x) is convex or quasi-convex for all x, (21) and (23) re-

duce to E[D(2t)|BC −D(t)|PBC] ≥
√
nN

∑t−1
τ=0 c(2τ)|BC

and Pr{D(2t)|BC > D(t)|PBC} ≥ 1 − (1/2t), respec-
tively.

Remark 12 In Theorem 10, it is reasonable that the
time scales of the PBC and BC laws are normalized as
t and 2t, respectively, because x(t)|PBC = x(2t)|BC and
J(x(t))|PBC = J(x(2t))|BC hold in Theorem 8.

3.3 Theoretical analysis of the PBC law: performance
improvement by multiple actions

This subsection presents a theoretical analysis of the
PBC law for the case of taking multiple actions, i.e.,K >
1. Theorems 13 and 15 and Proposition 17 give results
for control performance improvement with K > 1.
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To the best of our knowledge, few studies with respect
to SPSA using multiple random numbers have been an-
alyzed theoretically. The asymptotic properties of SPSA
using multiple random numbers are discussed in [18]. It
is also well known that the variance of the average of K
samples is decreased 1/K times compared to the vari-
ance of one sample. This property is applied to the ap-
proximate gradient of J(x), i.e., the input in (16):

Cov[ui(t)|x(t)] =
1

K

(

Cov[ui(t)|x(t)]
∣

∣

K=1

)

. (24)

Using a large K enhances the approximation accuracy
of the gradient in terms of the covariance.

In the following, some theorems are derived to discuss
the influence of K > 1. We derive a theorem to show
that increasing the value of K is efficient for enhancing
the control performance per step of the PBC law.

Theorem 13 (Performance improvement per step)
For a given x(t), if the PBC law is applied, the following
relations hold

(i) If J(x) is (locally) convex on the minimum convex
set including all possible x(t+1) for the given x(t),
the reduction of J(x) per step is enhanced by in-
creasing K

∀1 ≤ Kb < Ka < ∞,

E[J(x(t+ 1))|x(t)]|K=Ka
≤E[J(x(t+ 1))|x(t)]|K=Kb

,
(25)

where the equality in (25) is possible only if J(x) is
not strictly convex but convex. The inequality sign
in (25) is reversed if J(x) is concave.

(ii) For any κ ≥ 1 ∈ R, the power of the moving distance
per step is reduced by increasing K

∀1 ≤ Kb < Ka < ∞,

E
[

N
∑

i=1

‖xi(t+ 1)− xi(t)‖κ
∣

∣

∣

x(t)

]∣

∣

∣

K=Ka

≤ E
[

N
∑

i=1

‖xi(t+ 1)− xi(t)‖κ
∣

∣

∣

x(t)

]∣

∣

∣

K=Kb

,

(26)

where the equality in (26) is possible only if κ = 1.

PROOF. The proof is given in Appendix D.

Remark 14 This theorem means that the per-step con-
trol performance in terms of the speed for minimizing
J(x) and the moving distance is statistically improved by
using a large K. If J(x) is locally concave around x(t),
setting K = 1 is suitable for minimizing J(x) quickly.

Theorem 13 focuses on the control performance at each
step, which is independent of other steps. Based on The-
orem 13, we derive a result for a suitable objective func-
tion J(x) such that the control performance over multi-
ple steps is improved.

Theorem 15 (Performance over multiple steps)
For any t ≥ 1 and a given x(0), let Sx be the
minimum convex set including all possible x(0),
x(1),..., and x(t). Suppose that, for all σ(k)(m)
(m ∈ {0, ..., t − 1}, k ∈ {1, ...,K}) and for all
s ∈ {0, ..., t}, Js,t(x̃) := J(x(t))|x(s)=x̃ and Ds,t(x̃) :=
(D(t)−D(s))|x(s)=x̃ are (locally) convex in x̃ ∈ Sx. The
PBC law enhances the reductions of J(x(t)) and D(t) by
increasing K

∀1 ≤ Kb < Ka < ∞,

E[J(x(t))]|K=Ka
≤ E[J(x(t))]|K=Kb

, (27)

∀1 ≤ Kb < Ka < ∞,

E[D(t)]|K=Ka
≤ E[D(t)]|K=Kb

, (28)

where the equalities in (27) and (28) are possible only if
Js,t(x̃) and Ds,t(x̃) are not strictly convex but convex in
x̃, respectively.

PROOF. The proof is given in Appendix E.

Remark 16 Although Theorem 15 considers the time
steps from 0 to t, it can be applied to the time steps from
τ to τ+t for a given x(τ) and τ ≥ 0 in a similar manner.

