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Privacy in Feedback: The Differentially Private LQG

Matthew Hale, Austin Jones, Kevin Leahy

Abstract

Information communicated within cyber-physical systems (CPSs) is often used in determining the physical states

of such systems, and malicious adversaries may intercept these communications in order to infer future states of

a CPS or its components. Accordingly, there arises a need to protect the state values of a system. Recently, the

notion of differential privacy has been used to protect state trajectories in dynamical systems, and it is this notion of

privacy that we use here to protect the state trajectories of CPSs. We incorporate a cloud computer to coordinate the

agents comprising the CPSs of interest, and the cloud offers the ability to remotely coordinate many agents, rapidly

perform computations, and broadcast the results, making it a natural fit for systems with many interacting agents or

components. Striving for broad applicability, we solve infinite-horizon linear-quadratic-regulator (LQR) problems, and

each agent protects its own state trajectory by adding noise to its states before they are sent to the cloud. The cloud

then uses these state values to generate optimal inputs for the agents. As a result, private data is fed into feedback

loops at each iteration, and each noisy term affects every future state of every agent. In this paper, we show that

the differentially private LQR problem can be related to the well-studied linear-quadratic-Gaussian (LQG) problem,

and we provide bounds on how agents’ privacy requirements affect the cloud’s ability to generate optimal feedback

control values for the agents. These results are illustrated in numerical simulations.

I. INTRODUCTION

Many distributed cyber-physical systems (CPSs), such as robotic swarms and smart power networks, involve

generating and transmitting data that could be exploited by a malicious adversary, such as the position of a robot

or power usage of an individual. Ideally, this data would be secure, meaning that an adversary would not be able

to access any meaningful information. In practice, secure data transmission and consumption may not be practical

due to physical limitations, e.g., limited hardware power, or because some information must be shared to attain a

system’s primary objective, e.g., ensuring that a power grid’s production is not less than its consumption. In such

cases, information must be shared in a manner which makes it useful to the intended recipient while protecting it

from any eavesdroppers.

Recently, privacy of this form has been achieved using differential privacy. Differential privacy sanitizes data with

differentially private mechanisms (DPMs), which are randomized functions of data whose distributions over outputs

are close for similar input data. Practically, this means that changes in a single agent’s input data are not likely to
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be seen at a DPM’s output, protecting individuals’ sensitive data while still allowing for accurate conclusions to be

drawn about groups of agents. For example, DPMs may be used in a micro-grid to sanitize pricing information in

such a way that participants may approximately optimize the price they pay for electricity, while a malicious agent

with access to the same data cannot recover a single individual’s power usage profile [11], [19]. Since DPMs are

randomized functions, their usage may degrade the performance of a system in comparison to a system without

privacy simply because noise is added where it would otherwise be absent. Despite this drawback, DPMs are

suitable for protecting sensitive data because they are:

1) Robust to arbitrary side-information, meaning that additional information about the data-producing entities

does not yield much additional information about the true value of privatized data [13]

2) Robust to post-processing, meaning that an adversary cannot increase their knowledge of the true value of

the privatized data by applying a post-hoc transformation to a DPM’s output [8]

3) Robust to mechanism knowledge, meaning that an adversary with complete knowledge of the mechanism

used to privatize data has no advantage over an adversary without this knowledge [8], [7].

It is natural to ask what the utility of DPMs is given the existence of encryption techniques. DPMs may be

used along with encryption in a layered protection strategy in which encryption provides intrusion prevention and

differential privacy provides intrusion mitigation. Further, encryption may not be desirable for data transmission

in mobile ad-hoc networks due to the additional computation, power consumption, and latency that encryption

introduces [24], [20], [23], whereas using a DPM requires only minor changes to implement.

Over the past decade, researchers have developed a rich theory of differential privacy for database protection

that has translated into practical applications [8], [9], [15]. In addition, recent results have extended these works

to protect entire trajectories produced by entities, such as dynamical systems or networks of agents, that evolve

over time in a predictable manner [18]. More information on the relevant aspects of differential privacy may be

found in Section II. The trajectory privatization strategies promulgated in some existing works have assumed that

the end use of the privatized trajectories is to perform post-hoc statistical analyses [17], [18]. However, many CPSs

that publish or share potentially sensitive data, such as traffic networks or teams of autonomous systems, make

decisions based on past data that will affect the state of the system in the future. This suggests the possibility that

the performance degradation induced by applying DPMs to data transmitted across the network may compound

over time to continuously degrade performance. While privacy has been used in other feedback configurations, e.g.,

in [22] for database-style privacy with completely correlated noise over time, to the best of our knowledge, these

feedback effects have not been previously addressed for trajectory-level privacy across infinite time horizons.

