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Data-Driven Approximate Abstraction for Black-Box Piecewise Affine
Systems

Gang Chen and Zhaodan Kong

Abstract—How to effectively and reliably guarantee the
correct functioning of safety-critical cyber-physical systems in
uncertain conditions is a challenging problem. This paper
presents a data-driven algorithm to derive approximate ab-
stractions for piecewise affine systems with unknown dynamics.
It advocates a significant shift from the current paradigm of
abstraction, which starts from a model with known dynamics.
Given a black-box system with unknown dynamics and a linear
temporal logic specification, the proposed algorithm is able to
obtain an abstraction of the system with an arbitrarily small
error and a bounded probability. The algorithm consists of
three components, system identification, system abstraction,
and active sampling. The effectiveness of the algorithm is
demonstrated by a case study with a soft robot.

I. INTRODUCTION

The proliferation of cyber-physical systems (CPSs) brings
how to effectively and reliably guarantee their correct be-
haviors to the forefront of problems we as control engineers
need to address. One natural choice to attain correct func-
tioning is to consider formal methods techniques, such as
model checking [1], [2], which have been successfully used
in the formal verification and synthesis of digital circuits
and software codes [3]. In recent years, we have seen
many efforts of extending formal methods to engineering
applications, e.g., automobiles [4], [5] and robotics [6], [7].
One crucial component of formal methods is a precise and
potentially concise mathematical model of the system under
investigation. However, in reality we rarely have full knowl-
edge of complex CPSs during their design and even testing
phase. Thus how to attain formal guarantee for systems with
partially or fully unknown dynamics becomes a problem of
practical significance.

In this paper, we aim to address this problem in the
context of abstraction [1]. Given a system model 7 (which
can potentially have infinitely many states) and a formal
specification ¢ written, for instance, in linear temporal logic
(LTL), an abstract model of 7 is a simpler model 77,
checking whether the simpler model 7~ satisfies ¢ suffices to
decide whether T satisfies ¢ [8], [9], [10], [11]. For systems
that can be described by discrete state models, abstraction
can be achieved by using the concepts of simulation and bi-
simulation [1], [2]. In control community, recently there have
been many successful efforts pertaining to the abstraction of
systems of more realistic dynamics, such as those that are
piecewise affine [12], [13], [14], [15]. All these studies, as
far as we know, assume models of known dynamics, which
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significantly impedes the application of abstraction in the
analysis and design of systems with inherent uncertainties,
e.g., those needing to interact with a variety of human users
and be deployed in a variety of environments.

One principle way of mitigating uncertainties is to utilize
machine learning techniques. Actually, the integration of for-
mal methods and machine learning has shown great potential
in the formal specification, design, verification, and valida-
tion of CPS [16], [17], [18], [19], [20], [21]. In this paper, we
will focus on how to combine machine learning techniques,
particularly system identification and active learning, and
formal methods techniques to generate approximate abstrac-
tions for systems with black-box (unknown), piecewise affine
(PWA) dynamics. PWA models partition the state space into
a finite number of polyhedral regions and consider affine
dynamics in each region [22]. It has been shown that PWA
models can approximate nonlinear dynamics with arbitrary
accuracy [12]. Moreover, there exist efficient techniques for
the identification of PWA systems, e.g., optimization-based
methods and clustering-based methods [23].

The major contribution of this paper is that it addresses
many theoretical and algorithmic issues pertaining to the
integration of existing approximate abstraction techniques
[24] and system identification techniques [23]. Given a
system with unknown PWA dynamics, the paper shows that,
by following the algorithm prescribed in the paper, it is
possible to extract an abstract model with an arbitrarily small
error and a bounded probability (under certain mild assump-
tions). Even though the paper focuses on PWA systems, the
preliminary results obtained in it can potentially pave the
way for future developments for systems with more complex
dynamics.

