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An integral quadratic constraint framework for real-time steady-state

optimization of linear time-invariant systems*

Zachary E. Nelson and Enrique Mallada

Abstract— Achieving optimal steady-state performance in
real-time is an increasingly necessary requirement of many
critical infrastructure systems. In pursuit of this goal, this paper
builds a systematic design framework of feedback controllers
for Linear Time-Invariant (LTI) systems that continuously
track the optimal solution of some predefined optimization
problem. The proposed solution can be logically divided into
three components. The first component estimates the system
state from the output measurements. The second component
uses the estimated state and computes a drift direction based
on an optimization algorithm. The third component computes
an input to the LTI system that aims to drive the system toward
the optimal steady-state.

We analyze the equilibrium characteristics of the closed-loop
system and provide conditions for optimality and stability. Our
analysis shows that the proposed solution guarantees optimal
steady-state performance, even in the presence of constant
disturbances. Furthermore, by leveraging recent results on the
analysis of optimization algorithms using integral quadratic
constraints (IQCs), the proposed framework is able to translate
input-output properties of our optimization component into
sufficient conditions, based on linear matrix inequalities (LMIs),
for global exponential asymptotic stability of the closed loop
system. We illustrate the versatility of our framework using
several examples.

I. INTRODUCTION

Infrastructure systems are the foundation of our modern

society. The Internet, power grids, and transportation net-

works are just some examples of the several critical systems

that our current lifestyle relies on. Due to their large scale,

the operational and fault-associated costs that these systems

incur are both in the range of hundreds of millions of

dollars to several billion dollars [1]. Therefore, operators are

continuously faced with the conflicting tasks of operating

these systems as efficiently as possible and guaranteeing

certain levels of security or robustness.

Traditionally, this balancing between efficiency and secu-

rity is achieved by separating tasks across different time-

scales. Efficiency goals are achieved using optimization algo-

rithms running at a slow time-scale, and stability/robustness

goals are achieved using fast time-scale controllers. For ex-

ample, in power systems, generators are optimally scheduled

by solving an (economic dispatch) optimization problem at a

slow time-scale (every 5/15 minutes, hour, or day) [2], but at

the fast time-scale the scheduling uses controllers based on

*This work was supported by the Army Research Office contract
W911NF-17-1-0092, NSF grants (CNS 1544771, EPCN 1711188), and
Johns Hopkins WSE startup funds.

Zachary E. Nelson and Enrique Mallada are with the Depart-
ment of Electrical and Computer Engineering, The Johns Hopkins
University, 3400 N. Charles Street, Baltimore, MD 21218, emails:
{znelson2,mallada}@jhu.edu

frequency measurements [3] that are focused on preserving

the system stability [4], not efficiency.

Unfortunately, the state of flux that these infrastructure

systems currently experience due to the growing population,

deployment of sensing and communication technologies, and

sustainability trends, is pushing its operation towards their

limits and, in this way, rendering this approach obsolete.

Operating at maximum capacity does not leave room for the

inefficiencies incurred by the timescale separation. Moreover,

the limited coordination capabilities that today’s controllers

provide, when compared with optimization algorithms, does

not allow the system to quickly react to unprescribed events.

Motivated by this problem, this paper aims to remove the

time-scale separation by building controllers that can simul-

taneously achieve steady-state optimality while preserving

the system stability.

More precisely, this paper proposes a systematic design

framework for feedback controllers that, given a LTI system

and an unconstrained optimization problem, generates a

family of nonlinear controllers that seek to drive the system

towards the optimal solution of the optimization problem.

Our equilibrium analysis connects notions of controllabil-

ity and observability of the LTI system with a criterion

for steady-state optimality of the closed loop equilibrium.

Furthermore, we leverage recent analyses of optimization

algorithms using Integral Quadratic Constraints (IQCs) [5],

[6], [7] to provide sufficient conditions based on Linear

Matrix Inequalities [8] that guarantee global exponential

asymptotic stability. The derived LMIs provide an explicit

bound on the rate of convergence and allow us to design an

algorithm that computes the maximum rate of convergence.

Our controllers have two main distinctive features. Firstly,

they can be functionally separated into three compo-

nents/modules: (i) an Estimator, that aims to estimate the

system’s state from the output; (ii) an Optimizer, that uses

the estimated state to compute the drift direction necessary to

achieve optimality or outputs zero when the estimated state

is optimal; and (iii) a Driver (PI controller) that generates the

necessary input to drive the system toward the optimal solu-

tion. Secondly, the Optimizer module can be implemented

using one of many optimization algorithms, leading to a

family of optimization-based nonlinear controllers. The only

required conditions are that (i) in steady state the output of

the optimizer is zero if and only if its input (the estimated

state) is the optimal solution of the optimization problem, and

(ii) there exists an Integral Quadratic Constraint that captures

the input-output relationship of the optimizer.

