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Biharmonic Distance and the Performance of

Second-Order Consensus Networks with Stochastic

Disturbances
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Abstract—We study second order consensus dynamics with
random additive disturbances. We investigate three different
performance measures: the steady-state variance of pairwise
differences between vertex states, the steady-state variance of
the deviation of each vertex state from the average, and the
total steady-state variance of the system. We show that these
performance measures are closely related to the biharmonic
distance; the square of the biharmonic distance plays similar
role in the system performance as resistance distances plays in
the performance of first-order noisy consensus dynamics. We
further define the new concepts of biharmonic Kirchhoff index
and vertex centrality based on the biharmonic distance. Finally,
we derive analytical results for the performance measures and
concepts for complete graphs, star graphs, cycles, and paths, and
we use this analysis to compare the asymptotic behavior of the
steady-variance in first- and second-order systems.

Index Terms—Distributed average consensus, network coher-
ence, Laplacian spectral distance, biharmonic distances, Gaussian
white noise

I. INTRODUCTION

Consensus dynamics have been studied intensively in the

context of distributed networked systems because these dy-

namics represent a fundamental way of sharing information

between agents in the network. Consensus algorithms can

be widely applied to many real-world applications such as

clock synchronization [1], [2], load balancing [3], sensor

networks [4], formation control [5] and distributed optimiza-

tion [6].

In consensus dynamics, when nodes are subject to ex-

ternal disturbances, these disturbances prevent the system

from reaching consensus, instead making node states fluctuate

around the current average [7]. Many works have explored

analytical methods to quantify the steady-state variance of

the deviations from the average. The vast majority of these

have considered first-order consensus algorithms [7]–[12].

It has been shown that, in such systems, the total steady-

state variance can be described by resistance distances in an
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associated electrical network [8], [9]. And, in turn, resistance

distances are given by the covariance matrix of the vertex

states in such a dynamical system [13].

Many real world systems can be more accurately mod-

eled using second-order dynamics. For example, second-order

consensus protocols are applied to formation control because

they capture the kinematics of the vehicles [14]. Clock syn-

chronization algorithms using second-order consensus scheme

have also been studied [1]. While second-order dynamics

have important applications, analysis of the effects of external

perturbations on second-order systems remains limited when

compared to recent work on first-order systems. Previous

works have shown that the total steady-state variance in such

systems are determined by the eigenvalues of the Laplacian

matrix, and asymptotic behaviors for macroscopic and micro-

scopic behaviors of the variance have been so studied in [7].

However, no unified metric for second-order systems that is

similar to resistance distance for first-order systems has been

previously proposed.

In this paper, we propose biharmonic distance as a tool

to analyze second-order consensus dynamics with external

perturbations. Biharmonic distance is defined based on the

spectrum of the Laplacian matrix, and it has been used in

computer graphics [15] as a metric that incorporates both

local and global graph structure. We study three performance

measures in second-order consensus systems: the variance of

of the difference between the states of any pair of vertices, the

variance between an individual vertex state and the system

average, and the total variance of the system. For each of

these performance measures, we show how it can be analyzed

in terms of biharmonic distances. In addition, we introduce a

new notion of vertex centrality based on a biharmonic vertex

index. A vertex with higher biharmonic centrality has smaller

steady-state variance. We then derive closed-form solutions for

the biharmonic distances and related performance measures for

complete graphs, star graphs, cycles, and paths. Finally, we use

this analysis to compare the behavior of the steady-variance

in first- and second-order systems.

Related work: Bamieh et al. introduced the concept of net-

work coherence, a measure of the average steady-state variance

of node states, for both first- and second-order consensus

dynamics with stochastic external perturbations. This work

showed a relationship between coherence and the spectrum of

the Laplacian matrix and derived the asymptotic behavior of

coherence in torus networks [7]. Several works have analyzed

the coherence of first-order consensus in different classes
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of networks. Young et al. [8] elated network coherence to

the Kirchhoff index of a graph and presented closed-form

results for the coherence of cycle, path, and star graphs with

first-order noisy consensus dynamics. Patterson and Bamieh

analyzed coherence in several forms of fractal trees [9] and dis-

cussed the impact of fractal dimensions on network coherence,

and Yi et al. investigated coherence in Farey graphs [11] and

Koch graphs [16] as deterministic generated representatives of

small-world networks and scale-free networks.

There have also been several recent works on analysis

of coherence for second-order systems in different graph

topologies. Namely, the second-order coherence of torus [7],

fractals [9], and Koch graphs [16] have all been analyzed.

However, none of these works have developed a general

mathemtical connection between second-order coherence and

a graph distance metric.

With respect to biharmonic distance, the recent work by

Fitch and Leonard [10] used a slightly different definition

of this distance to describe the centrality of multiple leaders

in first-order consensus systems with leader nodes. We show

that, while related, this different definition cannot be extended

to describe coherence in leader-free second-order consensus

networks.

The remainder of this paper is organized as follows. In

Section II, we introduce notation and the system dynamics

studied in this paper. In Section III, we first describe the

notion of biharmonic distance and its definition. We then intro-

duce graph indices and vertex centrality based on biharmonic

distance. In Section IV, we show that biharmonic distance

plays a important role in perturbed second-order consensus

dynamics, and we give relationships between coherence per-

formance measures and the biharmonic distance and its derived

indices. In Section V, we compare the relationships between

first-order noisy consensus dynamics and resistance distance

and second-order noisy consensus dynamics and biharmonic

distance.Section VI gives closed-form solutions for the coher-

ence performance measures for complete graphs, star graphs,

cycles, and paths. In Section VII, we further investigate these

performance measures using numerical examples. Finally, we

conclude the paper in Section VIII.

II. PRELIMINARIES

A. Concepts and Notation

Let G be an undirected connected graph, and let V =
{0, 1 . . . , N − 1} and E be the vertex set and edge set that

constitute G as G = {V , E}. Let N = |V| and M = |E|.
Define A as the N × N (0-indexed) adjacency matrix of G,

in which aij = 1 if {i, j} ∈ E and aij = 0 otherwise. Let

D be the diagonal matrix where dii is equal to the degree of

vertex i, i.e., dii =
∑N−1

i=0 aij . Define L = D − A as the

Laplacian matrix of graph G. We use λi and ui to denote the

i-th eigenvalue and eigenvector of L, i ∈ {0, 1, . . . , N − 1},

where 0 = λ0 < λ1 ≤ · · · ≤ λN−1. The all-one vector of

order N is denoted by 1N . Therefore, u0 = 1√
N

1N . Then,

L can be diagonalized as L = UΛU⊤, where Λ ∈ R
N×N is

diagonal and Λii = λi, U ∈ R
N×N , with its ith column being

ui. In addition, we denote by L† the pseudo-inverse of L, and

define L2† = (L†)2.

B. System Dynamics

Each vertex in the network has a scalar-valued state. Let

x1(t) be the N -vector that contains the states of all vertices;

x1j(t) represents the state of vertex j, j ∈ {0, 1 . . . , N − 1}.