The remainder of the paper is organized as follows.
In Section we provide preliminaries and notation used
throughout the paper. In Section [T, we formally introduce
the abstraction problem that will be solved in the paper.
Section [IV]| presents our data-driven approximate abstraction
algorithm, together with proofs demonstrating the effective-
ness of our algorithm. Section [V] uses a soft robot system
as an example to showcase our proposed algorithm. We
conclude with final remarks in Section [V1l

II. PRELIMINARIES AND NOTATION

A N dimensional polytope X is defined as the convex
hull of at least N + 1 affinely independent vectors in RY. A
complete partition of X" is a set of open polytopes X;, 7 € I
(I is a finite index set) in RY such that X;, N &;, = 0
for all i1,i5 € 1,41 # iy and CZ(X) = UieICZ(Xi), where



cl(X;) denotes the closure set of X;. According to the H-
representation, each &;,7 € I can be represented as X; =
{z € RN : Hyz < K;}, where < denotes componentwise
inequality.

A piecewise affine (PWA) system [22] can be written as
follows:

= flzk) +e
Az + b ifzxe X

1
flz) = : %
Asx + by if x € Xy

Thk41

where . is the state of the system at step k; f : X — RN
is a PWA map; e € NV'(0,02) is an independently, identically
distributed and zero mean Gaussian noise with standard
deviation o.; s is the number of modes; A;,b; are the
parameters of the i-th mode (A;,7 = 1,---,s is assumed
to be nonsingular in this paper); and all s modes together
constitute a complete partition of X'

A transition system is a tuple T = (Q, 9, O, 0), where Q
is the state space; 6 : Q — 29 (2 is the powerset of Q)
is a transition map assigning a state ¢ € () to its next state
q" € @Q; O is the set of observations; and o : Q — O is
an observation map assigning each ¢ € () an observation
o(¢) € O [1]. We denote a region of the state space as
P C Q. The embedding transition system of a PWA system
S described by Eqn. is a tuple 7o = (Qe, e, Oc, 0¢),
where Q. = U;erX;; e : @ — 2 iff there exists ¢ € I such
that the transition from x to z’ satisfies Eqn. ; O, =1,
and o.(z) =i iff z € &; [24].

For a transition system 7, including embedding transition
systems of PWA systems, the successor of a region P C Q)
is define as the set of states that can be reached from the
states in P in one step, i.e., Post(P) = {¢ € Q | Ip €
P with p — ¢}. The predecessor of a region P C ) can be
defined similarly as Pre(P) = {¢g € Q | 3¢ € P with ¢ —
p}. A state g € Q is called reachable if there exists a finite
execution ending at ¢g. We denote all the reachable states of
T by Reach(T). Given an LTL formula ¢ over O and a
system 7, if all the traces originating from a region P C Q)
satisfy ¢, then we denote the situation as 7(P) | ¢. Let
Xﬁ’; ={X C Q,T(X) = ¢} denote the largest region of T
from which all the traces satisfy ¢ [1].

The reachability metric over two transition systems 77 and
T2 is defined as [25]:

d(T1,T2) = h(Reach(T1), Reach(Tz)),

where h is the Hausdorff distance. Given two transition
systems 77 and 75 with the same observation set O and
a reachability metric d defined over them, a relation S, C
Q1 X Qo is called a o—approximate simulation relation of
T1 by T3 [25] if for all (¢1,q2) € S,

o d(o(q1),0(q2)) < 0,

o V¢ = Post(q1), there exists g5 = Post(qz), such that

(1, 42) € So-

Moreover, 77 is said to be o—approximately simulated by
T2, denoted 71 <, Ta.

III. PROBLEM STATEMENT

Formally, in this paper, we wish to solve the following
problem:

Problem 1: Given a PWA system S with unknown dy-
namics, an LTL specification ¢, and a bound o > 0, find a
finite transition system 7 such that p(7 <, 7) > 1 — 4,
where p(.) stands for probability, 7 is the true abstract
transition system of S, and ¢ is bounded.

Remark 1: By unknown dynamics, we mean that the
following system characteristics are unknown: (i) the number
of modes, s, (ii) the parameters related to the dynamics of
each mode, {A;,b;,i = 1,--- s}, (iil) the parameters related
to the partitions (regions) of the state space, {H;, K;,i =
1,---,s}, and (iv) the standard deviation of the Gaussian
noise, o.. But we assume that our algorithm, which will
be presented in the next section, can use the system as a
black-box simulator to generate samples. This is a reasonable
assumption since during system design and testing phases,
engineers can always get access to a full-scale system model,
a scaled system model, or a computer simulation to generate
samples [26], [21].