In this paper, as a first step towards characterizing the effects of trajectory-level privacy in feedback loops, we

analyze a multi-agent system in which each agent transmits its state to a central cloud computer [10] that then

computes optimal inputs for these agents pointwise in time. These inputs are transmitted back to the agents which

apply them in their local state updates, and then this process of exchanging information and updating states repeats.

We consider a discrete time linear quadratic regulation problem in which each system evolves according to linear
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dynamics and the cloud computes inputs to minimize the expected average quadratic state and input costs incurred

at each iteration of the system’s evolution. We further quantify the effects of privacy by bounding the entropy

seen by the cloud in this setup. If the true value of the state information were reported over the network, then an

adversary could use that information to trivially recover the state trajectories of the individual agents. Instead, our

implementation provides strong theoretical privacy guarantees to each agent while still allowing for optimal control

values to be computed at each timestep. The contribution of this paper therefore consists of the differentially private

LQG control algorithm along with the quantification of privacy’s impact upon the system.

The rest of the paper is organized as follows. Section II reviews the relevant aspects of differential privacy

and provides the privacy background needed for the rest of the paper. Then, Section III defines the cloud-enabled

differentially private LQR problem in which state measurements are perturbed by noise. Section IV then gives a

closed-form solution to this problem and provides an algorithm for solving it on the cloud-based architecture we use.

Then we present an upper bound for how the noise introduced by privacy affects the certainty in the cloud’s estimate

of the joint state of the network. Next, we provide some interpretation of these results in numerical simulations in

Section V, and then Section VI provides conclusions and directions for future work.

II. REVIEW OF DIFFERENTIAL PRIVACY

In this section we review necessary background on differential privacy and its implementation for dynamical

systems. A survey on differential privacy for databases can be found in [8], and the adaptation of differential

privacy to dynamical systems is developed in [18], which forms the basis for the exposition in this section. We

first review the basic definitions required for differential privacy and then describe the privacy mechanism we use

in the remainder of the paper. We use the notation [`] = {1, . . . , `} for ` ∈ N.

A. Differentially Private dynamical Systems

Fundamentally, differential privacy is used to protect the data of individual users while still allowing for accurate

statistical analyses of groups of users [7]. In this work, a user’s data is his or her state trajectory, and we therefore

keep these trajectories differentially private, thereby protecting individual users’ activities, while still allowing for

meaningful computations to be performed on collections of these trajectories.

To develop our privacy implementation, suppose there are N agents, with agent i’s state trajectory denoted xi,

and the kth element of this trajectory denoted xi(k) ∈ Rni for some ni ∈ N. The state trajectory xi is contained in

the set ˜̀ni
2 , namely the set of sequences of vectors in Rni whose finite truncations all have finite `2-norm. Formally,

we define the truncation operator PT over trajectories according to

PT [x] =

x(k) k ≤ T

0 k > T

,

and we say that xi ∈ ˜̀ni
2 if and only if PT [xi] ∈ `ni

2 for all T ∈ N. The trajectory space for all N agents in

aggregate is then ˜̀n
2 = ˜̀n1

2 × · · · × ˜̀nN
2 , where n =

∑
i∈[N ] ni.
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Differential privacy for dynamical systems seeks to make adjacent state trajectories produce outputs which are

similar in a precise sense to be defined below. An adversary or eavesdropper only has access to these privatized

outputs and does not have access to the underlying state trajectories which produced them. Therefore, the definition

of adjacency is a key component of any privacy implementation as it specifies which pieces of sensitive data must

be made approximately indistinguishable to any adversary or eavesdropper in order to protect their exact values.

We define our adjacency relation now over the space ˜̀n
2 defined above.

Definition 1: (Adjacency) Fix B > 0. The adjacency relation AdjB is defined for all v, w ∈ ˜̀n
2 as

AdjB(v, w) =

1 ‖v − w‖`2 ≤ B

0 otherwise.
4

In words, two state trajectories are adjacent if and only if the `2 distance between them is less than or equal to B.