Related Work: Optimization-based control design for achiev-

ing optimal steady-state performance has a been a popular
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subject of research for more than three decades. It has been

used in communication networks to reverse engineer TCP/IP

congestion control protocols [9], [10] and provide a design

framework for novel congestion control algorithms [11],

distributed multi-path routing [12], [13], and admission con-

trol [14], and access control in wireless networks [15]. In

the context of power systems and micro-grids, optimization-

based control design has been used for the design of dis-

tributed controllers that can achieve efficient supply-demand

balance [16], frequency restoration [17], [18], congestion

management [19], and economic steady-state optimality [20],

[21], [22], [23]. Some of these approaches have been further

extended for more general settings such as [24] and [25].

In general, these solutions either require that the dynamical

system to be optimized has a specific structure, such as being

passive [19], [20], having primal-dual dynamics [18], [23],

[25], or having direct access to (a subset of) the system

state [24].

More recently, real-time optimization algorithms have

been proposed as a mean to mitigate the large fluctuations

that renewable energy introduce in power networks. The

solutions fall within two categories depending on whether

the system dynamics are considered as perturbations of the

optimization algorithms [26], [27], or the system is modeled

as a set of nonlinear algebraic constraints with slowly time

varying parameters [28], [29]. Our work distinguishes from

these works by explicitly modeling the system dynamics

and simultaneously guaranteeing stability of the dynamical

system and convergence to the optimal solution. Notably,

while our framework today does not include optimization

constraints or nonlinearities in the system dynamics, extend-

ing our framework to incorporate these features is the subject

of our current research.

Paper Organization: The organization of the paper is as

follows. Section II gives the reader preliminary tools that

are necessary for the later analysis. Section III sets up the

problem and discusses some of the challenges. Section IV

proposes a design framework of controllers that addresses

the challenges. Section V shows the systematic procedure

for analyzing steady-state optimality and stability. Section

VI considers multiple numerical examples to illustrate the

practicality of this approach. Lastly, Section VII summarizes

the major points of the paper and suggests future work.

II. PRELIMINARIES

A. Notation

The following notation will be used throughout the re-

mainder of the paper. The n × n identity matrix is denoted

as In. The m × n zero matrix is denoted as 0m×n. The

zero vector with length n is denoted as 0n. The subscripts

are removed when the dimensions are implied by context.

A positive (semi) definite matrix P ∈ R
n×n is denoted as

P ≻ 0 (� 0). All norms || · || : Rn → R are the standard

ℓ2-norm. The Kronecker product of two matrices is denoted

by the symbol ⊗.

B. Integral Quadratic Constraints

Given a nonlinear mapping φ : p 7→ q, with p, q ∈ R
n,

and an input-output reference (p∗, φ(p∗)) ∈ R
n × R

n, we

consider the following class of IQCs:

Definition 1 (Pointwise IQC): The mapping φ is said to

satisfy the pointwise IQC defined by (Qφ, p∗, φ(p∗)) if

[
p− p∗

φ(p)− φ(p∗)

]T

Qφ

[
p− p∗

φ(p)− φ(p∗)

]

≥ 0

holds for all (p, p∗) ∈ R
n×R

n, where QTφ = Qφ ∈ R
2n×2n

is an indefinite matrix.

Next, we discuss two particular choices of the nonlinear

map φ that are commonly used in optimization algorithms.

Gradient Mapping:

One source of nonlinearity that commonly arises in opti-

mization algorithms is the gradient ∇f(p) of a function

f : Rn → R. In particular, characterizing the input-output

properties of the gradient of a strongly convex function with

a Lipschitz continuous gradient is of interest.

Definition 2: The gradient mapping ∇f : Rn → R
n is

Lipschitz continuous with parameter L if

||∇f(p)−∇f(p∗)|| ≤ L||p− p∗||

holds for all (p, p∗) ∈ R
n × R

n, where L ≥ 0 is a real

constant.

Definition 3: The function f : Rn → R
n is said to be

strongly convex if

(∇f(p)−∇f(p∗))
T (p− p∗) ≥ m||p− p∗||

2

holds for all (p, p∗) ∈ R
n × R

n, where m > 0 is a real

constant.

Using these two properties, it is possible to show that ∇f
satisfies the pointwise IQC (Qf , p∗,∇f(p∗)) defined by the

matrix

Qf :=

[
−2mL L+m
L+m −2

]

⊗ In. (1)

We refer the reader to [5] or [30] for a proof of this statement.

Proximal Mapping:

The second type of nonlinearity that will be used in this

paper arises from the proximal mapping of a function.