Remark 2: Notice that the requirement p(7 <, T) >
1 — 6 is inspired by the concept of probably approximately
correct (PAC) models in machine learning [27]. It simply
says that the probability that the transition system T (ob-
tained by using our algorithm) is a o-approximate simulation
by the PWA system S is higher than 1 — . In other words,
given a PWA system with unknown dynamics, we intend to
find out its approximate abstract transition system T with a
high enough confidence.

IV. DATA-DRIVEN ABSTRACTION ALGORITHM

Black-Box PWA

—>| Sample Pairs (x,,y,)

System S
| System Identification
System Abstraction |<— I LTL Formula ¢
- : NO YES
Active Sampling Terminated? Abstraction T

Fig. 1: Architecture of our data-driven abstraction algorithm.

Fig. [T] illustrates the basic architecture of our data-driven
abstraction algorithm to solve Problem [I] The inputs of the
algorithm are a black-box PWA system S with unknown
dynamics and an LTL specification ¢; the output of the
system is a transition system 7. The algorithm can be
roughly divided into three components: system identification,
system abstraction, and active sampling. The goal of the



system identification component is to derive an estimated
PWA model S based on the data sampled from the black-box
system S (serving as a simulator); the goal of the system
abstraction component is to derive a transition system 7T
given the identified PWA model S and the specification
¢; one important procedure of the system identification
component is refinement, which refines the estimated model
S , until no significant improvement can be achieved, based
on the currently available data and the current abstraction
T, finally, if no satisfactory abstraction 7 can be found
after the refinement, the active sampling component will be
implemented to draw new data points with the help of the
black-box simulator S.

In the following sub-sections, we will present each of the
three components. Proofs regarding the effectiveness of our
algorithm will be provided at the end of the section.

A. System Identification

Given a black-box PWA system S, or subsequently a set
of K samples D := {y,z;},k = 1,---, K, the system
identification component identifies a PWA model, specified
by the number of modes s as well as the mode parameters
Al, bl, H; and K; with i = = 1,---,s. The problem itself is
a well-studied problem. Spe01ﬁcally, we need to find (i) a
minimum positive integer, s, (ii) a set of parameter matrices,
{A }:_, and {H }¢_,, and (iii) a set of parameter vector
{b;}s_, and {K;}_, (notice that {H,}5 , and {b;}s_,
together constitute a complete partition {X; }Z of the PWA
system’s state space S), such that the estimated parameters
are the solution of the following minimization problem:

K

argmin 1 Z c(yr — flzr)) )

(z1,yx)E(DNA;) k=1

where f() is specified by A; by, Hy and Kiyio = 1, , s
and c is a given penalty function, which is chosen to be
¢(-) =] - |]2 in this paper. Notice that solving the identifica-
tion problem involves the simultaneous solving of two sub-
problems, data classification and parameter estimation. Once
the data points have been classified into clusters {D;}{_;
such that (yx,xy) € D;, ie., (yk,xx) is attributed to the i-
th mode, mode parameters /17;, ZA)“}AL and IAQ can be easily
estimated by solving Eqn. (2).

Our system identification component is modified from the
method proposed in [22]. It consists of two main procedures:
initialization and refinement. One major difference between
our method and the one in [22] is that we utilize the current
abstract transition system to guide the refinement.

1) Initialization: The pseudo code of the initialization
procedure is shown in Alg. [} The steps are rather self-
explanatory. Here we would like to provide a few simple
comments for clarification. We need to randomly generate
a matrix A]' and a vector l;j (Line 3) in each loop, which
is quite inefficient; thus the termination condition |I;41] >
rK (Line 2) can be set loosely, i.e., with a rather large
r. Such a practice is reasonable, given the fact that the
initialization procedure is only meant to generate some good

Algorithm 1: System Identification Initialization

Input : A bound &, a set of samples
= {(yx,zx)},k € {1,--- , K}, aratio
0 < r <1, and a large number J
Output: Az,bz,D“H“ICZ,z =1,-
1: Set /=0and Iy = {1,-- 7K};
2: for |I;11] > rK do
3:  Randomly generate a set of parameters
{Aj’bj}vj € {1’ T 7‘]};
4.  Construct sets
;= {H yr — (Ajzr + b;) ||< 6,k € I} for each
je{l,-- Jh
50 Setl=1+ 1 and 2,00 = argmax 11550
6:  With ¥,,4., estimate A; and bl by solving