Then, we define x2(t) as the first derivative of x1(t) with

respect to t, that is, x2(t) = ẋ1(t). A vertex j adjust its state by

setting ẋ2j(t) according to the differences of its state (x1j(t)
and x2j(t)) and the states of its neighbors. The following

equation gives the noisy second-order consensus algorithm:
[

ẋ1(t)
ẋ2(t)

]

=

[
0 I
−L −L

] [
x1(t)
x2(t)

]

+

[
0
I

]

w(t) , (1)

where 0, I , and L are all N × N matrices, and w(t) is a

2N -vector of uncorrelated Gaussian white noise processes.

C. Performance Measures

Because the state of each vertex is disturbed by Gaussian

noise, the networked system can never reach exact consensus.

Therefore, we are interested in the expected deviations of the

states of the vertices. In particular, we are interested in three

performance measures related to these deviations, which we

define below.

First, we want to know how far the states of two vertices are

driven away by disturbances. Therefore we study the steady-

state of the variance of this pairwise deviation.

Definition II.1. For any two vertices j, k ∈ V , the pairwise

variance HSO(j, k) is the steady-state variance of the differ-

ence between x1j and x1k , i.e.,

HSO(j, k) = lim
t→∞

E[(x1j(t)− x1k(t))
2]. (2)

We note that in a d-dimensional torus Z
d
N , HSO(j, j − 1)

is the second-order microscopic coherence defined in [7], and

HSO(j, j +
N
2 ) is the second-order long-range coherence de-

fined in [7]. Thus, our pairwise variance performance measure

is a generalization of these two performance measures.

We are also interested in the variance of the difference

between the state of a vertex and the (current) average value

in the network. Let x̄1(t) be the average state x̄1(t) =
1
N 1

⊤
Nx1(t).

Definition II.2. For a vertex j ∈ V , the vertex variance

HSO(j) is the steady-state variance of the difference between

x1j(t) and x̄1(t), i.e.,

HSO(j) = lim
t→∞

E[(x1j(t)− x̄1(t))
2
] . (3)

Finally, we are interested in the total variance of the system.

Definition II.3. For a network G, the total variance HSO(G) is

the total steady-state variance of the deviation of each vertex

state from the current average, i.e.,

HSO(G) = lim
t→∞

N−1∑

j=0

E[(x1j(t)− x̄1(t))
2] . (4)

In a d-dimensional torus Zd
N , HSO(G) is the variance of the

deviation from average defined in [7].
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III. BIHARMONIC DISTANCE

Several slightly different definitions of biharmonic distance

have been proposed in related literature [10], [15], [17]. In

this paper we follow the definition in [15] and [17], which is

as follows.

Definition III.1. The biharmonic distance dB(j, k) between
two vertices j and k in a undirected graph G is:

d2B(j, k) = L2†
jj + L2†

kk − 2L2†
jk =

N−1
∑

i=1

1

λ2
i

(uij − uik)
2 . (5)

Note that this definition is equal to the square root of the

one used by Fitch and Leonard in [10].

Biharmonic distance is a metric, as shown in the following

theorem. While this result has been previously proved [15],

we include a proof for the convenience of the reader.

Theorem III.1. The biharmonic distance dB(j, k) is a V ×
V → R metric, which is equivalent to satisfying the following

properties:

• Non-negativity: dB(j, k) > 0,

• Nullity: dB(j, k) = 0 if and only if j = k,

• Symmetry: dB(j, k) = dB(k, j), and

• Triangle inequality dB(j, r) + dB(r, k) > dB(j, k).

Proof: The non-negativity and symmetry are easily ob-

tained from Definition III.1 along with the fact that L is

positive semi-definite. Assume dB(j, k) = 0 for j 6= k, then

uij = uik for all i ∈ {0, 1, . . . , N − 1}. Since L = UΛU⊤,

Ljj =
∑N−1

i=1 λiuijuij and Ljk =
∑N−1

i=1 λiuijuik. This leads

to Ljj = Ljk for j 6= k, which contradicts with the definition

of the Laplacian matrix.

The triangle inequality can be proved as follows. Define a

vector,

vj =

N−1∑

i=1

uij

λi
ui ∈ R

N for j = 0, 1, . . . , N − 1 .

We note again that ui is the ith eigenvector, and uij is the

jth entry of ui. Then it follows that the Euclidean distance

‖vj − vk‖2 between vj and vk is

‖vj − vk‖2 =

∥
∥
∥
∥
∥

N−1∑

i=1

(uij − uik)

λi
ui

∥
∥
∥
∥
∥
2

=

√
√
√
√

N−1∑

i=1

(uij − uik)2

λ2
i

,

which means dB(j, k) is equal to ‖vj − vk‖2. Since the

Euclidean distance in R
N is a metric and, therefore, satisfies

triangle inequality, dB(j, k) also satisfies the triangle inequal-

ity.

We observe that vj , j ∈ {1, . . . , N} assigns a position to

vertex j in R
N Euclidean space that preserves biharmonic

distance.

Definition III.2. We define an N -dimensional mapping of of

the vertices in G, F : V → R
N . For any vertex j, F(j) =

vj = L†ej . vj is a biharmonic embeddings of graph G in R
N .

Based on the definition of biharmonic distance, we also

define the following graph indices.

Definition III.3. The biharmonic Kirchhoff index D2
B(G) of

a graph G is

D2
B(G) =

∑

j,k∈V
j<k

d2B(j, k) . (6)

Definition III.4. The biharmonic vertex index D2
B(j) of a

node j in a graph G is

D2
B(j) =

∑

k∈V

d2B(j, k) . (7)

We can derive from the definition of dB(j, k) that

D2
B(G) = N ·

N−1∑

i=1

1

(λi)2
. (8)

Finally, for a vertex j in graph G, we can define its centrality

based on biharmonic distances.

Definition III.5. The biharmonic centrality of vertex j in

graph G is

CB(j) =

(
1

N
D2

B(j)

)−1

. (9)

IV. BIHARMONIC DISTANCE IN SECOND-ORDER

CONSENSUS DYNAMICS WITH DISTURBANCES

The equation (1) gives the dynamics of the second-order

consensus algorithm with stochastic perturbations. The devia-

tion of the state of vertex j from the average of all states is

given by yj(t) = x1j(t) − x̄1(t). Let y(t) be a N × 1 vector

representing all vertices’ deviations from average,

y(t) = [Π | 0]x(t) = Πx1(t) ,

where Π = IN − 1
N 1N1

⊤
N . The performance measures we

study in this paper can all be expressed in terms of of y(t).
Specifically,

HSO(j, k) = lim
t→∞

E[((x1j(t)− x̄1(t))− (x1k(t)− x̄1(t)))
2]

= lim
t→∞

E[(yj(t)− yk(t))
2] (10)

HSO(j) = lim
t→∞

E[(x1j(t)− x̄1(t))
2] = lim

t→∞
E[yj(t)

2] (11)

HSO(G) = lim
t→∞

N−1
∑

j=0

E[yj(t)
2] . (12)

However, the system described by (1) is only marginally

stable [8]. To obtain a stable system, we only consider the

dynamics in the subspace that is orthogonal to the subspace

spanned by 1N . We define Q as a (N − 1)×N matrix whose

rows are the eigenvectors of L, excluding 1N . We recall that

L can be diagonalized as UΛU⊤, where U is a unitary matrix

and Λ is a diagonal matrix. Then, Q⊤ is the submatrix of U
formed by eliminating the first column. It is easy to confirm

that Q1N = 0, QQ⊤ = IN−1, Q⊤Q = Π, and LQ⊤Q = L.