Theorem 15 shows that the performance of J(x(t)) and
D(t) are enhanced over multiple steps for suitable objec-
tive functions J(x). There are some choices of J(x) satis-
fying the assumptions in Theorem 15. One such class of
J(x) is the convex quadratic function class, as described
below.

Proposition 17 (Convex quadratic functions) If
J(x) is convex and quadratic in x, the assumptions in
Theorem 15 hold for any x(0) (it is possible that Js,t(x̃)
and Ds,t(x̃) is not strictly convex but convex).

PROOF. The proof is given in Appendix F.

Remark 18 Although Proposition 17 focuses on convex
quadratic functions, the PBC law can be successfully ap-
plied to various non-convex objective functions, which are
locally convex and/or quadratic. Section 4 demonstrate
the PBC law for non-convex objective functions.

Theorem 15 and Proposition 17 indicate that convex
quadratic objective functions are more suitable than
other objective functions. Some locally/globally convex
quadratic objective functions for coordination tasks are
introduced in the following.
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(i) Coverage control. The following objective func-
tion for coverage control is locally convex and
quadratic in x

Jobj(x) =
Vq

Nq

Nq
∑

j=1

min
i∈{1,...,N}

‖qj − xi‖2, (29)

where qj are uniformly distributed on the state
space, and Vq :=

∫

Sq
1dq is the n-dimensional vol-

ume of a workspace Sq ⊂ Rn (q ∈ Sq). The operator

(Vx/Nq)
∑Nq

j=1{·} approximates
∫

Sq
{·}dq.

(ii) Rendezvous control with formation selec-
tion. The following objective function for a ren-
dezvous control is locally convex and quadratic in x

Jobj(x) = min
θ∈Sθ

1

N2

N
∑

i=1

N
∑

j=1

‖xi − xj − ri,j(θ)‖2,

(30)

because, for all i and j, the L2-norms are quadratic
convex and their sum is quadratic convex. The sym-
bol ri,j(θ) ∈ Rn is a relative target position be-
tween the agents i and j. Various target forma-
tions are constructed from ri,j(θ) parameterized by
a global formation parameter θ ∈ Sθ. Assuming
that Sθ is finite, an optimal θ minimizing Jobj(x)
is selected from among Sθ. The PBC law can select
such an (local) optimal formation with θ by mini-
mizing Jobj(x), whereas standard distributed con-
trol cannot optimize θ. If Sθ includes only one ele-
ment, Jobj(x) in (30) reduces to a global convex ob-
jective function for well-known rendezvous control.

(iii) Assignment control. For given target locations
yi ∈ Rn (i = 1, ..., N), the following objective func-
tion for an assignment task is globally convex and
quadratic in x

Jobj(x, S) =

N
∑

i=1

‖xi − ySi
‖2, (31)

where Si ∈ {1, ..., N} and Si 6= Sj for any i 6= j.
The indices S := [S1, ..., SN ] indicate the pairs of
target locations and agents to be assigned. Some
assignment algorithms determine suitable indices.
For example, the Hungarian algorithm gives opti-
mal indices satisfying arg minS Jobj(x, S) with the
complexity O(N3) [13].

The above-mentioned functions in (29) and (30) include
the operator min{·}, which invokes indifferentiable
points on the state space. If the C2 continuity in the
condition (c1) is strictly concerned, a modified log-sum-
exp form 2 can approximate the operator minj{·} by a

2 The log-sum-exp form approximates the max function:

smooth function (1/ε) ln
∑

j exp ε{·}

1

ε
lnnj ≤

1

ε
ln

nj
∑

j=1

exp εfj − min
j∈{1,...,nj}

fj ≤ 0, (32)

for any fj ∈ R (j = 1, 2, ..., nj), where ε < 0 ∈ R.
The term (1/ε) lnnj ≤ 0 is the approximation residual.
Sufficiently small ε realizes a better approximation, i.e.,
(1/ε) lnnj → 0 as ε → −∞.

4 Numerical example

In this section, the effectiveness of the PBC law is eval-
uated in comparison with the BC law. The two types of
multi-agent coordination tasks are demonstrated.