IZIIL(LL ‘

(A, by) = argmln Z c(yr — (Azg + 0));

7: Set D, ={k € I, ;| ykf(ﬁlszrlA)l) I< 6} and
Ly =0 \Dy A R
8: Find boundaries specified by {H}!_, and {K}!_,
between sets {D;}_,; set s = I.

enough partitions (modes), which will be further refined in
the refinement procedure. As for the boundaries specified
by {H}._, and {K}._, between sets {D;}!_, (Line 8),
standard support vector machines (SVM) regression methods
[28] can be used to compute them.

2) Refinement: Given the random nature of the way
/ii,l;i,i = 1,---,s are generated in Alg. it is quite
unlikely that we are able to identify all the correct modes
with the initialization procedure. Potentially there are two
main issues:

e Undecidable data points: these are the data points that
belong to more than one mode, i.e., they satisfy || yx —

(Aszy + b;) || < 6 for more that one i = 1,-- - , s;
o Unfeasible data points: these are the data points that
don’t belong to any mode, i.e., thereisnot=1,---,s

such that || yx — (Ajzy, + b;) ||< 6.

We refine the identified system model by eliminating these
two types of data points as follows:

For undecidable points, we can reassign them based on
their maximum likelihood with respect to all modes, i.e., we
assign each undecidable point (zj,yx) to the optimal mode
according to the following rule:

CR(k) = argmax CO(xk,y)i/CC(Ths yk),  (3)
i=1,---,s
where CC(x,yx) is the total number of data points that
are within D and inside the hyper ball region centered at
(zk,yr) and with a predefined radius p, and CC(z, yg); is
the number of data points that are in CC(xy, yx) and belong
to mode .

For unfeasible points, given the current abstract transition

system 7, we discard those points that meet the following



Algorithm 2: System Identification Refinement

Input : Current abstract transition system 7,
parameters Ai,i)i,Di,ﬁi,&, t=1,---,s
obtained in Alg.[1] and a bound &

Olltpllt: Ai, IA)Z',I:IZ', K“Z = ]., e, S

Set 6>0,0>0,k>0,0<0<1,l=1;
while Not terminated do
1: Compute (7%, j*) = argmin; <; ;< 3i,; with
Big =| Ai — 4,
2 if B ;+ < 0'3 then
3:  Merge modes ¢* and j*; Set s = s — 1;
Recompute D;« = {k € {1,--- , K} :
|k — (Aizp + i) [< 6}

5. Use CR() and rule Dis() to reassign points;
/ % CR() and Dis() are defined in the text as
Eqgn. and Egn. (E]) respectivelyx |

6: Compute 7* = argmin;_; ... ¢ |[D;|/|Dl;

7. if |D;|/|D| < 60ty then

8:  Discard mode ¢*; let s = s — 1;

9:  Go to Step 4}

10: Store {A;}5_, as {A%M}s_

11: Update Ai7éi,ﬁi,Ki with new {D;}?_;;

12: if || A; — A% ||< & then

13:  Terminated.

14: else

150 I=1014+1

s

end

condition:
Dis(k)
= {(zk, yr) € D|d(yr, 0" (Post(o(xr)))) > 6},

where d(.,.) is the Hausdorff distance, o(x}) maps a contin-
uous state x, to a discrete state of the transition system 7 (it
would be helpful for the readers to review the definitions in
Section [l), Post(o(x})) maps the region corresponding to
o(xy) to its successor region, and finally o~1(Post(o(xy))))
finds the set of continuous, PWA states corresponding to the
region Post(o(xy)). The remaining unfeasible data points
are reassigned according to the rule CR(-) (Eqn. (3)). The
pseudo code of the whole refinement procedure is shown in

Alg. 2]

B. System Abstraction

“4)

