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Abstract— Distributed approaches to secondary frequency
control have become a way to address the need for more
flexible control schemes in power networks with increasingly
distributed generation. The distributed averaging proportional-
integral (DAPI) controller presents one such approach. In this
paper, we analyze the transient performance of this controller,
and specifically address the question of its performance under
noisy frequency measurements. Performance is analyzed in
terms of an H2 norm metric that quantifies power losses
incurred in the synchronization transient. While previous stud-
ies have shown that the DAPI controller performs well, in
particular in sparse networks and compared to a centralized
averaging PI (CAPI) controller, our results prove that additive
measurement noise may have a significant negative impact on its
performance and scalability. This impact is shown to decrease
with an increased inter-nodal alignment of the controllers’
integral states, either through increased gains or increased
connectivity. For very large and sparse networks, however,
the requirement for inter-nodal alignment is so large that a
CAPI approach may be preferable. Overall, our results show
that distributed secondary frequency control through DAPI is
possible and may perform well also under noisy measurements,
but requires careful tuning.

I. INTRODUCTION

Many of today’s electric power networks are undergo-
ing a paradigm shift, where local, small-scale generation
resources are increasingly replacing large-scale centralized
power plants [1], [2]. This has motivated considerable
research efforts in developing more flexible and scalable
distributed schemes for generation planning and frequency
control. For example, new optimization techniques have
been proposed in [3]–[6], which rather than the traditional
economic dispatch exploit the system’s frequency dynamics
and the possibility of load-side frequency control.

A second line of research has focused on secondary
frequency control, the objective of which is to restore the sys-
tem’s nominal frequency by adjusting generator set-points.
This is traditionally handled by a centralized automatic
generation control (AGC), but integral control strategies with
various degrees of de-centralization have been proposed in
the last years [7]–[12]. With the right architecture, these
controllers can also guarantee optimality in the generators’
power injections [8], [9], further motivating their use in a
distributed generation setting.
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In this paper, we will focus on one such integral controller
that solves the secondary frequency control problem in
a distributed fashion. It appends to each local frequency
droop controller an integral controller, and combines it
with an alignment of the integral state with neighboring
nodes through a distributed averaging filter. This distributed
averaging proportional-integral (DAPI) controller has been
advocated in e.g. [8], [9], [13] and has since then been
analyzed with regards to optimal design in [14] and for
performance in [15]–[17].

This latter series of work has in particular shown that the
DAPI controller improves the system’s transient performance
compared to standard droop control, and also outperforms
the centralized averaging PI (CAPI) controller; a centralized
integral controller resembling the traditional AGC. This
partly counterintuitive result has been attributed to the DAPI
controller’s ability to detect and attenuate local frequency
deviations locally, preventing them from giving rise to large
non-equilibrium power flows [15]. An important question
that arises is therefore what happens to the DAPI controller’s
superior performance if these local frequency measurements
are not perfect, but subject to measurement noise.

This question has motivated the present work, where we
investigate the impact of noisy frequency measurements on
performance. In line with [15], we evaluate performance in
terms of resistive power losses that are incurred in regulating
the frequency, when the system is subject to persistent small
disturbances due to power imbalances. These transient power
losses can be quantified through an H2 norm of an input-
output system that describes the generator dynamics, with a
suitably defined performance output. Our evaluation shows
that the explicit inclusion of frequency measurement noise
has a significant impact on the relative performance of the
DAPI and the CAPI controllers.

It turns out that the measurement noise gives rise to its
own contribution to the DAPI controlled system’s expected
transient power losses. For many control designs, this con-
tribution will be smaller than the losses arising due to power
imbalances, and simply lead to a small shift in the optimal
controller configuration. However, we show that the noise
contribution has an unfavorable scaling with network size.
This affects the scalability of the DAPI controller, which
in large sparse networks may incur much larger losses than
the CAPI controller, whose performance is unaffected by the
measurement noise. Still, we show that it is always possible
to tune the DAPI controller so that it performs better than the
CAPI controller for any given network. Overall, this means
that the DAPI controller must be very carefully tuned if it is
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subject to measurement noise, and this tuning may need to
be adjusted subject to the scaling of the network.