4.1 Settings

The number of agents is set to N = 15 in the two-
dimensional state space, i.e., n = 2. The parameters in
(10) were respectively set to l1 = 100 and l2 = 101,
which determine the size of the workspace. The termi-
nal time of the simulation is set to 300. The controller
gains are set such that the conditions (c3) and (c3’) are
satisfied

a(t)|PBC =
a0

(t+ tv)ap
, (33)

c(t)|PBC =
c0

(t+ tv)cp
, (34)

where a(2t)|BC = a(2t + 1)|BC = a(t)|PBC and
c(2t)|BC = c(2t+1)|BC = c(t)|PBC in the case of the BC
law. Based on conditions for the convergence/divergence
of the p-series (see Section 8.1.2 [16]), the conditions
(c3) and (c3’) are satisfied if tv > 0, 0 < ap ≤ 1, cp > 0,
2ap−2cp > 1, and ap+2cp > 1 hold. According to these
conditions, the coefficients were set to a0 = 2, ap = 0.7,
c0 = 0.003, cp = 0.16, and tv = 20.

4.2 Broadcast rendezvous control with formation selec-
tion

This subsection evaluates a rendezvous control task with
the objective function Jobj(x) in (30). Recall that min-
imizing Jobj(x) in (30) automatically selects a best for-
mation parameterized by θ ∈ Sθ. The state trajectories
are shown in Fig. 1. The × and ◦ symbols denote the
initial states xi(0) and the terminal states xi(300), re-
spectively. The colored lines represent the trajectories of

maxj εfj ≤ ln
∑nj

j=1 exp εfj ≤ maxj εfj + lnnj (see Section

3.1.5 in [4]). For ε < 0, this inequality is transformed as
εminj fj ≤ ln

∑nj

j=1 exp εfj ≤ εminj fj +lnnj , which corre-

sponds to (32).
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(a) BC.
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(b) PBC (K = 1).
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(c) PBC (K = 3).
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(d) PBC (K = 10).

Fig. 1. State transitions at the terminal time t = 300 for the
rendezvous control

the agents. As illustrated in Fig. 1, the initial state was
set to xi(0) = (0.9i/N)[1, 1]T. The target formations
were set such that ri,j(θ) = yi(θ)− yj(θ) in (30), where
yi(θ) := 0.2[cos(2π(i + θ)/N), sin(2π(i + θ)/N)]T and
θ ∈ Sθ := {1, ..., N}. In Fig. 1, the BC law and the PBC
law with K = 1 caused the large random actions for the
agents. Applying largeK ∈ {3, 10} yields smooth trajec-
tories, reducing the unavailing random actions. Figure
2 shows the transitions of the objective function J(x(t))
and the moving distance D(t) with respect to the mean
and the standard deviation (SD) for 500 trials (with dif-
ferent random seeds). The both J(x(t)) and D(t) were
successfully reduced by the PBC law. Their means and
SDs were decreased more by using large K ∈ {3, 10} as
compared with those of the BC law and the PBC law
with K = 1.

4.3 Broadcast coverage control

A coverage control task is evaluated with the objective
function Jobj(x) in (29), where qj are sampled on the
space [0, 1]×[0, 1] at 0.01 intervals in each direction. Fig-
ure 3 shows the state trajectories of the PBC law with
various K ∈ {1, 3, 10} compared with the BC law. The
initial state was set to xi(0) = [0.5+0.2 cos(2πi/N), 0.5+
0.2 sin(2πi/N)]T, as illustrated in Fig. 3. The black lines
indicate the Voronoi diagram composed by the agents.
We see that increasingK reduces the unavailing random
actions of the agents. Figure 4 shows J(x(t)) and D(t)
in terms of the mean and the SD for 500 trials (with dif-
ferent random seeds). In Fig. 4(a), J(x(t)) was almost
the same regardless of the value of K. It appears that

�:BC �:PBC (K = 1) �:PBC (K = 3) �:PBC (K = 10)
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Fig. 2. Transitions of the objective function J(x(t)) and the
moving distance D(t) for the rendezvous control
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(a) BC.
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(b) PBC (K = 1).
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(c) PBC (K = 3).
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(d) PBC (K = 10).

Fig. 3. State transitions at the terminal time t = 300 for the
coverage control

J(x(t)) is not convex around the initial state x(0). Re-
call Theorem 13, which indicates that increasingK does
not ensure the improvement of J(x(t)) for non-convex
J(x(t)). Nevertheless, the PBC law reduces both J(x(t))
and D(t) compared with the existing BC law.
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Fig. 4. Transitions of the objective function J(x(t)) and the
moving distance D(t) for the coverage control