Then, we define

z1(t) = [ Q | 0 ]x(t) = Qx1(t) ,
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and note that y(t) = Q⊤z1(t). It indicates that we can write
expressions for our performance measures using z1(t). Let
z2(t) = ż1(t). Then (1) leads to
[

Q 0
0 Q

] [

ẋ1(t)
ẋ2(t)

]

=

[

0 Q
−QLQ⊤Q −QLQ⊤Q

] [

x1(t)
x2(t)

]

+

[

0
Q

]

w(t) ,

Therefore, we obtain a stable system:
[

ż1(t)
ż2(t)

]

=

[
0 IN−1

−Λ̄ −Λ̄

] [
z1(t)
z2(t)

]

+

[
0
Q

]

w(t) ,

where Λ̄ = QLQ⊤ = QUΛ(QU)⊤ = diag(λ1, . . . , λN−1).
We can always find the unitary (orthogonal) permutation

matrix V ∈ {0, 1}(2N−2)×(2N−2) such that

[
ż1(t)
ż2(t)

]

=V ⊤KV

[
z1(t)
z2(t)

]

+

[
0
Q

]

w(t) , (13)

where K is the block diagonal matrix,

K =






P1

. . .

PN−1




 , (14)

with each Pi defined as:

Pi =

[
0 1

−λi −λi

]

.

Hereafter, we use the system dynamics in (13) to develop

expressions for the performance measures defined in Sec-

tion II-C.

A. Pairwise Variance

Theorem IV.1. The pairwise variance of the difference be-

tween states of vertices j and k with dynamics (1) can be

expressed by the spectrum of the Laplacian matrix of graph

G as

HSO(j, k) =
N−1∑

i=1

(uij − uik)
2

2λ2
i

. (15)

Proof: We start by expressing HSO(j, k) in terms of z1(t),

HSO(j, k) = lim
t→∞

E
[
y(t)⊤(ej − ek)(e

⊤
j − e⊤k )y(t)

]

= lim
t→∞

E
[
(Q⊤z1(t))

⊤(ej − ek)(e
⊤
j − e⊤k )Q

⊤z1(t)
]

= lim
t→∞

E
[
z1(t)

⊤Q(ej − ek)(e
⊤
j − e⊤k )Q

⊤z1(t)
]

= lim
t→∞

E
[
tr((ej − ek)

⊤Q⊤z1(t)z1(t)
⊤Q(ej − ek))

]
,

where ej is the jth canonical basis vector of R
N . We define

the output of the system as

φ(t) = (ej − ek)
⊤Q⊤[IN−1|0N−1]z(t)

= (ej − ek)
⊤Q⊤z1(t) . (16)

Then, we define Σ(t) = E[φ(t)φ(t)⊤ ]; therefore, HSO(j, k) =
limt→∞[tr (Σ(t))] = [tr (limt→∞ Σ(t))] =: [tr (Σ)].

For the state-space system given by (13) and (16), the square

of the H2 norm of the system is

H2
2 =

∫ ∞

0

B⊤e−M⊤tZe−MtBdt , (17)

in which

B =

[
0
Q

]

(18)

M =

[
0 I
−Λ̄ −Λ̄

]

and (19)

Z =

[
Q(ej − ek)(Q(ej − ek))

⊤ 0
0 0

]

. (20)

It follows that HSO(j, k) = H2
2 = tr

(
B⊤ΣB

)
. Σ is the

solution of the following Lyapunov equation,

M⊤Σ+ ΣM + Z = 0 . (21)

The equation is equivalent to

VM⊤ΣV ⊤ + V ΣMV ⊤ = −V ZV ⊤ or

(VM⊤V ⊤)(V ΣV ⊤) + (V ΣV ⊤)(VMV ⊤) = −V ZV ⊤

where V was defined in (13) as a (unitary) permutation

matrix. We denote by K = VMV ⊤ and Θ = V ΣV ⊤. Then

equation (21) can be written as

K⊤Θ+ΘK = −V ZV ⊤

= −






Z11 · · · Z1(N−1)

...
. . .

...

Z(N−1)1 · · · Z(N−1)(N−1)




 , (22)

for i,m ∈ {1, . . . , N − 1},

Zim =

[
(QijQmj −QijQmk −QikQmj +QikQmk) 0

0 0

]

=

[
(uijumj − uijumk − uikumj + uikumk) 0

0 0

]

We note that K is block-diagonal. Substituting (14) into

diagonal blocks of (22) yields P⊤
i Θii + ΘiiPi = Zii. Since

Zii and Pi are symmetric, Θii is also symmetric. We write

Θii as

Θii =

[
Xii Ψii

Ψii Yii

]

.

Then,
[

0 λi

1 λi

] [
Xii Ψii

Ψii Yii

]

+

[
Xii Ψii

Ψii Yii

] [
0 1
λi λi

]

=

[
(uij − uik)

2 0
0 0

]

,

which leads to

Yii =
(uij − uik)

2

2λ2
i

.

Then, we derive that

HSO(j, k) = H2
2 =tr

(
B⊤ΣB

) 1

2 = tr
(
B⊤V ⊤ΘV B

)

=
N−1∑

i=1

(Yii) =
N−1∑

i=1

(uij − uik)
2

2λ2
i

. (23)
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Applying (5), we immediately obtain the following theorem.

Theorem IV.2. For any vertex pair j and k in a network G
with dynamics (1),

HSO(j, k) =
1

2
d2B(j, k) (24)

This theorem shows that the pairwise variance between ver-

tices j and k is proportional to the square of their biharmonic

distance.

B. Vertex Variance

We first give an expression for the vertex variance in terms

of the eigenvalues and eigenvectors of L.

Theorem IV.3. For any vertex j in network G with dynam-

ics (1)

HSO(j) =

N−1∑

i=1

u2
ij

2λ2
i

. (25)

Proof: First, we derive an expression for the vertex

variance in terms of z1(t),

HSO(j) = lim
t→∞

E
[
y(t)⊤eje

⊤
j y(t)

]

= lim
t→∞

E
[
(Q⊤z1(t))

⊤eje
⊤
j Q

⊤z1(t)
]

= lim
t→∞

E
[
z1(t)

⊤Qeje
⊤
j Q

⊤z1(t)
]

= lim
t→∞

E
[
tr(e⊤j Q

⊤z1(t)z1(t)
⊤Qej)

]
.