Definition 4: The proximal mapping Πρf : Rn → R
n of

the function f : R
n → R with real parameter ρ > 0 is

defined as

Πρf (p) := arg min
v∈Rn

f(v) +
1

2ρ
||v − p||2. (2)

The optimality condition of the optimization problem

associated with (2) is:

0 = ∇f(Πρf (p)) +
1

ρ
(Πρf (p)− p). (3)

From (3), the proximal mapping can be viewed as the

composition of the gradient mapping with an affine operator,

followed by an inversion operation:

Πρf (p) = (I + ρ∇f)−1(p).

A known result is that Πρf satisfies the pointwise IQC

(QΠρf
, p∗,Πρf (p∗)) defined by the matrix

QΠρf
:=

([
0 ρ−1

1 −ρ−1

]

⊗ In

)

Qf

([
0 1
ρ−1 −ρ−1

]

⊗ In

)

.



This result can be derived by using Lemma 1 followed by

an IQC for inversion operations [6].

Affine Composition of IQCs:

The following lemma, whose proof can be found in [6],

shows how to derive IQCs when a nonlinearity φ is com-

posed with an affine map.

Lemma 1: (IQC for Affine Operations) Consider the non-

linear mapping φ that satisfies the pointwise IQC defined by

(Qφ, p∗, φ(p∗)). Define the affine mapping ψ : Rn → R
n to

be ψ(p) := S2p+ S1φ(S0p) where S0, S1, S2 ∈ R
n×n and

S1 is invertible. Then, ψ satisfies the pointwise IQC defined

by (Qψ, p∗, ψ(p∗)), where

Qψ :=

[
ST
0

−(S−1

1
S2)

T

0 (S−1

1
)T

]

Qφ

[
S0 0

−S−1

1
S2 S−1

1

]

.

Stability Analysis Using IQCs:

The following lemma is useful when deriving stability

conditions in terms of a LMI. See [8] and [31] for details.

Lemma 2: (Lossless S-Lemma) Let AT = A ∈ R
n×n and

BT = B ∈ R
n×n. Then, A � σB holds for some σ ≥ 0 if

and only if xTBx ≥ 0 =⇒ xTAx ≥ 0 for all x ∈ R
n.

We will now show how the input-output properties of an

IQC can be used to generate a sufficient stability condition

for the feedback interconnection of a LTI system and non-

linearity φ.

Proposition 1: Consider a LTI system defined by the ma-

trices Â ∈ R
n×n, B̂ ∈ R

n×m, Ĉ ∈ R
m×n, and D̂ ∈ R

m×m

with state ξ ∈ R
n, input q ∈ R

m, and output p ∈ R
m:

ξ̇(t) = Âξ(t) + B̂q(t)

p(t) = Ĉξ(t) + D̂q(t).

Suppose the LTI system has the nonlinearity φ : Rm → R
m

as feedback so that q = φ(Ĉξ+ D̂q). Assume φ satisfies the

pointwise IQC (Qφ, p∗, φ(p∗)) and the feedback interconnec-

tion is well-posed.1 Then, the closed-loop equilibrium point

ξ∗ ∈ R
n has global exponential asymptotic stability of at

least rate α if the LMI
[
ÂTP + PÂ+ αP PB̂

B̂TP 0

]

+σ

[
ĈT 0

D̂T In

]

Qφ

[

Ĉ D̂
0 In

]

� 0

(4)

is feasible for some σ ≥ 0, α > 0, and P ≻ 0.

Proof: Assume that (4) is feasible. Let δξ :=ξ−ξ∗ and

δq :=q− q∗, where q∗ is the input that achieves equilibrium.

Consider the quadratic function V (δξ) = (δξ)TPδξ, where

P ∈ R
n×n, P ≻ 0. Lyapunov theory states that if V satisfies:

• V (0) = 0 and V (δξ) > 0 for all δξ ∈ R
n \ {0},

• if ||δξ|| → ∞, then V (δξ) → ∞ (radially unbounded),

• V̇ (δξ) ≤ −αV (δξ) for all δξ ∈ R
n \ {0} and α > 0,

then the equilibrium point has global exponential asymptotic

stability of at least rate α [32].

Clearly, V (0n) = 0TnP0n = 0. The property V (δξ) > 0
holds ∀δξ 6= 0 because P ≻ 0. The radial unboundedness

property similarly follows from P ≻ 0. Using the fact that

1The definition of well-posedness is given in Section III.