Given an estimated PWA model S (or f), parameterized
by A;, b;,H; and K; with i = 1,---,s, and an LTL
formula ¢, the goal of the system abstraction component is
to generate a good enough abstraction 7. We roughly follow
the approximate abstraction procedures described in [24] to
design and implement the system abstraction component.
Here we are just going to provide a rough outline of the
abstraction algorithm. Interested readers can refer to [24] for
more details. First, a deterministic Buchi automaton B is
constructed from the formula ¢. Second, the corresponding
embedding transition system 7. is constructed for S by

simply using the definition of embedding transition system.
Third, an observation map o, is created by partitioning the
state space of the system 7. into uniform grids. Fourth, given
the system 7., the observation map o, and the LTL formula
¢ (or its corresponding Buchi automaton Bg), an initial
transition system 7y is constructed by following standard
abstraction procedures, such as those prescribed in [1]. Fifth,
a product automaton P is constructed as P = Ty X By,
which concerns both the initial transition system 7, and
the specification ¢. The product automaton is a tuple P =
(Sp, Spo, 0p, Fp), where S, is the set of states, Sy is the
set of initial states, d, is the transition map, and F}, is the
acceptance condition. Finally, refinement is conducted by
solving a deterministic Rabin game.

Algorithm 3: System Abstraction Refinement

Input : Current abstract transition system 7, current
product automaton P, an initial state g of T,
and aratio 0 <n < 1

Output: Refined abstract transition system 7 and

refined product automaton P
Initialize 7 = 7,P = P, and S, = 0;
while |S,| > n|Q| do

1: Compute ST and S, for 75;
2: Set S, = Pp \ (ST @] SJ_);
/xSee text for the definitions of ST, S,
and S, * /
for all (¢,g9) € S, do
if ¢ € S, then
Set q:=g¢;
for all (3¢, € q,¢’ € Post(q,) and
(¢ N Pre(q')) # 0) do
7: Construct states ¢q, go such that
q1 := g N Pre(q),
g2 :=qr \ Pre(q);

AN AT

8: q:=(\q¢)U{q,q};
9: q:=q; .
10 Update ¢ and o for T,

11: Update P and 7.
end

The pseudo code of the abstraction refinement procedure is
shown in Alg. 3] Given the current abstract transition system
T and the current product automaton P, a state ¢ € Q of T
falls into one of the following three categories:

o St: the set of states from which all traces are accepted
by P,

e S : the set of states from which no trace is accepted
by P,

e S, the set of states from which some but not all traces
are accepted by P.

The goal of the refinement is thus to eliminate .S,,. This leads
to the termination condition of the refinement procedure as
|Syu| < 7|Q, i.e., the refinement will be terminated once the
volume of S, |Sy|, is smaller than a fraction r (specified



by the user) of the volume of ) (the state space of 7).

C. Active Sampling

The system identification component and the system ab-
straction component described in the last two sub-sections
are based on a fixed data set D := {(yx,zx) . It is
quite obvious that the quality of the system identification
and the system abstraction depends on the quality of the data
set. To improve the quality of the system identification (in
other words, to decrease the number of data points needed
for the system identification), we use an active learning
algorithm developed by our group [29] to sample high quality
(or “informative”) data points for the system identification
component after the initial round (see Fig. [I).

The strategy to find the next data point to sample for round
t 4+ 1 has two steps. In the first step, the best candidate for
each mode is identified as follows:

x; := argmax(V; ,(z) + /\t1/2

TEX;

0i,t()) 5)

where U, ; () is the Gaussian process regression mean of the
prediction error defined over the data points in D;, 0;+(x)
is the Gaussian process regression variance of the prediction
error defined over the data points in D;, and A, is a regular-
ization factor. In the second step, the active learning algo-
rithm chooses mode i* = argmin,_, ... ,(max, 5 ¥;+())
and the corresponding best candidate z;« to sample.

D. Theoretical Results Regarding the Effectiveness of Our
Algorithm

We add the following assumption regarding the perfor-
mance of the PWA system identification.

Assumption 1: Assume the prediction error of the system
identification component described in Section can be
characterized by a zero mean Gaussian with a bounded
variance, i.e., f(z) — f(x) ~ N(0,0,(x)?) and o,(z) < C,
where f(x) is the real PWA dynamics and f(z) is the
estimated PWA dynamics.