With this, we define the output for the dynamics (13) as,

φ(t) = e⊤j Q
⊤[IN−1|0N−1]z(t) = e⊤j Q

⊤z1(t) . (26)

Again, we define Σ(t) = E[φ(t)φ(t)⊤ ], therefore HSO(j) =
limt→∞[tr (Σ(t))] = [tr (limt→∞ Σ(t))] =: [tr (Σ)].

For the state-space system given by (13) and (26), the square

of H2 norm of the system is also defined by (17), in which

B and M are given by (18) and (19), Z is expressed by

Z =

[
Qej(Qej)

⊤ 0
0 0

]

.

It follows that HSO(j) = H2
2 = tr

(
B⊤ΣB

)
. Σ is the solution

of the following Lyapunov equation,

M⊤Σ+ ΣM + Z = 0 , (27)

The equation is equivalent to

K⊤Θ+ΘK = −V ZV ⊤

= −






Z11 · · · Z1(N−1)

...
. . .

...

Z(N−1)1 · · · Z(N−1)(N−1)




 , (28)

where

Zim =

[
QijQmj 0

0 0

]

=

[
uijumj 0

0 0

]

,

for i,m ∈ {1, . . . , N − 1}. We recall that K = VMV ⊤ and

Θ = V ΣV ⊤.

Substituting (14) into diagonal blocks of (28) yields

P⊤
i Θii+ΘiiPi = Zii. Similar to the pairwise case, we assume

Θii =

[
Xii Ψii

Ψii Yii

]

. (29)

By solving P⊤
i Θii +ΘiiPi = Zii we derive

Yii =
u2
ij

2λ2
i

.

Then we obtain

HSO(j) = H2
2 =tr

(
B⊤ΣB

)
= tr

(
B⊤V ⊤ΘV B

)

=

N−1∑

i=1

(Yii) =

N−1∑

i=1

u2
ij

2λ2
i

. (30)

We next use Theorem IV.3 to derive an expression for the

vertex variance in terms of biharmonic distances.

Theorem IV.4. For any vertex j in network G with dynam-

ics (1), the variance of difference between the state of a

vertex and the system averge is decided by the spectrum of

the Laplacian marix of the graph, that is

HSO(j) =
1

2N

(

D2
B(j)−

1

N
D2

B(G)
)

. (31)

Proof: The biharmonic distance from vertex j to all other

vertices is

D2
B(j) =

N−1∑

k=0

d2B(j, k) =

N−1∑

k=0

N−1∑

i=1

1

λ2
i

(uij − uik)
2

=
N−1∑

i=1

N−1∑

k=0

u2
ij − 2uijuik + u2

ik

λ2
i

= N

N−1∑

i=1

u2
ij

λ2
i

+

N−1∑

i=1

1

λ2
i

. (32)

Substituting (8) and (25) into (32), we obtain

HSO(j) =
D2

B(j)

2N
− D2

B(G)
2N2

. (33)

C. Total Variance

Finally, we present expressions for the total variance in

terms of the spectrum of the Laplacian matrix.

Theorem IV.5. The total steady-state variance HSO(G) of

system (1) is

HSO(G) =
N−1∑

i=0

1

2λ2
i

. (34)

Proof: Since,

HSO(G) =
N−1∑

j=0

HSO(j) ,
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we immediately obtain

HSO(G) =
N−1∑

j=0

N−1∑

i=0

u2
ij

2λ2
i

=

N−1∑

i=0

N−1∑

j=0

u2
ij

2λ2
i

=

N−1∑

i=0

1

2λ2
i

.

In similar fashion, we use (8) to obtain the following

theorem about the relationship between the total variance and

biharmonic distances.

Theorem IV.6. For a network G with dynamics (1), the total

variance is given by the biharmonic Kirchhoff index of the

graph, specifically,

HSO(G) =
1

2N
D2

B(G) . (35)

V. RESISTANCE DISTANCE IN FIRST-ORDER CONSENSUS

DYNAMICS WITH DISTURBANCES

In this section, we briefly review first-order consensus

dynamics with stochastic disturbances and the relationship

between resistance distance and the total steady-state variance

The first-order consensus system is formulated as

ẋ(t) = −Lx(t) + w(t) , (36)

where x(t) ∈ R
N represents the states of the vertices, and

w(t) ∈ R
N is a vector of uncorrelated Gaussian white noise

processes. The total steady-state variance of the system is

HFO(G) = lim
t→∞

N∑

j=1

E[(xj(t)− x̄(t))
2
] , (37)

where x̄(t) = 1
N 1

⊤
Nx(t).

The total steady-state variance HFO can be expressed in

terms of resistance distances in an electrical network. We first

formalize the notion of resistance distance and the Kirchhoff

index.

Definition V.1. The resistance distance dR(j, k) between two
vertices j and k in an undirected graph G is defined as

dR(j, k) = L†
jj + L†

kk − 2L†
jk =

N−1
∑

i=1

1

λi
(uij − uik)

2 . (38)

Definition V.2. The Kirchhoff index DR(G) of a graph G is

defined as

DR(G) =
∑

j,k∈V
j<k

dR(j, k) . (39)

It has been shown [7], [18] that the Kirchhoff index is

related to the total steady-state variance of system (36) as

HFO(G) =
1

2N
DR(G) . (40)

We also note that the notion of the information centrality of

a vertex can be expressed in terms of resistance distances. If

we defined the sum of resistance distances between all vertices

to a vertex j as

DR(j) =
∑

k∈V

dR(j, k) , (41)

then the information centrality of vertex j in graph G is [19]

CR(j) =

(
1

N
DR(j)

)−1

. (42)

Finally, we define the resistance embedding of a graph.

Definition V.3. Let FR : V → R
N be an n-dimensional map-

ing of G, such that for any vertex j, FR(j) = µj = L†/2ej .

µj is a resistance embedding of graph G in R
N .

VI. ANALYTICAL EXAMPLES

In this section we give examples for biharmonic distance,

connectivity and centrality in networks with special topology.

Closed form expressions are derived for all cases. We also

compare the asymptotic behavior of the steady-state variance

of first- and second-order systems.
We note that in some of these examples eigenvectors, are

given as complex vectors (although they can be given as real
vectors by an unitary linear transform). Therefore, we calculate
the biharmonic distances using the following expression:

d2B(j, k) = L2†
jj + L2†

kk − 2L2†
jk =

N−1
∑

n=1

1

λ2
n

|unj − unk|
2 , (43)

which is a slight variation of the definition in (5). We note

that i is used to indicate the imaginary unit in this section.

A. Complete Graph

A complete graph is a network in which every vertex is

connected to every other vertex. We consider a complete graph

of N vertices. Its Laplacian matrix of it is

Lcp
N =










N − 1 −1 · · · −1 −1
−1 N − 1 · · · −1 −1

...
...