Âξ∗ + B̂q∗ = 0, the third property can be expressed as

V̇ (δξ)+αV (δξ)=2(δξ)TP ξ̇+α(δξ)TPδξ

= 2(δξ)TP ((Âξ+B̂q)−(Âξ∗+B̂q∗))+α(δξ)
TPδξ

= 2(δξ)TP (Âδξ+B̂δq)+α(δξ)TPδξ

= (δξ)TP (Âδξ+B̂δq)+(Âδξ+B̂δq)TPδξ+α(δξ)TPδξ

=

[
δξ
δq

]T [
ÂTP+PÂ+αP PB̂

B̂TP 0

] [
δξ
δq

]

≤ 0.

(5)

Finally, since the pointwise IQC (Qφ, p∗, φ(p∗) is satisfied,

[
δξ
δq

]T [
ĈT 0

D̂T In

]

Qφ

[

Ĉ D̂
0 In

] [
δξ
δq

]

≥ 0. (6)

Since (4) is feasible and (6) holds, it directly follows from

Lemma 2 that (5) holds. Hence, the equilibrium ξ∗ has global

exponential asymptotic stability of at least rate α.

III. PROBLEM SETUP

The problem setup is illustrated in Fig. 1, where we

consider a LTI system represented by a state-space model

where x ∈ R
n is the state, u ∈ R

m is the input, and y ∈ R
p

is the output:

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) +Du(t).
(7)

The input u(t) is the sum of a control signal r(t) ∈ R
m

and an unknown constant disturbance w(t) = w ∈ R
m, i.e.

u(t) = w(t)+r(t) = w+r(t). Finally, the feedback operator

Ψ(·) denotes the (possibly nonlinear) feedback control to be

designed.

y(t)

r(t)
Ψ

+

+

w(t) u(t)
[

A B

C D

]

Fig. 1. LTI system interconnected with a nonlinear mapping and constant
disturbance signal.

Our goal is to, given the measurement y, design a control

input r = Ψ(y) that drives the system (7) to a steady-state

x∗ that is an optimal solution of a predefined optimization

problem

min
x∈Rn

f(x), (8)

where f : Rn → R is a given cost function.

Therefore, given the measurement y(t), the feedback Ψ(·)
must produce a control r = Ψ(y) such that x(t) → X ∗,

where X ∗ is the set of optimal solutions to (8), i.e.,

X ∗ = {x ∈ R
n : ∇f(x) = 0}.

Throughout this paper we make the following assumption.

Assumption 1: The cost function f(x) of the optimization

problem (8) is continuously differentiable, strongly convex,



and has a Lipschitz continuous gradient. This implies that

the set X ∗ is a singleton.2

Finally, we provide a concrete model for Ψ(·). As the

optimality conditions for optimization problem (8) are in

general nonlinear, the feedback controllers to be designed

will be necessarily of the same type. Thus, we consider the

nonlinear feedback Ψ using the nonlinear dynamics

Ψ :
η̇(t) = F (η(t), y(t))

r(t) = H(η(t), y(t)),
(9)

where η ∈ R
d is the state of the feedback dynamics, r ∈ R

m

is the output of the feedback dynamics, and the mappings

F : Rd × R
p → R

d and H : Rd × R
p → R

m are possibly

nonlinear.

Remark 1 (Well-Posedness): From the feedthrough terms

present in (7) and (9), it is possible a priori that the feedback

interconnection is not well-posed.3 A sufficient condition that

prevents this problem is by enforcing that whenever D 6= 0,

the map H depends only on η, i.e., r(t) = H(η(t)). We will

further discuss this condition in Section IV.

A. Design Challenges

There are several challenges associated to designing (9)

such that in steady state x∗ ∈ X ∗.

• Lack of direct access to x(t): The system output matrix

C is not necessarily invertible. Thus, recovering x(t)
from y(t) is not straightforward.

• Finding the solution x∗ ∈ X ∗: Finding the optimal solu-

tion to the optimization problem is usually challenging

or the cost function may change, giving not enough time

to recompute x∗.

• Driving x(t) to x∗ ∈ X ∗: Even if one has access to the

optimal solution x∗, one then needs to design the right

r(t) that ensures that x(t) converges to it.

Interestingly, some of these challenges can be easily

handled using tools from control theory, such as recovering

x(t) from y(t) or driving x(t) to x∗. On the other hand,

finding an optimal solution x∗ is the major goal within

optimization theory. Therefore, when the timescale of the

control and optimization tasks do not intersect, our problem

can be easily solved using standard tools from control and

optimization. However, when the timescale separation is no

longer present, the problem becomes more challenging as

there is no standard tools to address it. In particular, it is

usually hard to assess the stability of such an interconnected

system. This problem is systematically addressed in the next

section.