Most of the remainder of this paper is devoted to analyz-
ing the additional transient power losses that arise due to
measurement noise and its dependence on properties of the
network and the controller. After introducing the problem
setup in Section II, we present and analyze the closed-
form formulae for the performance of both the DAPI and
CAPI controllers with and without measurement noise in
Section II-D. In Section IV we discuss the scaling of the
DAPI-controller’s losses, and prove that even though it may
be unfavorable, an adjustment of the distributed averaging
filter gains can mitigate the loss increase. We conclude the
paper in Section V.

II. PROBLEM SETUP

We now introduce the linearized dynamics for the droop-
controlled power network, along with the two secondary
frequency controllers; DAPI and CAPI. We also introduce a
model for the measurement noise arising in these controllers.

A. Definitions

Consider a network modeled by the symmetric, weighted,
connected graph GP = {V, EP }, where V = {1, . . . , n} is
the set of nodes and EP ⊂ V × V is the set of edges, or
network lines. Each network line has an associated constant
admittance yji = yij = gij − jbij , where gij , bij > 0 can be
regarded as edge weights. Let NP

i := {j ∈ V : (i, j) ∈ EP }
be the set of all nodes that are connected to node i in
the graph GP . Then, by definition, bij = gij = 0 ∀j 6∈
NP
i . In this paper, we consider a Kron-reduced network

model (see e.g. [18]), in which constant-impedance loads
have been eliminated through a reduction procedure and
their effect absorbed into the network line models in EP .
Consequently, every node i ∈ V represents a generation unit
(or synchronous load) with an associated phase angle θi and
voltage magnitude |Vi|.

For a graph G = {V, E} where each edge (i, j) ∈ E has
an associated weight wij = wji > 0, we define the weighted
graph Laplacian matrix LW through [LW ]ij = −wij if i 6= j
and [LW ]ii =

∑
j∈Ni

wij . Note that the Laplacian LW is
positive semidefinite.

We denote the transpose of an arbitrary matrix A by A>.
The identity matrix is denoted I , and a column vector with
all components equal to 1 is denoted 1.

B. Droop controlled power network

Under standard droop control, each generator i is assumed
to obey the swing equation (see [19])

miθ̈i+di(θ̇i−ωref) = −
n∑
j=1

bij sin(θi−θj)+Pi+ui, (1)

where θi is the voltage phase angle and θ̇i−ωref =: ωi is the
frequency deviation at node i, in which ωref is the nominal
frequency (typically 50 Hz or 60 Hz). The constants mi

and di are, respectively, the inertia and damping (droop)
coefficients, and Pi is the net electric power injected or drawn

at node i. We denote by ui the input from the secondary
controller, to be introduced shortly. To simplify notation, we
have omitted the time-dependence of the states throughout,
e.g., θi(t) is denoted θi.

This paper is concerned with a small-signal analysis of
the system (1), and we therefore linearize the system around
the equilibrium where θi = θj . Then, by making use of the
shifted frequency ωi and by defining the droop gain ki :=
1/di and the constant τi = mi/di, we obtain the linearized
swing dynamics as

θ̇i = ωi (2a)
τiω̇i = −ωi − ki

n∑
j=1

bij(θi − θj) + Pi + ui. (2b)

The net power injection Pi will, in line with [15], [20]
be modeled as a white stochastic disturbance input that is
uncorrelated across the nodes1 (see also Section II-D). Thus,
Pi captures random fluctuations in generation and load. We
remark, however, that the performance analysis performed
here is relevant also under other input scenarios, see [20].

C. Secondary frequency control

A secondary controller input is applied in order to elim-
inate any stationary frequency errors that arise in standard
droop control. This is achieved through integral action. In
this paper, we consider two integral controllers that were
also analyzed in [15], [17]:

1) DAPI control: With distributed averaging PI (DAPI)
control, an individual integral state Ωi is kept at each node,
that can be thought of as tracking the local phase angle
deviation. To avoid destabilizing individual drifts in these
states, a distributed averaging over them takes place over an
additional communication layer that is introduced on top of
the physical power network layer. This communication layer
is modeled by the symmetric, weighted, connected graph
GC = (V, EC), with edge weights given by the interaction
strengths cij > 0 for (i, j) ∈ EC . An illustration is given in
Fig. 1. The controller becomes

uDAPI
i = Ωi (3a)

qiΩ̇i = −ω̂i −
n∑
j=1

cij(Ωi − Ωj), (3b)

where ω̂i is the frequency measured by the controller and
qi > 0 is a controller gain. Note that cij = 0 if (i, j) 6∈ EC .