. . .
...

...

−1 −1 · · · N − 1 −1
−1 −1 · · · −1 N − 1










.

Matrix Lcp
N is diagonalized by a discrete Fourier transform. It

can be verified that its eigenvalues and eigenvectors are given

by

λ0 = 0 (44)

λn = N, n = 1, 2, · · · , N − 1 (45)

unm =
1√
N

ei2πnm/N , n,m = 0, 1, · · · , N − 1 . (46)

Proposition VI.1. In a complete graph G = (V , E) with N
vertices, let j, k ∈ V , j 6= k. The biharmonic distance between

j and k is

dB(j, k) =

√
2

N
. (47)

Proof: By substituting the eigenvalues and eigenvectors

in (44) - (46) into (43), we obtain

d2B(j, k) =

N−1∑

n=1

|unj − unk|2
N2

=
1

N3

N−1∑

n=1

4 sin2
(j − k)πn

N

=
2

N2
.
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Once we obtain the biharmonic distance between any

vertices j and k, we can derive the other related indices.

From (47), we derive the biharmonic Kirchhoff index for a

complete graph with N vertices.

D2
B(G) =

N(N − 1)

2
· 2

N2
=

N − 1

N
.

We also derive the biharmonic vertex index and biharmonic

centrality for a complete graph,

D2
B(j) = (N − 1) · 2

N2
=

2(N − 1)

N2
,

CB(j) =
N3

2(N − 1)
.

Finally, we use the biharmonic distance and Theorems IV.2,

IV.4, and IV.6 to determine closed-form solutions for the three

performance measures defined in Section II-C.

Theorem VI.2. For a complete graph G with N vertices,

where the system dynamics are as given in (1),

HSO(j, k) =
1

N2
, j, k ∈ V, j 6= k ;

HSO(j) =
N − 1

2N3
, j ∈ V ;

HSO(G) =
N − 1

2N2
.

We recall that in a complete graph, the total variance in

a system with first-order noisy consensus dynamics (36) is

HFO(G) ∈ O(1) [8]. This is in contrast with HSO(G) which

is in O(1/N).

B. Star Graph

We consider a star graph of order N , which consists of one

hub and N − 1 leaves. Its Laplacian matrix is

Lstar
N =










N − 1 −1 · · · −1 −1
−1 1 · · · 0 0

...
...

. . .
...

...

−1 0 · · · 1 0
−1 0 · · · 0 1










. (48)

Its eigenvalues and corresponding orthonormal eigenvectors

are [20],

λ0 = 0 (49)

λn = 1 , n = 1, 2, · · · , N − 2 , (50)

λN−1 = N , (51)

and

u0 =
1√
N

(1, 1, 1, · · · , 1, 1, 1)⊤ (52)

un =
1

√

n(n+ 1)
(0,−1, · · · ,−1
︸ ︷︷ ︸

n

, n, 0, 0, · · · , 0)⊤,

n = 1, 2, · · · , N − 2 , (53)

uN−1 =
1

√

N(N − 1)
(1−N, 1, · · · , 1, 1)⊤ . (54)

We use these eigenvalues and eigenvectors to find the

biharmonic distances between vertices in a star graph.

Proposition VI.3. In a star network G = (V , E) with vertex

0 being the hub with degree N − 1, and the remaining N − 1
vertices as leaves, the biharmonic distance between the hub

and a leaf is given by

dB(0, j) =

√

N − 1

N
, j = 1, 2, · · · , N − 1, (55)

and the biharmonic distance between any two leaves is

dB(j, k) =
√
2, j, k = 1, 2, · · · , N − 1; j 6= k . (56)

Proof: The biharmonic distance between any two vertices

j, k ∈ V , j 6= k is given by

d2B(j, k) =
N−2∑

n=1

(unj − unk)
2

12
+

(uN−1,j − uN−1,k)
2

N2
. (57)

Substituting (49) - (51) and (52) - (54) into (57) yields the

theorem.

With these biharmonic distances, we easily obtain the bi-

harmonic Kirchhoff index,

D2
B(G) = (N − 1)

N − 1

N
+

(N − 1)(N − 2)

2
· 2

= N2 − 2N +
1

N
.

The expressions for biharmonic vertex index and biharmonic

centrality also immediately follow from the proposition, For

the central vertex in a star graph,

D2
B(0) = (N − 1) · N − 1

N
=

(N − 1)2

N
,

CB(0) =
N2

(N − 1)2
,

and any leaf vertex j,

D2
B(j) =

N − 1

N
+ (N − 2) · 2 =

2N2 − 3N − 1

N
,

CB(j) =
N2

2N2 − 3N − 1
.

Applying Proposition VI.3 and Theorems IV.2, IV.4, and

IV.6, we obtain closed-form solutions for the three steady-state

variance performance measures.

Theorem VI.4. For a star graph G with N vertices, where

the system dynamics are as given in (1), and where vertex 0
is the hub,

HSO(0, j) =
N − 1

2N
, j 6= 0 ;

HSO(j, k) = 1 , j 6= k; j, k 6= 0 ;

HSO(0) =
N − 1

2N3
;

HSO(j) =
N3 −N2 −N − 1

2N3
, j 6= 0 ;

HSO(G) =
N

2
− 1 +

1

2N2
.

We recall that in an N -node star graph, the total variance

for a system with first-order noisy consensus dynamics is

HFO(G) ∈ O(N) [8], and interestingly, in second order

systems, the total variance is also in O(N).
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C. Cycle

The Laplacian of a cycle CN with N vertices is given by

Lcyc
N =










2 −1 0 · · · 0 0 −1
−1 2 −1 · · · 0 0 0

...
...

...
. . .

...
...

...

0 0 0 · · · −1 2 −1
−1 0 0 · · · 0 −1 2










.

Lcyc
N is a circulant matrix. Therefore, its spectrum is given by

a discrete Fourier transform. Let φn = nπ
N ; the eigenvalues

and eigenvectors of Lcyc
N are

λn = 2(1− cos 2φn), n = 0, 1, 2, · · · , N − 1 (58)

unm =
1√
N

ei2mφn , n,m = 0, 1, · · · , N − 1. (59)

We use these eigenvalues and eigenvectors to determine the

biharmonic distance.

Proposition VI.5. In a cycle graph G = (V , E), let j, k ∈ V ,

k ≤ j and j − k = l. Then, the biharmonic distance between

j and k is

dB(j, k) =

√

l4

12N
− l3

6
+

l2N

12
− l2

6N
+

l

6
. (60)

The proof of the proposition is given in Appendix B.

Next, we calculate the derived indices using biharmonic

distances. For a cycle CN with N nodes, the biharmonic

Kirchhoff index is

D2
B(G) =

1

720
(N5 + 10N3 − 11N) .

For any vertex j in a cycle, its biharmonic vertex index and

biharmonic centrality are

D2
B(j) =

1

360
(N4 + 10N2 − 11) ,

CB(j) =
360N

N4 + 10N2 − 11
.