IV. OPTIMIZATION-BASED CONTROL DESIGN

In this section we describe the proposed optimization-

based controllers, that combine tools from control and opti-

mization, and leverage the IQC framework described in the

preliminaries. The crux of our solution is a modularized

architecture that breaks down the feedback dynamics (9)

into three serial components that systematically addresses

2Relaxing this assumption is desired and is a subject of future work.
3The feedback interconnection of (7) and (9) is well-posed if u(t) and

y(t) are uniquely defined for every choice of states x(t) and η(t).

the challenges described in the previous section and allow a

straightforward application of Proposition 1 to certify global

exponential asymptotic stability.

y(t)r(t)
ED ϕ

Ψ

z(t)e(t)

Fig. 2. Optimization-based control feedback breakdown.

The proposed architecture is described in Fig. 2. The first

component E : y(t) 7→ z(t) is a state estimator that takes

the output of the LTI system and produces a state estimate

z(t). The second component ϕ : z(t) 7→ e(t), referred to

as the optimizer, takes the state estimate and produces a

measurement of the optimality error or direction of desired

drift e(t), which is required to be zero if and only if the input

is in the set X ∗. The optimizer can be thought of as the part

of optimization algorithm that dictates the direction of the

next step. The third component D : e(t) 7→ r(t), the driver,

takes the optimality error and produces the input to the LTI

system that ensures that the equilibrium satisfies e∗ = 0.

Remark 2: One of the advantages of the proposed archi-

tecture is the role independence of each component. This

allows for a subsystem to be skipped if the functionality is

not required. For example, in cases where y(t) = x(t) or

the optimization problem uniquely depends on y(t), then the

estimator block can be avoided.

In the remainder of this section, we describe the design

requirements of each proposed component/subsystem and

give some examples on how to implement them.

A. Design of the Estimator E

The estimator component E : y(t) 7→ z(t) is perhaps the

simplest to design. Its goal to build an estimate of the state,

z(t), from y(t). The design requirement of E is:

• A.1: If the system is in equilibrium, z(t) = z∗ = x∗.

Therefore, an obvious choice for E is an observer/state

estimator. The dynamics of E are therefore given by

E :
˙̂x = (A− LC)x̂+ (B − LD)u+ Ly

z = x̂,

where L ∈ R
n×p is a constant matrix to be designed.

A standard argument for observers shows that the evolu-

tion of the error δx(t) := x(t) − z(t) is given by

˙δx(t) = (A− LC)δx(t).

Moreover, if (7) is observable, L can be chosen to satisfy

rank(A− LC) = n. (10)

B. Design of the Optimizer ϕ

The optimizer ϕ has two design requirements:

• B.1: The optimizer must take the estimated state z(t)
as an input and then produce a measure of optimality

error or direction of drift e(t) such that e(t) = 0 if and

only if z(t) = x∗ ∈ X ∗.



• B.2: The input-output characteristics of ϕ must be

captured by an IQC (Qϕ, z∗, ϕ(z∗)).
For the purpose of this paper, we consider two possible

solutions.

ϕ1: Gradient Descent. The first solution considered is the

standard gradient descent mapping, i.e.,

ϕ1 := −∇f. (11)

It is straightforward to verify that e(t) = −∇f(z(t)) = 0 if

and only if z(t) = x∗ ∈ X ∗. The following lemma explicitly

computes the IQC for ϕ1.
Lemma 3: Assume the pointwise IQC (Qf , z∗,∇f(z∗)) is

satisfied. Then, the pointwise IQC (Qϕ1
, z∗, ϕ1(z∗)) defined

by the matrix

Qϕ1
:=

([
1 0
0 −1

]

⊗ In

)

Qf

( [
1 0
0 −1

]

⊗ In

)

is satisfied.
Proof: The IQC immediately follows from Lemma 1

with φ = ∇f , S0 = In, S1 = −In, and S2 = 0n×n.

ϕ2: Proximal Tracking. Our second option for the optimizer

block is inspired by the proximal mapping (2). It essentially

computes the error between the input z(t) and the solution

given by the proximal operator Πρf (z(t)), that is,

ϕ2 := Πρf − In. (12)

The following proposition shows that (12) satisfies the first

design requirement.
Proposition 2: The mapping ϕ2 satisfies the property that

e(t) = Πρf (z(t))− z(t) = 0 if and only if z(t) = z∗ ∈ X ∗.
Proof: Let z(t) = z∗ and assume that ϕ2(z∗) = 0.

Then from (12), Πρf (z∗) = z∗. It follows from (3) that

0 = ∇f(Πρf (z∗)) +
1

ρ
(Πρf (z∗)− z∗) ⇐⇒ 0 = ∇f(z∗).