2) CAPI control: In centralized averaging PI (CAPI)
control the average phase angle deviation of the entire
network is tracked centrally, and subsequently distributed to
the individual controllers. The control signal is computed as
follows:

uCAPI
i = Ω (4a)

q Ω̇ = − 1

n

n∑
i=1

ω̂i (4b)

1This assumption implies that P is a white second-order process with
E{Pi(t

′)P>
i (t)} = δ(t − t′)Ii, where δ(t) is the Dirac delta function,

and without loss of generality we have assumed unit intensity.



Communication layer       

Physical layer 

Fig. 1: Illustration of the two graph topologies in the DAPI
controller. The physical layer GP describes the Kron-reduced
power network, while the distributed averaging of integral
states uses the communication layer GC .

where q > 0 is a constant gain.
We remark that the DAPI controller corresponds to the

CAPI controller in the limit of infinite interaction gains cij .

D. Noise model

In previous analyses of the performance of secondary
frequency control such as [15]–[17], it has been assumed
that the controller has access to a noiseless measurement of
local frequency, so that ω̂i = ωi in (3) and (4). As such,
the only disturbance to the system has been Pi, which is
due to generation and load fluctuations. In this paper, we
will assume imperfect frequency measurements and therefore
introduce the additional noise term ηi, which is modeled as
additive white measurement noise on the frequency, so that

ω̂i = ωi + ηi. (5)

This noise does, as will see, have a large impact on the
relative performance of the secondary controllers.

As already mentioned, we model the power injection
fluctuations Pi as uncorrelated white disturbance inputs.
We choose to relate its intensity to the white measurement
noise ηi through the constant ε > 0, so that

E{η(t′)η>i (t)} = εE{P (t′)P>i (t)},

where P =
[
P1, . . . , Pn

]>
and η =

[
η1, . . . , ηn

]>
.

This allows us to define the process w ∈ R2n with
E{w(t′)w>(t)} = δ(t− t′)I , and construct the input vector[

P
η

]
=

[
I 0
0 εI

]
w. (6)

E. Closed-loop system dynamics

By substituting the secondary controller inputs uDAPI
i

from (3) and uCAPI
i from (4) along with the measurement

noise model (5) into the system dynamics (2), and by making
use of the input vector in (6), we obtain the closed-loop
systems on vector form as: θ̇

T ω̇

QΩ̇

=

 0 I 0
−KLB −I I

0 −I −LC

θω
Ω

+

0 0
I 0
0 εI

w (SDAPI)

for the DAPI controlled system, and θ̇
T ω̇

qΩ̇

=

 0 I 0
−KLB −I I

0 −1
n1
> 0

θω
Ω

+

0 0
I 0
0 ε1>

w (SCAPI)

for the CAPI controlled system. At this point, we have
introduced the state vectors θ =

[
θ1, . . . , θn

]>
, ω =[

ω1, . . . , ωn
]>

, and in the DAPI case Ω =
[
Ω1, . . . ,Ωn

]>
(note that Ω is scalar in the CAPI case), as well as the
matrices K = diag{ki}, T = diag{τi}, and Q = diag{qi}.
We have also made use of the weighted graph Laplacians
LB and LC , where LB (the susceptance matrix) represents
the graph GP with weights bij , and LC the graph GC with
weights cij .

Remark 1: In this model, we have assumed that the fre-
quency ωi enters without noise in the system dynamics (2).
While this is meaningful in a setting with synchronous
machines, a power electronic inverter interfacing, e.g., a re-
newable generation source, may emulate the swing equation
using a noisy measurement of the frequency. In this case, the
DAPI controlled system would become θ̇

T ω̇

QΩ̇

=

 0 I 0
−KLB −I I

0 −I −LC

θω
Ω

+

0 0
I εI
0 εI

w. (S̃DAPI)

This leads to correlations in the noise input between the
input channels. These correlations do, however, not affect
the qualitative behavior of the system (see the appendix for
an elaboration). We therefore limit the upcoming analysis to
the uncorrelated input modeled in (SDAPI) and (SCAPI).