5 Conclusion

In the present paper, we proposed the PBC law for
achieving multi-agent coordination tasks with low com-
munication volume without any agent-to-agent commu-
nication. To address drawbacks of the BC law discussed
in Section 2.3, a simple but efficient solution was pro-
posed in Section 3.1. The solution is to take multiple vir-
tual actions of agents rather than a single physical ran-
dom action. Sections 3.2 and 3.3 proved the theoretical
aspects of the PBC law. Theorem 6 proved asymptotic
convergence of multi-agent coordination with probabil-
ity 1. Theorems 8 and 10 show that the PBC law is supe-
rior to the BC law in terms of the convergence speed and
the moving distance in the case of taking a single action
(K = 1). In the case of multiple actions (K > 1), Theo-
rem 13 showed that the performance improvements per
step become more effective by increasing the number K
of multiple actions. Theorem 15 proved that the perfor-
mance improvements are retained over multiple steps for
suitable objective functions. Such functions are convex
quadratic in the state shown in Proposition 17. Section
4 demonstrated that the PBC law is superior to the BC
law through two types of coordination tasks.

In the future, we intend to extend the PBC law for non-
linear and/or stochastic multi-agent systems. The PBC
law will be applied to merging tasks of multiple vehicles
on congested roads.

A Proof of Theorem 6

This theorem is proven in a manner similar to the case
of the BC law [2]. Unfortunately, the difficulty in the
case of the PBC law arises from taking multiple trials
(K > 1). The proof of the convergence of the BC law
in Appendices A.1 and A.2 of [2] is summarized (with
slight modification) as follows.

Lemma 19 (Stochastic systems for the BC [2])
Let us define ts := 2s for s ∈ {0, 1, ...}. Supposing
that the conditions (c1), (c2), and (c3) hold, x(ts) con-
verges to a (possibly sample-path-dependent) solution to
∂xJ(x) = 0 with probability 1 if the following conditions
hold:

(c4) For all ts, x(ts) obeys

x(ts+1) = x(ts)

− a(ts){∂xJ(x(ts)) + eM(ts+1) + eB(ts+1)},
(A.1)

where eM(ts) ∈ RnN is a random vector and
eB(ts) ∈ R

nN is a bounded random vector satisfying
eB(ts) → 0 as ts → ∞.

(c5) supts ‖x(ts)‖ < ∞ holds with probability 1.
(c6) For any m ∈ {0, 1, ...}, the stochastic process

{∑m

s=0 a(ts)eM(ts+1)} is a square integrable mar-
tingale, and

∑m

s=0 a(ts)
2E[‖eM(ts+1)‖2|Fs] < ∞

holds with probability 1 for the filtration Fs gener-
ated by {x(t0), x(ts′ ), eM(ts′), eB(ts′)|1 ≤ s′ ≤ s}.

We apply Lemma 19 to the PBC law. Let us define the
following functions for brief notation:

g(t, σ) :=
J(x(t) + c(t)σ)− J(x(t))

c(t)
σ(−1), (A.2)

e(t) :=
1

K

K
∑

k=1

g(t, σ(k)(t))− E
[ 1

K

K
∑

k=1

g(t, σ(k)(t))
∣

∣

∣

x(t)

]

.

(A.3)

By substituting (14), (15), (16), (17), and (A.3) into (1),
the transition of x(t) under the PBC law is given by

x(t+ 1) = x(t)− a(t)
1

K

K
∑

k=1

g(t, σ(k)(t))

= x(t)− a(t){∂xJ(x(t)) + e(t) +O(c(t))},
(A.4)

as c(t) → 0. If the condition (c5) in Lemma 19 holds,
then the term O(c(t)) is bounded and O(c(t)) → 0 as
t → ∞ from the condition (c3’). The pair of the condition
(c3) and the definition ts := 2s in Lemma 19 can be
replaced by the pair of the condition (c3’) and ts :=
s. The condition (c4) then holds under the condition
(c5) by regarding t, t + 1, e(t), and O(c(t)) as ts, ts+1,
eM(ts+1), and eB(ts+1). We next prove the condition
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(c5). The system dynamics in (A.4) is transformed as
follows:

‖x(t+ 1)‖2 =
∥

∥

∥

1

K

K
∑

k=1

{x(t)− a(t)g(t, σ(k)(t))}
∥

∥

∥

2

≤ ‖x(t)− a(t)g(t, σ(k∗(t))(t))‖2, (A.5)

where k∗(t) := arg maxk∈{1,...,K} ‖x(t)−a(t)g(t, σ(k)(t))‖2
By virtue of the above inequality (A.5), the following
property in Appendix A.3 of [2] can be applied to (A.5).