By the definition of X ∗, z∗ ∈ X ∗.
Conversely, assume that z∗ ∈ X ∗. Since

arg min
v∈Rn

f(v) = z∗ and arg min
v∈Rn

1

2ρ
||v − z∗||

2 = z∗,

we have arg min
v∈Rn

f(v) +
1

2ρ
||v − z∗||

2 = z∗.

This is equivalent to Πρf (z∗) = z∗. Thus, ϕ2(z∗) = 0.
Finally, the next lemma computes the IQC that character-

izes ϕ2.
Lemma 4: Assume the pointwise IQC (Qf , z∗,∇f(z∗)) is

satisfied. Then, the pointwise IQC (Qϕ2
, z∗, ϕ2(z∗)) defined

by the matrix

Qϕ2
:=

( [
1 1
0 1

]

⊗ In

)

QΠρf

( [
1 0
1 1

]

⊗ In

)

.

is satisfied.
Proof: The IQC immediately follows from Lemma 1

with φ = Πρf , S0 = In, S1 = In, and S2 = −In.

C. Design of the Driver D

The last component of the proposed solution is in charge

of generating the control signal r(t) that drives the system

towards the optimal solution of (8). The design requirement

for D is:

• C.1: If the system is in equilibrium, then e(t) = e∗ = 0.

Thus, one possible choice would be to use a Proportional-

Integral (PI) controller defined by the dynamics

D : ėI = e, r = KIeI +KP e

where KI ,KP ∈ R
m×n are constant matrices to be de-

signed.

It is straightforward to show that ėI = 0 if and only if

e(t) = 0, which satisfies our design requirements. In fact,

this also shows that we only need an integrator to satisfy the

design requirement. However, a PI controller provides better

dynamic properties than a pure integrator and therefore we

choose to add the proportional term.

D. Integrated System

This resulting interconnected system is shown in Fig. 3.

y(t)

z(t)e(t)
[

0n×n In

KI KP

]

EstimatorPI Controller

ϕ

[

A B

C D

]

[

A− LC B − LD L

In 0n×m 0n×p

]

+

+

r(t)

w(t) u(t)

Fig. 3. LTI system in feedback with a state estimator E , optimizer ϕ, and
PI controller as the driver D.

In terms of the dynamics defined by (9), the feedback

design is given by

η̇=

[
A− LC+(B − LD)KPϕ (B− LD)KI

ϕ 0

]

η+

[
L
0

]

y

r =
[
KPϕ KI

]
η, where η :=

[
x̂T eTI

]T
∈ R

2n. (13)

Here we have used the notation ϕx̂ := ϕ(x̂).
Remark 3: Whenever the estimator subsystem E is in-

cluded in the interconnection, the feedback interconnection

will be well-posed because r(t) only depends on η(t).
However, well-posedness is not guaranteed when D 6= 0,

KP 6= 0, and there is no estimator subsystem because

r(t) = KPϕ(Cx(t) +D(w + r(t))) +KIeI(t)

depends on itself. One simple solution to overcome this issue

is add a module E such that z(t) = y(t)−Du(t).
The next section shows that indeed the integrated system

is able to guarantee steady-state optimality under mild condi-

tions and illustrates how the IQC framework can be leveraged

to guarantee global exponential asymptotic stability.

V. OPTIMALITY AND CONVERGENCE

A. Optimality Analysis

The optimality analysis requires the following assumption.

Assumption 2: The system is steady-state controllable.

That is, given any steady-state x∗, there exists an input u∗
such that Ax∗ +Bu∗ = 0.

Assumption 2 is in some sense necessary to ensure that

the system can achieve an arbitrary steady-state. Although



this assumption is stronger than the standard controllability

assumption, we point out that while controllability is suffi-

cient to drive x(t) towards any state x∗ in finite time, it does

not requires that x(t) remains equal to x∗.

Theorem 1: Consider the interconnection of the LTI sys-

tem (7) and nonlinear feedback (13), where design require-

ments A.1, B.1, B.2, and C.1 are satisfied. Suppose (7) is

a minimal realization and Assumption 2 is satisfied. Then,

(x∗, η∗) is an equilibrium point of the interconnected system

for some point η∗ and matrix L that satisfies (10) if and only

if x∗ ∈ X ∗.

Proof: Assume (x∗, η∗) is an equilibrium point of the

interconnected system, where η∗ =
[
zT∗ eTI∗

]T
. The LTI

system must then be in equilibrium, meaning that

0 = Ax∗ +Bu∗, y∗ = Cx∗ +Du∗, u∗ = r∗ + w. (14)

Additionally, the dynamics of Ψ must be in equilibrium,

meaning that components E and D are in equilibrium. It

follows from D being in equilibrium and B.1 that

ėI = e = ϕ(z∗) = 0 ⇐⇒ z∗ ∈ X ∗. (15)

It follows from E being in equilibrium that

˙̂x = (A− LC)z∗ + (B − LD)u∗ + L(Cx∗ +Du∗)

= (A− LC)z∗ +Bu∗ + LCx∗ = 0.