Remark 3: The system identification of PWA system is
still an open problem and has been proven to be NP-hard
[30], [31]. In [22], the authors were able to demonstrate that,
for a fixed data set, the error is bounded, i.e., | f(x)— f(z)| <
o for any o > 0. Thus, we believe our assumption here, even
though unproven, is still reasonable.

We have the following three lemmas regarding the integra-
tion of identification and abstraction (without active sampling
in the loop).

Lemma 1: Given a PWA system S with known dynamics,
for any bound ¢ > 0, Alg[3| can derive an abstract transition
system 7 that is e—approximately simulated by the real
abstract transition system 7 of S, i.e., T <. T.

Proof: Consider a relationship V(q1,q2) =
{(q1,42)|d(q1, g2) < €}, and set 7[Q| < e. As (q1,¢2) €V
implies d(q1, ¢2) < ¢, the first condition in the definition of
approximate relation is satisfied. Then for all d(q1,q2) < €,
the conclusion in [24] shows that the result of Alg.3 can
guarantee that d(Post(q1), Post(g2)) < |Su| < e. Then the

second condition in the definition of approximate relation is
satisfied. Therefore, 7 <. 7. [ ]
Lemma 2: Given an estimation f(.) (or S) of the PWA
system f(.) (or S), if | f(z) —y ||< m holds with
probability > 1 — «y, where a; € (0,1),7; > 0, then
the system abstraction component described in Section
E can derive an abstract transition system 7 such that it
is (m1 + €)—approximately simulated by the real abstract
transition system with a probability greater than 1 — «;.
Proof: Here for the sake of clarify, the notations in
this proof that are slightly different from the ones used
in the other parts of the paper. Let’'s use f and f to
denote the real and estimated dynamics of the PWA system,
respectively. Moreover, let’s call their true abstract transition
systems as 7T,.cq; and ﬁeah respectively. Finally, let’s call the
approximate abstract transition systems obtained by using
the system abstraction component described in Section [[V-|
E as Topp and ’f;pp, respectively. According to Lemma
1, we have Topp < Trear and ﬁpp ~e Tirue- Then set
| es [|=Il f(z) =y [[< m. such that y = f(z) +y — f(z) =
f(x) + ep, which can be seen a PWA system with bounded
noise, following [24], we have 'teaz < Treal- Since the
relationship < is transitive, we have ﬁpp <m+e Treal- The
conclusion regarding probability follows easily. [ ]
Lemma 3: Provided with Assumption |1} || f(z) —y ||<
7o holds with probability > 1 — as, where ap = 1 —
\/ﬁ 1272 exp(—v?/(2(oe + C)))dv.
Proof: Setep :=y—f(x) = f(x)+e—f(z), where e is
the true Gaussian noise, e ~ N (0, 02). Since f(z) — f(x) ~
N (0,0, (2)?), we have e ~ N(0, 0 +02). The probability
that || f(z) —y ||< 2 can then be computed. When o, = C,
the probability reach the minimum value, such that agy =

1- \/ﬁ :’22 exp(—v?/(2(o. + C)))dv. [

We have the following two lemmas regarding the perfor-
mance of our active sampling component.

Lemma 4: For any p € (0,1), if \y = 2B +
300.log®(t/p), where ; is the maximum information gain
defined in [29], then

| o) 1< A %0 0() ©6)

holds with probability > 1 — p.
Proof: The lemma can be proved by following similar
steps as the proof of Lemma 2 in [29]. [ ]
Lemma 5: For any o > 0, if \;, = 2B + 300v,log*(t/p),
where ¢ is the number of points in D;, then there exists
t<T,
A2 0i4(x) < 0,Vz € D (7

holds with finite number of sample time 7.

Proof:  According to Theorem 5 in [32], for any
bounded &; C X, the information gain for expo-
nential kernel is yr = O((logT)4*?t), where d is
the dimension of X. Lemma 7.1 in [32] shows that
Zle min{o2¢?, (x),a} < log(Qlij_a)'YT,Va > 0. As the
information gain vr is convergent, such that the variance
0;¢(x) will be convergent to zero. As \; is bounded,



)\i /2 o:(z) will be convergent to zero, then the lemma has

been proved. [ ]

Finally, we can prove that the algorithm presented in this
paper can solve Problem [I| with the relatively moderate
Assumption [T}

Theorem 1: Given a PWA system S with unknown dy-
namics, for any ¢ > € > 0, the algorithm described in
this paper (with the assumption that the standard deviation
of the prediction error for the system identification compo-
nent is bounded by C) can obtain an approximate abstract
transition system T that is o-approximately simulated by
the true abstract transition system 7 of S with a bounded
probability that is greater than 1 — §, where 6 = 1 —
\/ﬁ J2o 5 exp(—v?/(2(0e + ©)))dv.