F. Performance metric

The performance of the proposed control strategies will
be evaluated using the price of synchrony performance met-
ric [20], in order to facilitate a comparison to the analysis
in [15]. This metric measures performance in terms of
power losses associated with transient power flows. For
this purpose, we define a performance output y from the
systems (SDAPI) and (SCAPI) as

y := L1/2
G θ (7)

where the conductance matrix LG is the weighted graph
Laplacian of the graph GP with weights gij ≥ 0, and where
L1/2
G is the unique positive semidefinite square root of LG.
Using this output definition, the squared Euclidean

norm of the performance output y>y = θ>LGθ =∑
(i,j)∈EP gij(θi − θj)2 constitutes the approximate instan-

taneous power loss of the entire system. Based on that, we
obtain a performance measure by applying the H2 norm;
namely, for an input-output stable system S subject to a white
stochastic input w it holds that

||S||22 = lim
t→∞

E{y>(t)y(t)}. (8)

Hence, the squared H2 norm can be interpreted as the ex-
pected power loss in the presence of persistent disturbances.



III. THE IMPACT OF MEASUREMENT NOISE ON
PERFORMANCE

In this section, we compute the performance metric (8)
for the closed-loop system with the DAPI controller and the
CAPI controller, respectively. The expression for the squared
H2 norm can be split into two parts; one associated with the
power injection noise P , which was already analyzed in [15],
and one associated with the measurement noise η. It is the
impact of the latter part that is the focus of this paper.

We begin by stating a number of assumptions under which
the closed-form expressions for the H2 norms are derived:

Assumption 1 (Identical line properties): All lines have
uniform and constant conductance-to-susceptance ratios α :=
gij
bij

such that LG = αLB .
Assumption 2 (Uniform control parameters): The gener-

ator units and their control parameters are uniform, so that
T = τI , Q = qI and K = kI .

Assumption 3 (Communication layer topology): The
topology of the communication layer is identical to the
physical layer so that GP = GC . The interaction strengths cij
are characterized through the constant scalar γ > 0 so that
cij = γbij for all (i, j) ∈ EP = EC , yielding LC = γLB .
While these assumptions are made for tractability purposes,
they can be physically motivated, see [15].

The performance in terms of expected power losses for
the DAPI and CAPI controlled systems can now be stated
as follows.

Theorem 3.1 (Performance under measurement noise):
The H2 norm for the DAPI-controlled system (SDAPI) with
the output (7) is given by

||SDAPI||22 = ||SDAPI
P ||22 + ||SDAPI

η ||22, (9)

where

||SDAPI
P ||22 =

α

2k

n∑
i=2

1

1 + ϕ(λi, γ, k, q, τ)−1
(10)

are the expected power losses associated with the power
injection noise P and

||SDAPI
η ||22 = ε2 α

2k

n∑
i=2

1

γλi
· 1

1 + ϕ(λi, γ, k, q, τ)
(11)

are the expected losses associated with the frequency mea-
surement noise η. The function ϕ is defined as

ϕ(λi, γ, k, q, τ) :=
kq2λi + qγλi + τ(γλi)

2

q + τγλi
, (12)

where λi with 0 = λ1 < λ2 ≤ . . . ≤ λn are the
eigenvalues of LB . The H2 norm for the CAPI-controlled
system (SCAPI) is given by

||SCAPI||22 = ||SCAPI
P ||22 =

α

2k
(n− 1) ,

and is independent of any measurement noise η.
Proof: The proof is omitted since it is analogous to the

proof of [15, Theorem 3.2]. The fact that the H2 norm can
be partitioned into one part associated with the input P and
one part associated with the input η is due to these inputs

being uncorrelated. The total H2 norm is therefore the sum
of the contributions of each of these inputs.

Remark 2: The expression (11) is positive and represents
the additional power losses arising due to the frequency mea-
surement noise η in the DAPI controlled system. In the CAPI
case, η does not give rise to any additional power losses. This
can be explained by the fact that the CAPI controller affects
all generators equally. Any error caused by the measurement
noise may affect the synchronous frequency, but will not
induce additional power flows between generators.
By noting that the function ϕi := ϕ(λi, γ, k, q, τ) is positive,
it is readily verified that in the absence of frequency mea-
surement noise η, the losses associated with DAPI control
are strictly smaller than those associated with CAPI control:

||SDAPI
P ||22 < ||SCAPI

P ||22.

It can also be shown by analyzing ϕi that this loss reduction
a) benefits from weak distributed averaging, i.e., a small
value for γ and b) is greater for sparsely interconnected
network topologies [15]. We will now discuss how the
additional term ||SDAPI

η ||22 affects these conclusions.