Lemma 20 (Boundedness of the state [2]) Let us
define ts := 2s for s ∈ {0, 1, ...}. Suppose that the condi-
tions (c1), (c2), and (c3) hold. If the following relation

‖x(ts+1)‖2≤‖x(ts)− a(ts)g(ts, σ(ts))‖2, (A.6)

is satisfied, then supts ‖x(ts)‖ < ∞ surely holds, where
the pair of the condition (c3) and the definition ts := 2s
can be replaced by the pair of the condition (c3’) and
ts := s.

Lemma 20 proves the condition (c5) in Lemma 19 by
regarding t, t + 1, and σ(k∗(t))(t) in (A.5) as ts, ts+1,
and σ(ts) in (A.6). The condition (c6) holds in a manner
similar to the case of the BC law (see Appendix A.2 of [2]
or Proposition 1 of [18]). Lemma 19 is thus applied to
the PBC law. This completes the proof. ✷

B Proof of Theorem 8

This theorem is proven by mathematical induction. In
the case of t = 0, (18) and (19) clearly hold. With (A.2),
x(2(t+1)) by employing the BC law is given as follows [2]:

x(2(t+ 1))|BC = x(2t)|BC − a(2t)g(2t, σ(2t))|BC.
(B.1)

Using (A.4), x(t+ 1) under the PBC law is obtained as

x(t+ 1)|PBC = x(t)|PBC − a(t)g(t, σ(1)(t))|PBC. (B.2)

Since a(t)|PBC = a(2t)|BC, c(t)|PBC = c(2t)|BC, and
σ(1)(t)|PBC = σ(2t)|BC, if (18) and (19) hold for t, they
are also satisfied for t+1. Therefore, (18) and (19) hold
for all t ≥ 0. This completes the proof. ✷

C Proof of Theorem 10

Let us define the following function in order to simplify
the notation:

∆J(t, σ) := J(x(t) + c(t)σ)− J(x(t)), (C.1)

Since σi = σ
(−1)
i and ‖σi‖ =

√
n hold for any i,D(2t)|BC

is given by

D(2t)|BC

=

t−1
∑

τ=0

N
∑

i=1

‖c(2τ)σi(2τ)‖
∣

∣

∣

BC

+
∥

∥

∥
c(2τ)σi(2τ) + a(2τ)

∆J(2τ, σ(2τ))

c(2τ)
σ
(−1)
i (2τ)

∥

∥

∥

∣

∣

∣

BC

=
t−1
∑

τ=0

√
nN

(

c(2τ)

+
∣

∣

∣
c(2τ) + a(2τ)

∆J(2τ, σ(2τ))

c(2τ)

∣

∣

∣

)
∣

∣

∣

BC
.

(C.2)

Here, for any positive scalar coefficients ω1 > 0 and
ω2 > 0, the following expectation is derived:

E[|ω1∆J(2τ, σ) + ω2|]
= Pr{∆J(2τ, σ) ≥ 0}E[|ω1∆J(2τ, σ) + ω2||∆J(2τ,σ)≥0]

+ Pr{∆J(2τ, σ) < 0}E[|ω1∆J(2τ, σ) + ω2||∆J(2τ,σ)<0]

≥ Pr{∆J(2τ, σ) ≥ 0}E[ω1∆J(2τ, σ) + ω2|∆J(2τ,σ)≥0]

− Pr{∆J(2τ, σ) < 0}E[ω1∆J(2τ, σ) + ω2|∆J(2τ,σ)<0]

= E[|ω1∆J(2τ, σ)|]
+ (Pr{∆J(2τ, σ) ≥ 0} − Pr{∆J(2τ, σ) < 0})ω2

= E[|ω1∆J(2τ, σ)|] + (2Pr{∆J(2τ, σ) ≥ 0} − 1)ω2,
(C.3)

where note that |ω1∆J(2τ, σ)+ω2| ≥ −(ω1∆J(2τ, σ)+
ω2) and Pr{∆J(2τ, σ) < 0} = 1 − Pr{∆J(2τ, σ) ≥ 0}
hold. In order to clarify the probability Pr{∆J(2τ, σ) ≥
0} in (C.3), we show the relation

Pr{∆J(2τ, σ(2τ))|BC ≥ 0} ≥ P(2τ)

2
, (C.4)

where ∆J(2τ, σ(2τ)) = J(x(2τ) + c(2τ)σ(2τ)) −
J(x(2τ)) in (C.1). If a random vector σ is included in
the set {−1, 1}nN , −σ is also included in {−1, 1}nN
because each component of σ is −1 or 1. If we assume
that ∆J(2τ, σ) < 0 and ∆J(2τ,−σ) < 0 hold, then the
relation

max{J(x(2τ) + c(2τ)σ), J(x(2τ) − c(2τ)σ)}
< J(x(2τ))