Proof: Set § = a9 and 2 = ¢ — . According to
Lemma 3, Lemma 4, and Lemma 5, the system identification
component together with the active sampling component can
achieve an estimation || f(z) — y ||< 72 with probability
> 1 — ao. Then with this estimation result, according to
Lemma 1 and Lemma 2, the system abstraction component
can generate an abstract transition system 7T that is (n2 +
¢)—approximately simulated by the real abstract transition
system 7 with probability > 1 — . ]

V. CASE STUDY

In this section, we will use a soft robot driven by series
pneumatic artificial muscles as an example to demonstrate
our algorithm.

A. Model and LTL Specification

*jﬁi— B ,;,sféffj%x(z))T

O-ring ~y T, |

N

_._ r
Actuator I Actuator 2
(a) (b)

Fig. 2: (a) Geometrical model of the soft robot driven by
series pneumatic artificial muscles (SPAM) used in the case
study. (b) Simplified planar robot with x = (z(1),z(2))7 as
the coordinate vector of the moving platform.

In this case study, we will focus on a particular type of
soft robots, those that are driven by series pneumatic artificial
muscles (SPAM) [33]. Fig. [2] shows an example of such a
robot. It has two polyethylene tubing sPAMs, each of which
is controlled by a corresponding actuator with pressurized
air. Even though the dynamics of such a robot is nonlinear,
in [34], the authors have shown that its closed-loop behavior
can be approximated by piecewise affine dynamics. Here let’s

assume that the robot under investigation has dynamics as
follows:

TRy = f(ag) +e ®)
and

1 0 .
0 098 xif 0 <xp(1) <0.3

0.83 0.12 0.01
0.12 0.81] "™ [0.03

f@) =
} if 24(1) > 0.3

where = (x(1),2(2))7 is the coordinate of the moving
platform and e is a Gaussian noise with a zero mean and a
standard deviation of 0.1. Please keep in mind that the model
is unknown to our algorithm but the model itself can be used
by our algorithm as a simulator to generate samples.

The specification that needs to be verified is written as
an LTL formula ¢ := O(m; A $ma), where “mq := (1) is
below 0.3", “my := x(2) is above 0.6", and [J is the temporal
operator “Always”, <> is the temporal operator “Eventually”.
Put together, ¢ specifies that “it should always be true that
z(1) is below 0.3 and eventually x(2) is above 0.6”.

B. Implementation Results

The algorithm proposed in this paper is implemented as a
Matlab tool. The tool takes an LTL formula and a black-box
PWA system as inputs and it outputs an abstract transition
system. The active learning used in the tool is the Gaussian
Process Adaptive Confidence Bound (GP-ACB) algorithm
proposed and implemented by our group in [29]. Moreover,
a Gaussian kernel function is used in GP-ACB. In order to
demonstrate the effectiveness of our algorithm, here we will
provide two sets of implementation results, one regarding the
system identification component and the other one regarding
the entire algorithm.

1) Performance of the System Identification Component:
Here we compare the performance of our system identifica-
tion component with an existing state-of-the-art black-box
system identification tool called the Hybrid Identification
Tool (HIT) [35]. One thing we would like to point out here
is that the evaluation of our system identification component
is conducted in conjunction with other components, e.g.,
abstraction and active sampling, in the loop. It should be
expected that, at worst, our component should have the
same performance as the HIT. However, it may also be
expected that factors such as active-learning based sampling
and abstraction-guided refinement can potentially improve
the identification performance, which turns out to be the case,
at least for this particular case study.