A. The role of distributed averaging

The parameter γ characterizes the interaction strengths cij
in the distributed averaging filter of the DAPI controller. It is
a tunable parameter that determines how closely the integral
states Ωi for i ∈ V are kept together. A large γ increases
the information flow through the network and speeds up the
distributed averaging of the integral states, meaning that these
states follow each other more closely. In the limit where γ →
∞, the integral states are identical and we have retrieved the
CAPI algorithm. The following corollary to Proposition 3.1
is easy to show:

Corollary 3.2:

lim
γ→∞

||SDAPI||22 = ||SCAPI||22.

It also holds that limγ→∞ ||SDAPI
η ||22 = 0, i.e., the losses

associated with measurement noise tend to zero as γ →∞.
Small values on γ have the opposite effect. They allow for

local frequency deviations to be handled more by the local
controller, as information about local phase angle deviations
will propagate slowly from node to node. In the absence
of measurement noise η, a relatively small value for γ or,
under certain conditions even γ = 0, has also been shown
to optimize DAPI performance, as seen from Lemma 3.3.

Lemma 3.3: The value γ? that minimizes ||SDAPI
P ||22 lies

in the interval 0 ≤ γ? ≤ maxi
q
√
τkλi−q
τλi

. If the droop gain
is such that λikτ ≤ 1 for all i = 1, . . . , n, it holds γ? = 0.

Proof: Follows [17, Theorem 3].
However, when measurement noise η is added to the

model, it is immediately obvious that γ = 0 is never an
optimal, or even feasible choice (as predicted also by the
stability analyses in [8], [9]). The following corollary to
Proposition 3.1 follows directly from (11).



Corollary 3.4: It holds that

lim
γ→0
||SDAPI

η ||22 =∞

and therefore limγ→0 ||SDAPI||22 =∞.
It turns out that an analytic expression for the optimal choice
of γ in the presence of measurement noise is difficult to
obtain even for special graph structures, and a numerical
evaluation for each case is necessary. We can, however, give
the following proposition.

Proposition 3.5: Let γ?,η be optimal with respect to the
power losses (9) in the presence of measurement noise η,
and let γ? be optimal in its absence (i.e. let γ? minimize
||SDAPI

P ||22). Then,
γ?,η > γ?.

Proof: The case of γ? = 0 is trivial due to 3.4.
Assume now γ? > 0. Define χ̄i(γ) = 1

1+ϕi(γ) and
χ
i
(γ) = 1

1+ϕ−1
i (γ)

, and note that χ
i
+ χ̄i = 1. Therefore χ̄i

(that occurs in the expression for ||SDAPI
η ||22) is increasing

whenever χ
i

(that occurs in ||SDAPI
P ||22) is decreasing and

vice versa. Moreover, since γ? is a unique minimizer for
||SDAPI

P ||22 [15],
∑n
i=2 χ̄i in ||SDAPI

η ||22 will have a unique
maximum at γ?. We also know that 0 <

∑n
i=2 χ̄i(γ) <∑n

i=2 χ̄i(γ
?) for any γ in the open interval (0, γ?) and

0 = limγ→∞
∑n
i=2 χ̄i(γ

?) <
∑n
i=2 χ̄i(γ) ≤

∑n
i=2 χ̄i(γ

?).
That means that the set of all possible values that

∑n
i=2 χ̄i(γ)

can assume in the interval (0, γ?) are also contained in the set
of values that it can assume in (γ?,∞). The same argument
can be applied to

∑n
i=2 χi(γ). This means that for any γ−

in the open interval (0, γ?), there exists a γ+ > γ? such that∑n
i=2 χ̄i(γ

−) =
∑n
i=2 χ̄i(γ

+) while also
∑n
i=2 χi(γ

−) =∑n
i=2 χi(γ

+), since χ
i
+ χ̄i = 1.

From ε2

γ−λi
> ε2

γ+λi
follows that

∑n
i=2

ε2

γ−λi
χ̄i(γ

−) >∑n
i=2

ε2

γ+λi
χ̄i(γ

+) while
∑n
i=2 χi(γ

−) =
∑n
i=2 χi(γ

+) still
holds. This means that ||SDAPI||22

∣∣
γ=γ− > ||SDAPI||22

∣∣
γ=γ+ .

Therefore, if we assume γ− locally minimizes ||SDAPI||22
in the interval (0, γ?), then γ+ would give an even smaller
value for ||SDAPI||22. We conclude that γ?,η ≥ γ?.