= J(
x(2τ) + c(2τ)σ

2
+

x(2τ)− c(2τ)σ

2
)

(C.5)

is satisfied. This inequality (C.5) contradicts the nec-
essary condition for the (quasi-)convexity of J(x)
on the minimum convex set including all possi-
ble x(2τ + 1)|BC. Thus, for any x(2τ)|BC and any
σ ∈ {−1, 1}nN , if J(x) is convex or quasi-convex and
∆J(2τ, σ)|BC < 0 holds, then ∆J(2τ,−σ)|BC ≥ 0 holds.
Since the probability of σ is constant on {−1, 1}nN ,

11



Pr{∆J(2τ, σ(2τ))|BC ≥ 0} ≥ Pr{∆J(2τ, σ(2τ))|BC <
0}, i.e., Pr{∆J(2τ, σ(2τ))|BC ≥ 0} ≥ 1/2 holds if J(x)
is locally convex/quasi-convex, which yields (C.4).

Substituting the relation (C.3) with ω1 = a(2τ)/c(2τ),
ω2 = c(2τ), and (C.4) into the expectation of D(2t)|BC

in (C.2) yields

E[D(2t)|BC]

≥
t−1
∑

τ=0

√
nN

(

c(2τ) + (P(2τ)− 1)c(2τ)

+ a(2τ)
E[|∆J(2τ, σ(2τ))|]

c(2τ)

)∣

∣

∣

BC

=
√
nN

×
t−1
∑

τ=0

(

P(2τ)c(2τ) + a(2τ)
E[|∆J(2τ, σ(2τ))|]

c(2τ)

)∣

∣

∣

BC
.

(C.6)
On the other hand,

D(t)|PBC

=

t−1
∑

τ=0

N
∑

i=1

‖σ(1)
i (τ)‖

∣

∣

∣
− a(τ)

∆J(τ, σ(1)(τ))

c(τ)

∣

∣

∣

∣

∣

∣

PBC

=
√
nN

t−1
∑

τ=0

∣

∣

∣
− a(τ)

∆J(τ, σ(1)(τ))

c(τ)

∣

∣

∣

∣

∣

∣

PBC
, (C.7)

E[D(t)|PBC] =
√
nN

t−1
∑

τ=0

a(τ)
E[|∆J(τ, σ(1)(τ))|]

c(τ)

∣

∣

∣

PBC
,

(C.8)

Recall the relation x(t)|PBC = x(2t)|BC in (18) and
the assumptions that a(t)|PBC = a(2t)|BC, c(t)|PBC =
c(2t)|BC, and σ(1)(t)|PBC = σ(2t)|BC for all t ≥ 0. From
(C.6) and (C.8), E[D(2t)|BC −D(t)|PBC] satisfies (21).
The relation (22) is proven because of (C.2) and (C.7).
Next, the following relation

∃τ ∈ {0, ..., t− 1}, s.t. ∆J(2τ, σ(2τ))|BC ≥ 0

⇒ ∃τ ∈ {0, ..., t− 1}, s.t.

c(2τ)|BC +
∣

∣

∣
c(2τ) + a(2τ)

∆J(2τ, σ(2τ))

c(2τ)

∣

∣

∣

∣

∣

∣

BC

= 2c(2τ)|BC +
∣

∣

∣
a(2τ)

∆J(2τ, σ(2τ))

c(2τ)

∣

∣

∣

∣

∣

∣

BC

⇒ D(2t)|BC > D(t)|PBC (C.9)

holds for the terms in (C.2). Therefore,∆J(2τ, σ(2τ))|BC

< 0, ∀τ ∈ {0, ..., t − 1} is the necessary condition for
D(2t)|BC = D(t)|PBC. The relation (23) is proven be-
cause p(∆J(2τ, σ(2τ))|BC < 0) ≤ 1 − (P(2τ)/2) holds
by transforming (C.4). This completes the proof. ✷

D Proof of Theorem 13

We first prove the statement (i) for the case in which
1 ≤ Kb < Ka < ∞. For brevity of notation, let us
define Jg(g) := J(x(t + 1))|x(t+1)=x(t)−a(t)g for a given

x(t), g(k) := g(t, σ(k)(t)) in (A.2), and a combination
C := Ka

CKb
. For the given set {1, ...,Ka} of the index

k in g(k), we consider the C combinations to select Kb

indexes. Let us define a vector Ii ∈ {1, ...,Ka}Kb as the
array of the selected indexes in the i-th combination

Ii := [Ii,1, ..., Ii,Kb
]T, (i = 1, 2, ..., C). (D.1)

Each index k ∈ {1, ...,Ka} is evenly selected KbC/Ka

times because the total number of selected indexes is
KbC. Thus, dividing g(k) byKbC/Ka yields the following
relation 3

1

Ka

Ka
∑

k=1

g(k) =
1

Ka

C
∑

i=1

Kb
∑

j=1

Kag
(Ii,j)

KbC
=

C
∑

i=1

1

C

Kb
∑

j=1

g(Ii,j)

Kb

.