By applying Theorems IV.2, IV.4, and IV.6, along with

Proposition VI.5, we obtain closed-form solutions for the

steady-state variance performance measures.

Theorem VI.6. For a cycle graph G with N vertices where

the dynamics are given by (1),

HSO(j, k) =
l4

24N
− l3

12
+

l2N

24
− l2

12N
+

l

12
,

For j, k ∈ V , k ≤ j and j − k = l ; (61)

HSO(j) =
1

1440

(

N3 + 10N − 11

N

)

, j ∈ V ; (62)

HSO(G) =
1

1440

(
N4 + 10N2 − 11

)
. (63)

To give some examples for HSO(j, k) in a cycle of N
vertices, it holds that HSO(0, 1) =

1
24 (N − 1/N). For a even

N , HSO(0, N/2) = 1
384N(N2 + 8).

To compare with the first-order consensus dynamics, we

recall that in a cycle graph with N vertices, HFO(G) ∈
O(N2) [7], whereas in second-order systems HSO(G) ∈
O(N4).

D. Path

We consider a path graph PN with N vertices. Let the

vertices be numbered 0, 1, . . . , N − 1. The Laplacian matrix

of PN assumes the form

Lpath
N =










1 −1 0 · · · 0 0 0
−1 2 −1 · · · 0 0 0

...
...

...
. . .

...
...

...

0 0 0 · · · −1 2 −1
0 0 0 · · · 0 −1 1










.

The eigenvalues and eigenvectors of Lpath
N are [21].

λn =2(1− cosφn), n = 0, 1, 2, · · · , N − 1 (64)

u0m =
1√
N

, m = 0, 1, · · ·N − 1 (65)

unm =

√

2

N
cos(m+ 1/2φn),

n = 1, 2, · · · , N − 1,m = 0, 1, · · ·N − 1 (66)

where φn = nπ/N .

We use (64) - (66) to determine the biharmonic distance

between two vertices in a path.

Proposition VI.7. In a path graph G = (V , E) with
N vertices, the biharmonic distance between two vertices
j, k ∈ {0, 1, . . . , N − 1}, k < j, is

dB(j, k) =

(

j

6
+

j2

2
−

j2

4N
+

j3

3
−

j3

2N
−

j4

4N

−
k

6
− jk +

jk

2N
+

j2k

2N
+

k2

2
−

k2

4N

− jk2 +
jk2

2N
+

j2k2

2N
+

2k3

3
−

k3

2N
−

k4

4N

) 1

2

.

(67)

The proof of Proposition VI.7 is given in Appendix C.

We next use Proposition VI.7 to derive the biharmonic

Kirchhoff index for a path with N nodes,

D2
B(G) =

1

180
(2N5 + 5N3 − 7N) .

We can also derive the biharmonic vertex index and bihar-

monic centrality for a node j,

D2
B(j) =

1

30
(N4 − 10j(j + 1)N2

+ 10j(2j + 1)(j + 1)N − 10j2(j + 1)2 − 1) ,

CB(j) =
30N

N4−10j(j+1)N2+10j(2j+1)(j+1)N−10j2(j+1)2−1 .

Finally, we present the following theorem that gives the steady-

state variance performance measures for PN . This theorem

follows directly from Proposition VI.7 and Theorems IV.2,

IV.4, and IV.6.
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Theorem VI.8. Let G = (V , E) be a path graph with

V = {0, 1, . . . , N − 1} and with the dynamics (1). Let j, k ∈ V
with k < j. Then,

HSO(j, k) =
1

2

(

j

6
+

j2

2
− j2

4N
+

j3

3
− j3

2N
− j4

4N

− k

6
− jk +

jk

2N
+

j2k

2N
+

k2

2
− k2

4N

− jk2 +
jk2

2N
+

j2k2

2N
+

2k3

3
− k3

2N
− k4

4N

)

, (68)

HSO(j) =
1

360N
(4N4 − (60j2 + 60j + 5)N2

+ 60j(2j + 1)(j + 1)N − 60j2(j + 1)2 + 1) (69)

HSO(G) =
1

360

(
2N4 + 5N2 − 7

)
. (70)

To give some examples for HSO(j, k) and HSO(j), we

note that HSO(0, N − 1) = 1
24N(N2 − 1) and HSO(0) =

1
90N(N2 − 5/4)+ 1

360N . For a even N , HSO(N/2, N − 1) =
5

384N(N−2/5)(N−2) and HSO(N/2) = 1
1440N(N2+40)+

1
360N .

We recall that in a N -vertex path graph with first order noisy

consensus dynamics, the total variance is HFO = O(N2) [8].

This is in contrast with the second order system, which has

total variance in O(N4).

VII. NUMERICAL EXAMPLES

In this section, we give numerical examples of the bihar-

monic and resistance distances in several graphs.

Figure 1 shows the square of biharmonic distance and the

resistance distance in a cycle of 1000 vertices. Specifically

we plot both the distances between vertices j and k where

k ≤ j, as a function of l = j − k. The biharmonic distances

are obtained using (60). The figure shows that the square

of biharmonic distance and the resistance distance grow at

different rates in a cycle, as a function of graph distance, while

the vertices that have the largest graph distance have both the

largest squared biharmonic distance and resistance distance.

0 500 1000
l

0

2

4

6

d
2 B
(i
,j
)

106

0 500 1000
l

0

50

100

150

200

250

d
R

(i
,j
)

Fig. 1. The squared biharmonic distance d2B(j, k) and resistance distance
dR(j, k) between two vertices j, k with l = j−k in a cycle of 1000 vertices.

Figure 2 gives the biharmonic distances in a path graph. In

particular, we show the biharmonic distances between vertices

j and k where k ≤ j. We only show two cases, k = 0 and

k = 500. The biharmonic distances are calculated using (67).

For a given k, dB(j, k) grows slower near the ends of the path

and faster around the middle of the path. In addition, since for

even N , dB(0, N/2− 1) = dB(N/2, N − 1); we observe that

0 500 1000
j

0

2000

4000

6000

8000

10000

d
B
(i
,j
)

(a) k = 0

500 600 700 800 900 1000
j

0

2000

4000

6000

d
B
(i
,j
)

(b) k = 500

Fig. 2. Biharmonic distance dB(j, k) between two vertices j, k with l = j−k

in a path of 1000 vertices.

dB(0, N/2 − 1) + dB(N/2 − 1, N/2) + dB(N/2, N − 1) >
dB(0, N−1) in this example. This is in contrast with resistance

distance (and identically graph distance), where dR(0, N/2−
1) + dR(N/2− 1, N/2) + dR(N/2, N − 1) = dR(0, N − 1).

Figure 3 compares biharmonic centrality and information

centrality in a path with 1000 vertices. Both curves are bell-

like and the node in the middle has the largest centrality. The

difference is that biharmonic distance distinguishes the center

nodes better, as illustrated by the figure.