It remains to show that γ? is not optimal in
the presence of η. Since d

dγ ||S
DAPI||22

∣∣
γ=γ? =

− aε2

2k(γ?)2

∑n
i=2

1
λi

1
1+ϕi(γ?) < 0, it follows that γ? is

not optimal. Hence, γ?,η > γ?.
In Fig. 2 we give a numerical example that illustrates the
results of this section. Overall, our results imply that the
distributed averaging of integral states that takes place in the
DAPI controller is increasingly important in the presence
of measurement noise. Its relative importance, of course,
depends on the noise intensity ε. In Section IV-B we will
also discuss how this is impacted by the size of the network.

B. The role of network density
Network density captures the notion of the connectivity of

a network, and can formally be defined as the proportion of
a graph’s actual edges to its potential edges, i.e. |EP |/|V ×
V| [21]. If this number is small, we call the graph sparse
and if it is big, we call it dense, or well-interconnected.
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Fig. 2: Power losses’ dependence on interaction strength γ
in DAPI. Here, we have modeled a complete graph with
n = 10 nodes and set k = 5, q = τ = 0.8, α = ε = 1 and
bij = 0.05 for all (i, j) ∈ EP . One can see that the optimal γ
is shifted towards a larger value in presence of noise η.

While this property does not effect the expected power
losses under CAPI control, it plays an important role for the
DAPI control law. In [15] it was shown that the expected
power losses associated with load disturbances P increase
with the network density. This implies that, in the absence
of η, the largest relative performance improvement of DAPI
control over CAPI control is achieved for sparse network
topologies. This is no longer the case in the presence of
measurement noise η, as the losses due to such noise are
highest for sparse topologies and decrease with increased
network density. Consider the following proposition.

Proposition 3.6: Adding an edge to the network GP , or
increasing its susceptance (decreasing the reactance) can
only decrease the expected power losses associated with the
measurement noise ||SDAPI

η ||22 in (11), and vice versa.
Proof: Let GP = (V, EP ) be the original graph with

weights bij for (i, j) ∈ EP . Since dϕi

dλi
= 2λiγ

2τq+γq2+kq3

(q+τqλi)2
>

0, we derive that d
dλi
||SDAPI

η ||22 < 0 for all i = 2, . . . , n.
Thus, it is sufficient to show that at least one eigenvalue λi
increases while the others do not decrease.

(Part 1: Additional edge) Let e be an additional edge that
is added to GP = (V, EP ), constituting the extended graph
G̃ = (V, EP ∪ e). The eigenvalues satisfy 0 = λ1(GP ) =
λ1(G̃) ≤ · · · ≤ λi(GP ) ≤ λi(G̃) ≤ · · · ≤ λn(GP ) ≤ λn(G̃)
where at least one inequality is strict [22, Theorem 3.2]. The
same argument can be used in case an edge is removed.

(Part 2: Increased susceptance) Assume a positive change
∆b > 0 for an arbitrary edge e′ = (i, j) ∈ E . Define the
graph G′ = (V, {e′}) where e′ has the weight ∆b. The
Laplacian of G′ is L′ and that of the original graph GP is LB .
According to the Courant-Weyl inequalities [23, Section 2.8],
it holds λi(LB+L′) ≥ λi(LB). Again, at least one inequality
must be strict, following [23, Theorem 2.6.1]. Reducing a
susceptance follows the same argument.

Remark 3: Proposition 3.6 does not require conduc-
tances gij to be constant, but also holds if the ratio α =
gij
bij

= const. or increasing.

This result implies that the total losses’ dependence on



the network density is not straightforward in the presence
of measurement noise, since the two loss components have
opposite dependencies. The best network topology for loss
reduction thus depends on remaining system parameters and,
in particular, the relative noise intensity characterized by ε.

IV. LIMITATIONS TO THE SCALABILITY OF
DAPI CONTROL

In the previous section, we discussed how the performance
in terms of resistive power losses depends on the system
parameters for a given network. Aside from the importance
of designing the controller so that the losses for a given
network are acceptable, an important issue is the scalability
of a given control design. That is, the ability to extend the
network without degrading performance and without needing
to alter the network or control design. As we shall see,
measurement noise affects the scalability of DAPI control.

A. Scaling of power losses with network size

To discuss the scalability of the DAPI controller, we need
to assume that all parameters and gains of the controller (3)
are fixed. That is, they do not change as the network size
grows. Further, we will consider the transient power losses
from (8) normalized by the total number of nodes n. These
per-node losses should remain bounded in order for the
controller to be regarded as scalable.