Adding Ax∗ to both sides and using (14) results in

(A− LC)(z∗ − x∗) = 0.

Since the LTI system is observable, we can choose L such

that A − LC is Hurwitz and therefore x∗ = z∗. From (15),

x∗ ∈ X ∗.

Conversely, assume that x∗ ∈ X ∗. Consider e∗ = 0 and

an eI∗ such that Ax∗ + B(KIeI∗ + w) = 0, which exists

because of Assumption 2. Then, ẋ = 0 and ėI = 0 directly

follow. Next, consider z∗ = x∗. It is then straightforward

to show that ˙̂x = 0. The optimality property of ϕ gives

that ϕ(z∗) = e∗ = 0, which is consistent with the previous

definition of e∗. Therefore, (x∗, η∗) is an equilibrium point.

B. Stability Analysis

This section will derive a sufficient condition for the

global exponential asymptotic stability of the equilibrium

point considered in the optimality analysis. For this analysis,

it is useful to group the linear dynamics of E and D into

the LTI system to essentially create a larger dimension LTI

system. The resulting system is

ξ̇ =





A 0 BKI

LC A− LC BKI

0 0 0





︸ ︷︷ ︸

Â

ξ +





BKP

BKP

In





︸ ︷︷ ︸

B̂e

e+





B
B
0





︸ ︷︷ ︸

B̂w

w

z =
[
0 In 0

]

︸ ︷︷ ︸

Ĉ

ξ,where ξ :=
[
xT x̂T eTI

]T
.

Theorem 2: Consider the interconnection of the LTI sys-

tem (7) and nonlinear feedback (13) with the equilibrium

point considered in Theorem 1. Assume the pointwise IQC

(Q, z∗, ϕ(z∗)) is satisfied and the assumptions of Theorem

1 hold. Then, the equilibrium point (x∗, η∗) has global

exponential asymptotic stability of at least rate α if the LMI
[
ÂTP + PÂ+ αP PB̂e

B̂Te P 0

]

+σ

[

ĈT 0
0 In

]

Q

[

Ĉ 0
0 In

]

� 0

(16)

is feasible for some σ ≥ 0, α > 0, and P ≻ 0.

Proof: This is essentially an application of Proposition

1, where the Lyapunov function is given by

V (δξ) = (δξ)TPδξ > 0, P ∈ R
3n×3n, P ≻ 0.

Using the fact that Âz∗ + B̂ee∗ + B̂ww = 0,

V̇ (δξ) + αV (δξ)

= 2(δξ)TP [Âξ + B̂ee+ B̂ww] + α(δξ)TPδξ

= 2(δξ)TP [Âδξ + B̂eδe] + α(δξ)TPδξ

=

[
δξ
δe

]T [
ÂTP + PÂ+ αP PB̂e

B̂Te P 0

] [
δξ
δe

]

≤ 0.

The rest of the proof follows from Proposition 1.

C. Convergence Rate

Finally, we show how the LMI condition derived in

Theorem 2 can be leveraged to compute the maximum

convergence rate that the system can achieve. Our goal here

is to solve the optimization problem:

maximize
σ≥0,α>0,P≻0

α subject to (16). (17)

The main challenge is that because α multiplies P in (16),

the optimization problem is non-convex. However, for a fixed

α, finding whether (16) is feasible can be done efficiently.

Therefore, it is possible to implement a line search in α that

finds the maximum value αmax that satisfies (16).

VI. NUMERICAL EXAMPLES

A. Scalar System

Consider the scalar system

ẋ = −5x+ u, y = x,

with x, u, y ∈ R. Since the estimator module E is not needed,

the dimension of the LMI can be reduced. The feedback

interconnection is still well-posed because D = 0. Let the

cost function be of the form

f(x) =
1

2
qx2 + cx+ v,

where q, c, v ∈ R are constants. For this case, the Lipschitz

constant and strong convexity constant are m = L = q. Let

the control parameters be given by ki = 1 and kp = 1.

Fig. 4 shows the solution of (17) as a function of ρ. Several

curves representing different steepness levels of f are plotted.

The plots demonstrate that larger values of ρ lead to a larger

αmax, with no marginal improvement after a certain point.

Additionally, it is interesting to note that there are cases

when the ϕ2 optimizer achieved a larger αmax than the ϕ1

optimizer.



Fig. 4. Maximum feasible α versus ρ for several different scalar cost
functions when using (a): ϕ2 (proximal optimizer) and (b): ϕ1 (gradient
optimizer).