We use two metrics to quantify system identification
errors: parameter estimation error and region estimation
error. Given the parameters of a real PWA model (unknown
to the investigated algorithms), the parameter estimation
error is the sum of the Euclidean distances between the real
parameters and the estimated parameters. The region esti-
mation error is defined the sum of the following Hausdorff
distance:

e(X;, X;) = max{sup inf d(z,y), sup inf d(z,vy)},
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Fig. 3: Comparison results of the system identification com-
ponent used in this paper (green) and the HIT algorithm
(red): (a) Average parameter estimation error with respect
to the number of samples; (b) Average region (partition)
estimation error with respect to the number of samples.

where e(X;, X;) the region estimation error related to the
ith mode with X; as the real region or partition and X;
as the estimated one, d(z,y) is the Euclidean distance
between = and y, and sup and inf stand for supremum and
infimum, respectively. To calculate the Hausdorff distance,
we randomly generate 100 samples inside the state space X;
and the state space X.

The comparison results based on 5 trials are shown in Fig.
[3] It shows that, averagely speaking, the system identification
component proposed in this paper has a comparable or
better performance than HIT. Particularly, Fig. [3b] shows
that our algorithm has a faster convergent rate regarding
the region estimation error. This is probably due to the fact
that, generally speaking, active learning, which is used in our
algorithm, out-performs its randomly sampling counterpart,
which is used in HIT.

2) Performance of the Entire Algorithm: As the true
abstract transition system of the system, described by Eqn.
@]), is unknown, here we use the abstract transition system

obtained by using the algorithm proposed in [24] as a
benchmark. We will call this abstract transition system as
T*. In [24], the authors have shown that even though their
algorithm cannot attain the true abstract transition system, it
still can get an abstract transition system that is arbitrarily
close to the real one. Of course, we should point out that, in
order to get this abstract transition system 7 *, the algorithm
in [24] should have access to the system model, i.e., T*
is generated with a known model. In parallel, we run our
algorithm to extract an abstract transition system T without
access to the dynamics of the model, i.e., T is generated
with a black-box system with unknown dynamics. Then in
order to demonstrate the effectiveness of our algorithm, we
need to show that 7~ should approach 7 *. This turns out to
be the case, at least for this particular case study.

Based on the system dynamics, Eqn. (§), and the LTL
specification ¢, we implement the abstraction algorithm
proposed in [24] and obtain an abstract transition system
T*, which will be used as a benchmark. Then the algorithm
proposed in this paper is applied to the same system, but with
unknown dynamics, and the same LTL specification. The
output of the algorithm is another abstract transition system
7. Here we use a metric that is inspired by the concept of
approximate simulation to quantify the difference between
the two transition systems. To be more specific, we set the
abstraction error to o if 7* is c—approximately simulated by
T. Moreover, the metric ¢ is normalized to & by the volume
of the state space, i.e., 7 := o/|X|.

TABLE I: Comparison result with respect to different number
of samples and a fixed number of refinement steps, which is
set to 20.

Number of samples
20 40 60
o 0046 0.042 0.035

TABLE II: Comparison result with respect to different num-
ber of refinement steps and a fixed number of samples in
active sampling component, which is set to 10.

Refinement Steps
5 10 20
o 0077 0.068 0.050

The comparison results are shown in Table [[]and Table
Table[[|shows the comparison results with respect to different
number of samples and a fixed number of refinement steps in
the system abstraction component. Table [II] shows the com-
parison results with respect to different number of refinement
steps and a fixed number of samples in the active sampling
component. The tables show the average normalized errors &
based on 5 trials. The results show that the larger the number
of refinement steps, the smaller the abstraction error; and the
larger the number of samples, the smaller the abstraction
error. The results also show that, even with a black-box
system, our algorithm can attain an approximate abstract
transition system 7 that is close to the benchmark abstract
transition system 7T *.
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Fig. 4: State space partitions of the abstract transition system
obtained by using our algorithm for the case study. The
number of refinement steps and the number of samples in
the active sampling component are both set at 20.

VI. CONCLUSIONS

In this paper, we proposed a data-driven approximate
abstraction algorithm for piecewise affine systems with un-
known dynamics. We demonstrated both theoretically and
empirically that given a black-box PWA system and an LTL
specification, we were able to derive an abstract transition
system that is approximately simulated by the true abstract
transition system. We demonstrated the effectiveness of our
proposed algorithm with a soft robot as a case study.
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