The expected power losses associated with measurement
noise are given in (11). Notice the factor 1

λi
, which will tend

to infinity for small eigenvalues. This causes an unfavorable
scaling of the losses in sparse networks. In regular lattice
networks, it is possible to derive exact expressions for the
asymptotic (in network size) scalings of the losses. More
precisely, we will consider 1- and 2-dimensional lattice
networks and their q-fuzzes, where a 1D lattice corresponds
to a path graph. The q-fuzz of a lattice graph is created by
adding edges between all nodes that are at a graph distance
of q or less from each other. We note that scalings for lattices
also apply to any graph that can be embedded in such lattices,
but defer a detailed discussion to an extended study.

Consider the following proposition:
Proposition 4.1 (Performance scaling in lattices):

Let the graph GP be a lattice or its q-fuzz in one or
two dimensions (d = 1 or d = 2), and let the line
susceptances bij be bounded. Then, the per-node losses
associated with measurement noise scale according to:

1

n
||SDAPI

η ||22 ∼
{
ε2n if d = 1
ε2 log n if d = 2,

where the notation u(n) ∼ v(n) implies that cv(n) ≤
u(n) ≤ c̄v(n) for sufficiently large n, where c, c̄ are
positive constants. The per-node losses associated with power
injection noise are, on the other hand, upper bounded as:

1

n
||SDAPI

P ||22 ≤
α

2k
.

Proof: First we need to show that the factors 1
1+ϕi

from (11) are uniformly bounded. Recall that dϕi

dλi
> 0

for λi ≥ 0. Thus, λmin = 0 and λmax = maxi λi give
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Fig. 3: Per node expected power losses 1
n ||S||

2
2 as a function

of the network size in a ring graph with CAPI and DAPI
for different interaction strengths γ. Here, we have set k =
5, q = τ = 0.8, α = 1, ε = 0.5 and bij = 0.1, (i, j) ∈ EP .

the lower and upper bounds for ϕi, respectively. In a 1D
lattice the largest possible eigenvalue is 4bmax and in a
2D lattice it is 16b2max, where bmax = max(i,j)∈EP bij ,
since the eigenvalues of an unweighted path graph are
λi = 2(1 − cos πin ) [23], so 0 ≤ ϕi ≤ ϕ(λmax, γ, k, q, τ)
and 1

1+ϕi
is therefore uniformly bounded with respect to n.

Now, we can bound 1
n ||S

DAPI
η ||22 as: c ε

2

n

∑n
i=2

1
λ1
i

:=
αε2

2knγbmax(1+ϕ(λmax))

∑n
i=2

1
λ1
i

≤ 1
n ||S

DAPI
η ||22 ≤

αε2

2knγbmin(1+ϕ(λmin))

∑n
i=2

1
λ1
i

=: c̄ ε
2

n

∑n
i=2

1
λ1
i

, where
λ1
i are the Laplacian eigenvalues of the graph where all

weights are equal to 1. According to [24], the relationship∑n
i=2

1
λ1
i

= 1
nKf holds, where Kf is the Kirchoff index of

a graph. We can then write cε2

n2 Kf ≤ 1
n ||S

DAPI
η ||22 ≤ c̄ε2

n2 Kf .
It is proven in [25] that the Kirchhoff index for infinite
lattices, including q-fuzzes, scales like Kf ∼ n3 if d = 1 and
Kf ∼ n2 log n if d = 2. Thus, we get 1

n ||S
DAPI
η ||22 ∼ ε2n

if d = 1 and 1
n ||S

DAPI
η ||22 ∼ ε2 log n if d = 2.

This result means that while the losses, when evaluated per
node, were upper bounded for DAPI in the absence of noise,
they may grow unboundedly in large 1- or 2-dimensional
lattice networks in the presence of noise. Fig. 3 provides a
numerical example. This unbounded growth of the power
losses per generator can be understood as caused by the
secondary control input becoming increasingly distorted as
the network grows. In practice, however, there is clearly a
limit on how large the transient losses can become, which
depends on the generators’ power ratings. The scaling result
in Proposition 4.1 should therefore be interpreted as setting a
limit on the feasible network size for each controller tuning.