0 500 1000
j

3

4

5

6

7

C
B
(j
)

10-8

0 500 1000
j

2

2.5

3

3.5

4

C
R

(j
)

10-3

Fig. 3. Biharmonic centrality and information centrality in a path of 1000
vertices.

The next example is a starry-line graph, composed of two

20-vertex star graphs connected by a path of 5 vertices. Fig-

ure 4 shows the biharmonic centrality (above) and information

centrality (below) in the graph. Vertices are colored according

to their centrality in the network. Red vertices have the largest

centrality and blue vertices have smallest centrality. The figure

shows that the biharmonic centrality distinguishes the center

of the line from other vertices on the line, while these vertices

have comparable information centralities.

Fig. 4. Biharmonic centrality and information centrality in a starry-line graph.



10

Figure 5 shows the first two principle components of the

biharmonic embedding as well as the biharmonic embedding

of a Barabási-Albert network with 100 nodes. We observe

that the biharmonic embedding stretches the edges out a bit

more than the resistance embedding. In fact, by reviewing

their definitions, we observe that the normalized components

in PCA for these two embeddings are the same; the differences

are the variances of the components.

-0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
-0.04
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-0.02
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0.03

0.04

(a) Biharmonic embedding and biharmonic centrality.

-0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

(b) Resistance embedding and information centrality.

Fig. 5. Embeddings and centralities of a 100-vertex BA network

VIII. CONCLUSION

We have investigated the performance of undirected net-

works with second-order consensus dynamics with stochastic

disturbances. We have established the connection between

second-order network performance measures and the bihar-

mornic distances in the communication graph. We introduced

the notions of a Kirchhoff index and vertex centrality based on

biharmonic distance to further help us describe the behavior of

second-order consensus dynamics, and we derived closed-form

expressions for the performance measures for complete graphs,

star graphs, cycles, and paths. Future work should include the

study of additional properties of biharmonic distances, as well

as analysis of the steady-state variance performance measures

in more general networks, including random networks and

real-world networks.

APPENDIX A

TRIGONOMETRIC IDENTITIES

We use the notation φn = nπ
N . We next introduce the

following identities.

GN (1) =
1

N

N−1
∑

n=1

1− cos 2φn

(1− cos 2φn)2

=
1

2N

N−1
∑

n=1

1

sin2 φn
=

N

6
−

1

6N
(71)

GN (2) =
1

N

N−1
∑

n=1

1− cos 4φn

(1− cos 2φn)2

=
1

2N

N−1
∑

n=1

sin2 2φn

sin4 φn
=

2

N

N−1
∑

n=1

cos2 φn

sin2 φn

=
2N

3
− 2 +

4

3N
(72)

FN(1) =
1

N

N−1
∑

n=1

1− cos φn

(1− cosφn)2

=
1

2N

N−1
∑

n=1

1

sin2 φn/2
=

N

3
−

1

3N
(73)

FN (2) =
1

N

N−1
∑

n=1

1− cos 2φn

(1− cos φn)2

=
1

2N

N−1
∑

n=1

sin2 φn

sin4 φn/2
=

2

N

N−1
∑

n=1

cos2 φn/2

sin2 φn/2

=
4N

3
− 2 +

2

3N
(74)

APPENDIX B

PROOF OF PROPOSITION VI.5

Proof: We note that i denotes the imaginary unit in this

proof.
Substituting (58) and (59) into Definition III.1, we obtain

d2B(j, k) =
1

N

N−1
∑

n=1

|ei2jφn − ei2kφn |2

4(1− cos 2φn)2
=

1

2
GN (j − k), (75)

where

GN (l) =
1

N

N−1∑

n=1

1− cos(2lφn)

(1− cos 2φn)2
.

Without loss of generality, we assume 0 6 l 6 2N .

In order to simplify GN (l), we give two equivalent expres-

sions for the real part of the following sum

HN (l) =
1

N

N−1∑

n=1

1− e2ilφn

(1 − e2iφn)2
. (76)
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The first expression is

Re
(

HN(l)
)

=
1

4N

N−1
∑

n=1

(

1− cos 2lφn

(1− cos φn)2
−

2− 2 cos 2(l − 1)φn

(1− cos φn)2

+
1− cos 2(l − 2)φn

(1− cosφn)2
−

1− cos 4φn

(1− cos φn)2
+

2− 2 cos 2φn

(1− cos φn)2

)

=
1

4

(

GN (l)− 2GN (l − 1)

+GN (l − 2)−GN (2) + 2GN (1)

)

. (77)

We note that GN (0) = 0. Let KN(l) = GN (l)−GN (l− 1).
We rewrite (77) for the sake of conciseness in future derivation
as

Re(HN(l))

=
1

4

(

[(

GN (l)−GN(l − 1)
)

−
(

GN (l − 1)−GN(l − 2)
)]

− [(GN (2)−GN (1))− (GN(1) −GN (0))]
)

=
1

4
[(KN (l)−KN(l − 1))− (KN (2)−KN (1))] (78)

Next, we use the summation formula
∑n−1

j=0 xj = 1−xn

1−x to
expand (76)

HN(l) =
1

N

N−1
∑

n=1

1− e2ilφn

1− e2iφn

1

1− e2iφn

=
1

N

N−1
∑

n=1

l−1
∑

l′=0

(

e2il
′φn

1− e2iφn

−
1

1− e2iφn

+
1

1− e2iφn

)

=
1

N

N−1
∑

n=1

( l−1
∑

l′=2

e2il
′φn − 1

1− e2iφn

− 1

)

+
1

N

N−1
∑

n=1

l−1
∑

l′=0

1

1− e2iφn

=−
1

N

N−1
∑

n=1

l−1
∑

l′=2

l′−1
∑

l′′=1

e2il
′′φn −

1

N

N−1
∑

n=1

1

−
1

N

N−1
∑

n=1

l−1
∑

l′=2

1 +
1

N

N−1
∑

n=1

l−1
∑

l′=0

1

1− e2iφn

. (79)

The triple summation in the last equality can be simplified

by carrying out the summation over n first,

E1 ≡ − 1

N

N−1∑

n=1

l−1∑

l′=2

l′−1∑

l′′=1

e2il
′′φn

= − 1

N

l−1∑

l′=2

l′−1∑

l′′=1

(

1− ei2πl
′′

1− eiπy′′/N
− 1

)

=
1

N

l−1∑

l′=2

l′−1∑

l′′=1

1,

where last equality is obtained by applying ei2πl
′′

= 1 for

l′′ ∈ Z.

Using the fact that Re
(
1/(1− eiθ)

)
= 1/2, 0 < θ < 2π,

the real part of the fourth term in (79) is

Re(E4) = Re

(

1

N

N−1∑

n=1

l−1∑

l′=0

1

1− eiφn

)

=
(N − 1)l

2N
.