After choosing a sufficiently large ρ, the solution of

(17) was plotted as a function of q as shown in Fig. 5.

As expected, larger values of q, corresponding to steeper

quadratic functions, resulted in a larger αmax. There was also

no marginal improvement past a certain threshold of q. This

threshold was a very large q for ϕ1 and a very small q for

ϕ2. For q < 1, ϕ2 achieved a larger αmax and for q > 1, ϕ1

achieved a larger αmax.

Fig. 5. Maximum feasible α versus q when using ϕ1 and ϕ2 optimizers.

The system’s state as a function of time, when the cost

function was f(x) = (x − 10)2, is given in Fig. 6. Several

trajectories, corresponding to different values of ρ, were

plotted. The disturbance signal was initially set as w = 2
and at t = 50s was changed to w = −10. For all cases,

the state was able to recover from the change in disturbance

and continue tracking the optimal solution. The trajectories

illustrate that the performance of the ϕ2 optimizer is very

much related to the choice of ρ and if chosen correctly can

outperform the ϕ1 optimizer.

Fig. 6. System state versus time when using ϕ1 and ϕ2 optimizers. Several
choices of ρ are shown for the ϕ2 optimizer.

B. MIMO System with State Estimator

Consider the MIMO system defined by

A =

[
0 1

−10 −5

]

, B =

[
1 4
1 0

]

, C =
[
1 0

]
, D = 01×2,

with x, u ∈ R
2 and y ∈ R. Since the output of the LTI

system only has information about the first state, an estimator

module is obviously needed. Let the cost function be of the

form

f(x) =
1

2
xTQx+ cTx,

where Q ∈ R
2×2, Q ≻ 0, and c ∈ R

2. For this case, the

Lipschitz constant L is the larger eigenvalue of Q and the

strong convexity constant m is the smaller eigenvalue of Q.

Let the feedback parameters be given by

KI = KP =

[
0 1

1/4 −1/4

]

and L =
[
1 1

]
.

Fig. 7 shows the solution of (17) as a function of ρ. Several

curves corresponding to different eigenvalue choices of Q are

plotted. With a sufficiently large ρ, ϕ2 was able to achieve

a larger αmax than ϕ1 when m = 0.75, but was not able to

when m = 1.25. For both optimizer types, L = 1.25 resulted

in a larger αmax than L = 1.5.

Fig. 7. Maximum feasible α versus ρ for several different multivariable
cost functions when using (a): ϕ2 (proximal optimizer) and (b): ϕ1 (gradient
optimizer).

After choosing a sufficiently large ρ, the solution of (17)

was plotted as a function of q as shown in Fig. 8. The

Lipschitz constant was chosen as different multiples of m.

The ϕ1 optimizer resulted in a larger αmax when L was

chosen closer to m. Conversely, the ϕ2 optimizer resulted

in a larger αmax when the multiple was chosen farther from

m.

Fig. 8. Maximum feasible α versus m for several different choices of L

when using ϕ1 and ϕ2 optimizers.

The system’s state as a function of time, when the cost

function was defined by

Q =

[
1 1/6

1/6 2/3

]

, cT =
[
−17/3 −4/3

]
,

is given in Fig. 9. In this case, m ≈ 0.5976, L ≈ 1.0690,

and the optimal solution is x∗ ≈
[
5.5652 0.6087

]T
. The

disturbance was initially set to zero, but at t = 75s was

changed to w =
[
1 1

]T
. Similar to the scalar case,



the trajectories were able to recover from the change in

disturbance and there were cases when ϕ2 outperformed ϕ1.

It is particularly interesting that state 2 has the ability to

reach the optimal solution despite the fact that it was not

being measured.

Fig. 9. System (a) state 1 and (b) state 2 versus time when using ϕ1 and
ϕ2 optimizers. Several choices of ρ are shown for the ϕ2 optimizer.

VII. CONCLUSIONS

This paper introduces a framework of nonlinear controllers

whose purpose is to drive a given LTI system to the optimal

solution of some predefined optimization problem. The con-

trollers are composed of an estimator, optimizer, and driver.

We give specific design requirements and possible design

choices for each of these modules. Our analysis shows that

under mild assumptions, optimal steady-state performance

can be guaranteed. Moreover, we give a sufficient condition,

in terms of a LMI, such that global exponential asymptotic

stability of the optimal steady-state can be guaranteed. Lastly,

we present numerical illustrations that demonstrate how the

design choices relate to the rate of exponential convergence.

The main focus of future work includes further generalizing

the proposed framework. In particular, we will consider

driving a LTI system to the optimal solution of a constrained

optimization problem and when there are multiple LTI sys-

tems that occur in a distributed setting.
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