(D.2)
Note that the function Jg(g) is (strictly) convex in g
because J(x(t + 1)) is (strictly) convex in x(t + 1) and
g = (x(t) − x(t + 1))/a(t) is uniquely determined as

the linear function of x(t + 1). Since
∑C

i=1(1/C) = 1,
applying Jensen’s inequality to convex Jg(g) yields

Jg

(

C
∑

i=1

1

C

Kb
∑

j=1

g(Ii,j)

Kb

)

≤
C
∑

i=1

1

C Jg
(

Kb
∑

j=1

g(Ii,j)

Kb

)

. (D.3)

Here, we consider the case in which Jg(g) is strictly con-

vex. The equality in (D.3) holds only if
∑Kb

j=1 g
(Ii,j)/Kb

is constant for all i, i.e., g(k) is constant for all k. Be-
cause of the strict convexity, g(k) = g(t, σ(k)(t)) 6= 0 in

(A.2) and the relation g(k) = g(k
′) ⇔ σ(k) = σ(k′) hold.

Thus, if Jg(g) is strictly convex, taking the expectation

in (D.3) with respect to σ(k) (the set of σ(k) for each k
is finite) excludes the equality from (D.3):

E
[

Jg

(

C
∑

i=1

1

C

Kb
∑

j=1

g(Ii,j)

Kb

)
∣

∣

∣

x(t)

]

<E
[

C
∑

i=1

1

C Jg
(

Kb
∑

j=1

g(Ii,j)

Kb

)∣

∣

∣

x(t)

]

.

(D.4)

3 For example, if Ka = 4 and Kb = 3 are considered, C = 4,
Ii ∈ {[1, 2, 3]T, [1, 2, 4]T, [1, 3, 4]T, [2, 3, 4]T}, and 1

4
(g(1) +

g(2) + g(3) + g(4)) = 1
4
{ g(1)+g(2)+g(3)

3
+ g(1)+g(2)+g(4)

3
+

g(1)+g(3)+g(4)

3
+ g(2)+g(3)+g(4)

3
} hold.
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Using (D.2) and (D.4) yields the following inequality:

E[J(x(t+ 1)|x(t)]|K=Ka
= E

[

Jg

( 1

Ka

Ka
∑

k=1

g(k)
)∣

∣

∣

x(t)

]

= E
[

Jg

(

C
∑

i=1

1

C

Kb
∑

j=1

g(Ii,j)

Kb

)
∣

∣

∣

x(t)

]

≤E
[

C
∑

i=1

1

C Jg
(

Kb
∑

j=1

g(Ii,j)

Kb

)∣

∣

∣

x(t)

]

=
1

C

C
∑

i=1

E
[

Jg

(

Kb
∑

k=1

g(k)

Kb

)∣

∣

∣

x(t)

]

= E
[

Jg

( 1

Kb

Kb
∑

k=1

g(k)
)∣

∣

∣

x(t)

]

= E[J(x(t + 1)|x(t)]|K=Kb
,

(D.5)
where the equality of ≤ in (D.5) is possible only if J(x)
is not strictly convex but convex. If Jg(g) is concave in
g, the inequality sign in (D.5) is reversed. The statement
(i) therefore holds.

We next prove the statement (ii). In the above proof of

the statement (i), let us redefine Jg(g) :=
∑N

i=1 ‖xi(t+

1)− xi(t)‖κ|xi(t+1)=xi(t)−a(t)gi = a(t)κ
∑N

i=1 ‖gi‖κ for a

given x(t), where g =: [gTi , ..., g
T
N ]T. Since the norm ‖gi‖

is convex in gi [4], Jg(g) is convex in g for κ = 1 and is
strictly convex in g for κ > 1. The inequality in (D.5)
holds in a similar manner, which leads to the statement
(ii). This completes the proof. ✷

E Proof of Theorem 15

We consider the case in which 1 ≤ Kb < Ka < ∞. We
prove this theorem by focusing on the dynamic program-
ming of stochastic dynamical systems. Let us define