Therefore,

Re(HN (l)) =
l2

2N
− l

N
− l

2
+ 1 . (80)

Let XN (l) = 4Re(HN (l)). From the equivalence of (78)
and (80), we derive

XN (l) =
(

KN(l)−KN (l − 1)
)

−
(

KN(2) −KN (1)
)

.

This recursive equation can be solved to give

KN (l) = GN (l)−GN (l − 1)

= YN (l) + (l − 1)GN (2)− (2l− 3)GN (1),

and

GN (l) = ZN (l)+

(
l2

2
− l

2

)

GN (2)− (l2 − 2l)GN(1), (81)

where

YN (l) =

l∑

j=2

XN (j) and

ZN(l) =

l∑

j=2

YN (j) =

l∑

j=2

j
∑

k=2

XN (k) .

Substituting (71), (72), and (80) into (81), we finally obtain

the result for GN (l) as

GN (l) =
l4

6N
− l3

3
+

l2N

6
− l2

3N
+

l

3
.

Plugging this value into (75) generates the result in Proposition

VI.5.

APPENDIX C

PROOF OF PROPOSITION VI.7

Proof: We note that i denotes the imaginary unit in this

proof.
By definition, the biharmonic distance between j and k,

j ≤ k is

d2B(j, k) =
1

N

N−1
∑

n=1

[cos(j + 1
2
)φn − cos(k + 1

2
)φn]

2

2(1− cos φn)2

=
1

2

(

FN(j + k + 1) + FN (j − k)

−
1

2
FN(2j + 1) −

1

2
FN(2k + 1)

)

(82)

where

FN(l) =
1

N

N−1
∑

n=1

1− cos lφn

(1− cosφn)2
.

Next, we calculate the real part of the following sum in two

different ways

TN(l) =
1

N

N−1∑

n=1

1− eilφn

(1− eiφ)2
. (83)

First, let EN (l) = FN (l)− FN (l − 1). We obtain

Re
(

TN (l)
)

=
1

4

(

FN (l)− 2FN (l − 1) + FN(l − 2)

− FN (2) + 2FN (1)

)

=
1

4

[

(

EN (l)−EN (l − 1)
)

−
(

EN(2)− EN(1)
)

]

(84)
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Second, we use the summation formula
∑n−1

j=0 xj = 1−xn

1−x
and derive

TN(l) =
1

N

N−1
∑

n=1

1− eilφn

1− eiφn

1

1− eiφn

=
1

N

N−1
∑

n=1

l−1
∑

l′=0

(

eil
′φn

1− eiφn

−
1

1− eiφn

+
1

1− eiφn

)

=
1

N

N−1
∑

n=1

( l−1
∑

l′=2

eil
′φn − 1

1− eiφn

− 1

)

+
1

N

N−1
∑

n=1

l−1
∑

l′=0

1

1− eiφn

=−
1

N

N−1
∑

n=1

l−1
∑

l′=2

l′−1
∑

l′′=1

eil
′′φn −

1

N

N−1
∑

n=1

1

−
1

N

N−1
∑

n=1

l−1
∑

l′=2

1 +
1

N

N−1
∑

n=1

l−1
∑

l′=0

1

1− eiφn

. (85)

Again, we change the order of summation over n, l′ and l′′

to simplify the first term in (85),

E′
1 ≡ −

1

N

N−1
∑

n=1

l−1
∑

l′=2

l′−1
∑

l′′=1

eil
′′φn = −

1

N

l−1
∑

l′=2

l′−1
∑

l′′=1

[

1− (−1)l
′′

1− eiπy′′/N
−1

]

.

The real part of E′
1 and the fourth term in (85), denoted E′

4,

are

Re(E′
1) =

1

8N

[
2l2 − 8l + 7+ (−1)l

]
,

Re(E′
4) = Re

(

1

N

N−1∑

n=1

l−1∑

l′=0

1

1− eiφn

)

=
(N − 1)l

2N
.

Hence,

Re(TN (l)) =
−4N(l− 2) + 2l2 − 4l+ (−1)l − 1

8N
. (86)

Equating (84) and (86) leads to

FN (l) =

l
∑

i=2

i
∑

j=2

4Re(TN (l)) +

(

l2

2
−

l

2

)

FN (2)

− (l2 − 2l)FN (1) . (87)

Next, we evaluate FN (1) and FN (2)

FN (1) =
1

N

N−1
∑

n=1

1− cos φn

(1− cosφn)2
=

1

2N

N−1
∑

n=1

1

sin2 φn/2
, (88)

FN (2) =
1

N

N−1
∑

n=1

1− cos 2φn

(1− cosφn)2
=

2

N

N−1
∑

n=1

cos2 φn/2

sin2 φn/2
. (89)

For FN (1), we start by expanding the expression
∑2N−1

n=1 1/(sin2 nπ
2N ). Since

∑N−1
n=1 1/(sin2 nπ

N ) = N2

3 − 1
3 ,

we derive

2N−1
∑

n=1

1

sin2 nπ
2N

=
4N2

3
−

1

3

=
1

sin2 π
2N

+
1

sin2 2π
2N

+ · · ·+
1

sin2 (N−1)π
2N

+
1

sin2 Nπ
2N

+
1

sin2 (N+1)π
2N

+ · · ·+
1

sin2 (2N−2)π
2N

+
1

sin2 (2N−1)π
2N

.

For sinx = sin(π − x), 0 ≤ x ≤ 2π and 1/(sin2 Nπ
2N ) = 1,

2N−1
∑

n=1

1

sin2 nπ
2N

= 2

N−1
∑

n=1

1

sin2 nπ
2N

+ 1 .

Thus, we obtain identity (73); that is,

FN (1) =
1

2N

N−1∑

n=1

1

sin2 nπ
2N

=
1

4N

(
4N2

3
−1

3
−1

)

=
N

3
− 1

3N
.

Similarly, we expand (5) by noting that cos2 Nπ
2N = 0,

2N−1
∑

n=1

cos2 nπ
2N

sin2 nπ
2N

=

N−1
∑

n=1

cos2 nπ
2N

sin2 nπ
2N

+
cos2 Nπ

2N

sin2 Nπ
2N

+

2N−1
∑

n=N+1

cos2 nπ
2N

sin2 nπ
2N

= 2
N−1
∑

n=1

cos2 nπ
2N

sin2 nπ
2N

.

For
∑N−1

n=1
cos2 φn

sin2 φn

= N2

3 −N+ 2
3 , we have

∑2N−1
n=1

cos2 nπ

2N

sin2 nπ

2N

=
4N2

3 − 2N + 2
3 . Therefore, we obtain identity (74); that is,

FN (2) =
2

N

N−1∑

n=1

cos2 φn/2

sin2 φn/2
=

4N

3
− 2 +

2

3N
.

By substituting (73), (74), and (86) into (87), we derive the

following closed formula for FN (l)

FN (l) =
l4

12N
− l3

3
+

l2N

3
− l2

6N
+

(−1)l

8N
+

l

3
− 1

8N
.

By plugging FN (l) into (82), we obtain the result in Proposi-

tion VI.7.
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