B. Existence of optimal control design

In contrast to previous work, where it was shown that
the DAPI strategy always leads to superior performance in
comparison to the CAPI approach, this paper’s results show
that this no longer necessarily applies in the presence of mea-
surement noise. Due to the unfavorable scaling behavior in
sparse networks, the expected losses under DAPI control can
vastly exceed those under CAPI control. We now show that
this, however, can be counteracted by a proper adjustment
of the distributed averaging gain parameter γ.



Proposition 4.2: For any network GP it holds that

||SDAPI||22 < ||SCAPI||22 , if γ̂ < γ <∞, (13)

where γ̂ = ε2

λ2
, and λ2 is the smallest non-zero eigenvalue

of LB .
Proof: The DAPI H2 norm (9) can be writ-

ten ||SDAPI||22 = α
2k

∑n
i=2

(
1

1+ϕ−1
i

+ ε2

γλi

1
1+ϕi

)
. This

expression can be upper bounded by (n − 1) times
the largest summand: ||SDAPI||22 ≤ α

2k (n − 1) ·
maxλi>0

{
1

1+ϕ−1
i

+ ε2

γλi

1
1+ϕi

}
. Let λ? be the maximizing

eigenvalue. We are looking to choose γ so that ||SDAPI||22 <
||SCAPI||22 = α

2k (n − 1) holds. Some simplifications reveal
that this holds if γ > ε2

λ? ≥ ε2

λ2
=: γ̂, and (13) follows.

Moreover, we already established that there exists a value γ?

that minimizes the losses for the DAPI controller. Proposi-
tion 4.1 implies that at this minimum (and for larger γ), DAPI
will perform better than CAPI. Thus, the CAPI performance
can still be seen as an upper bound for DAPI. Nonetheless,
one should be aware that selecting a too small γ in DAPI
can lead to much worse performance.

This result shows that despite the unfavorable scaling of
losses due to noise in certain topologies, a distributed strategy
is not necessarily worse than the centralized CAPI strategy (it
is actually better, for some optimal configuration). However,
since γ̂ depends on λ2, it unfortunately means that the choice
of γ cannot be made independently of the network size for
all topologies, and therefore, the algorithm is less scalable.
For a very large and sparse network, one would have to revert
to a CAPI algorithm as γ̂ →∞.

V. CONCLUSIONS

We have investigated the performance limitations that arise
due to noisy frequency measurements in a distributed sec-
ondary frequency control law, namely DAPI. Our main con-
clusion is that noise may have a large impact on performance,
creating a need for very careful controller tuning, whereas
the performance of the corresponding centralized controller,
CAPI, remains unaffected by noise. In principle, our results
state that the distributed averaging filter in DAPI carries
an increased importance when measurements are noisy –
larger gains and higher network density will reduce the noise
impact. We prove that there is an optimal configuration of
this filter that allows DAPI to still perform better than CAPI.
Therefore, the main conclusions from [15]–[17] still hold. A
poor configuration on the other hand, can lead to much worse
performance in DAPI than in CAPI, and in very large and
sparse networks, the poor scalability of the DAPI controller
may make it sensible to revert to CAPI.

A relevant extension to this work is to consider separate
network topologies for the physical layer and the commu-
nication layer in DAPI. Preliminary analyses reveal that the
unfavorable performance scaling observed in sparse networks
has bearing on the communication network layer. Therefore,
increasing the density in the communication layer alone can
be expected to improve performance, in a way similar to

increasing interaction strengths. A detailed analysis is part
of ongoing work.

A promising alternative to counteract the performance
limitations in DAPI are phasor measurement units (PMUs).
These measure phase directly and thereby eliminate the
need for integral states that are distorted by noisy frequency
measurements. Since the availability of PMUs, however, is
likely to be limited, an important question that is subject to
ongoing research is how strategical placement of PMUs in
the network may mitigate the impact of measurement errors.

APPENDIX

A. Alternative noise model

If the additional noise term enters the dynamic equation
as in (S̃DAPI), the H2 norm becomes ||S̃DAPI||22 =
a
2k

∑n
i=2

(
(1 + ε2) 1

1+ϕ−1
i

+ ε2
(

2 + 1
γλi

)
1

1+ϕi

)
. Clearly,

the factor (1 + ε2) does not change the qualitative behavior
of the first term. For the second term it is the scaling in n
that is of most interest (see Section IV). This depends on
the factor 1

γλi
and the qualitative result of Proposition 4.1

is not affected by adding the term 2 to this factor.
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