Vs(x(s)) := E[J(x(t))|x(s)], (E.1)

where Vt(x(t)) = J(x(t)) holds. We obtain

Vt−2(x(t− 2)) = E[E[Vt(x(t))|x(t−1)]|x(t−2)]

= E[Vt−1(x(t − 1))|x(t−2)],
(E.2)

Iterating the above transformation yields the recurrence
formula of Vs(x(s))

Vs(x(s)) = E[Vs+1(x(s + 1))|x(s)]. (E.3)

Note that for all s ∈ {0, ..., t − 1}, Vs+1(x(s + 1)) =
E[J(x(t))|x(s+1)] is convex in x(s + 1) because, for all

σ(k)(m) (m ∈ {0, ..., t−1}, k ∈ {1, ...,K}), Js+1,t(x̃) :=
J(x(t))|x(s+1)=x̃ is convex in x̃ and the expectation of
convex Js+1,t(x̃) is also convex [4]. Let us define x(s +

1,Ka)|x(s) := x(s + 1)|x(s),K=Ka
and Vs(x(s),Ka) :=

E[J(x(t))|x(s)]|K=Ka
. Applying Theorem 13 to the ex-

pectation with respect to σ(k)(s) yields

E[Vs+1(x(s+ 1,Ka),K)|x(s)]
≤ E[Vs+1(x(s + 1,Kb),K)|x(s)],

(E.4)

for all s ∈ {0, ..., t−1}. Meanwhile, by applying Theorem
13 to the expectation with respect to σ(k)(t − 1), the
following relation holds for all x(t− 1,K)

Vt−1(x(t− 1,K),Ka) = E[J(x(t,Ka))|x(t−1,K)]

≤ E[J(x(t,Kb))|x(t−1,K)] = Vt−1(x(t− 1,K),Kb).
(E.5)

Thus,
E[Vt−1(x(t − 1,K),Ka)|x(t−2)]

≤ E[Vt−1(x(t− 1,K),Kb)|x(t−2)],
(E.6)

holds. Using (E.4) and (E.6) provides

Vt−2(x(t− 2),Ka) = E[Vt−1(x(t− 1,Ka),Ka)|x(t−2)]

≤ E[Vt−1(x(t− 1,Kb),Ka)|x(t−2)]

≤ E[Vt−1(x(t− 1,Kb),Kb)|x(t−2)]

= Vt−2(x(t − 2),Kb).
(E.7)

Using (E.4) and (E.7) yields

Vt−3(x(t− 3),Ka) = E[Vt−2(x(t− 2,Ka),Ka)|x(t−3)]

≤ E[Vt−2(x(t− 2,Kb),Ka)|x(t−3)]

≤ E[Vt−2(x(t− 2,Kb),Kb)|x(t−3)]

= Vt−3(x(t − 3),Kb).
(E.8)

Iterating the above process from t− 1 to 0 yields

V0(x(0),Ka) = E[J(x(t))|x(0)]|K=Ka

≤ V0(x(0),Kb) = E[J(x(t))|x(0)]|K=Kb
.

(E.9)

Since Theorem 13 is used, the equalities in (E.4),
(E.5), (E.6), (E.7), (E.8), and (E.9) are possible only
if Js,t(x̃) := J(x(t))|x(s)=x̃ is not strictly convex but
convex in x̃. Therefore, the relation (E.9) is equiva-
lent to (27). The relation (28) can be proven as de-
scribed above by applying D(t) and the conditional
expectations E[·|x(0),...,x(s)] rather than J(x(t)) and
E[·|x(s)], respectively. In this case, Vs+1(x(s + 1)) :=
E[D(t)|x(0),...,x(s+1)] is indeed convex in x(s + 1) be-
cause Ds+1,t(x̃) := (D(t) − D(s + 1))|x(s+1)=x̃ and
D(s+1)|x(s+1)=x̃ for each fixed x(0), ..., x(s) are convex
in x̃. This completes the proof. ✷

F Proof of Proposition 17

The input ui(s) including ν
(k)(s) is linear in x(s) because

J(x) is quadratic in x. Therefore, for all s ∈ {0, ..., t},

13



s′ ∈ {0, ..., t}, and σ(k)(m) (m ∈ {0, ..., t − 1}, k ∈
{1, ...,K}), x(s) is linear in x(s′). Since J(x(t)) is convex
in x(t), Js,t(x̃) is convex in x̃. Since D(t) is convex in
x(s′) for all s′ ∈ {0, ..., t}, Ds,t(x̃) is convex in x̃. This
completes the proof. ✷
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