This adjacency relation therefore requires that every agent’s state trajectory be made approximately indistinguishable

from all other state trajectories not more than distance B away.

The choice of adjacency relation gives rise to the notion of sensitivity of a dynamical system, which we define

now.

Definition 2: (Sensitivity) The p-norm sensitivity of a dynamical system G is the greatest distance between two

output trajectories which correspond to adjacent state trajectories, i.e.,

∆pG := sup
x,x̃|AdjB(x,x̃)=1

‖G(x)− G(x̃)‖`2 . 4

Below, the sensitivity of a system will be used in determining how much noise must be added to make it

differentially private. Noise is added by a mechanism, which is a randomized map used to enforce differential

privacy. For private dynamical systems, it is the role of a mechanism to take sensitive trajectories as inputs and

approximate their corresponding outputs with stochastic processes. Below, we give a formal definition of differential

privacy for dynamical systems which specifies the probabilistic guarantees that a mechanism must provide. To do

so, we first fix a probability space (Ω,F ,P). This definition considers outputs in the space ˜̀q
2 and uses a σ-algebra

over ˜̀q
2, denoted Σq2. Details on the formal construction of this σ-algebra can be found in [18].

Definition 3: (Differential Privacy, [18]) Let ε > 0 and δ ∈ (0, 1/2) be given. A mechanism M : ˜̀n
2 × Ω→ ˜̀q

2

is (ε, δ)-differentially private if and only if, for all adjacent x, x̃ ∈ ˜̀n
2 , we have

P[M(x) ∈ S] ≤ eεP[M(x̃) ∈ S] + δ for all S ∈ Σq2. 4

A key feature of this definition is that one may tune the extent to which x and x̃ are approximately indistin-

guishable. The values of ε and δ are user-specified and together determine the level of privacy provided by the

mechanism M , with smaller values of each generally providing stronger privacy guarantees to each user. These

parameters are commonly selected so that ε ∈ [0.1, log 3] and δ ∈ [0, 0.05] [18]. In the literature, (ε, 0)-differential

privacy is called ε-differential privacy, while referring to (ε, δ)-differential privacy is understood to imply δ > 0. In

this paper, we consider only cases in which δ > 0 because enforcing (ε, δ)-differential privacy can be done via the

Gaussian mechanism.
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B. The Gaussian Mechanism

The Gaussian mechanism is defined in terms of the Q-function, which is given by

Q(y) =
1√
2π

∫ ∞
y

e−
z2

2 dz.

We now formally define the Gaussian mechanism, which adds Gaussian noise point-wise in time to the output

of a dynamical system to make it private.

Definition 4: (Gaussian Mechanism; [18], Theorem 3) Let privacy parameters ε > 0 and δ ∈ (0, 1/2) be given.

Let G denote a dynamical system with state trajectories in ˜̀n
2 and outputs in ˜̀q

2, and denote its 2-norm sensitivity

by ∆2G. Then the Gaussian mechanism for (ε, δ)-differential privacy takes the form M(x) = G(x) + w, where

w(k) ∼ N (0, σIq), Iq is the q × q identity matrix, and σ is bounded according to

σ ≥ ∆2G
2ε

(
Kδ +

√
K2
δ + 2ε

)
, with Kδ := Q−1(δ). 4

For convenience, we define the function

κ(δ, ε) =
1

2ε

(
Kδ +

√
K2
δ + 2ε

)
,

and we will use the Gaussian mechanism to enforce differential privacy for the remainder of the paper.

III. PROBLEM FORMULATION

In this section we define the multi-agent LQ problem to be solved privately. First, we give the agents’ dynamics and

equivalent network-level dynamics. Then, we define the cloud-based control scheme and give a problem statement

that requires optimizing running state and control costs while protecting agents’ privacy.

We use the notation P � 0 and P � 0 to indicate that a matrix P is positive semi-definite or positive definite

matrices, respectively. Similarly, we write A � B and A � B to indicate that A − B � 0 and A − B � 0,

respectively. We use the notation

diag(P1, . . . , Pn) := P1 ⊕ · · · ⊕ Pn

to denote the matrix direct sum of P1 through Pn. If these matrices are square, the notation diag(P1, . . . , Pn)

denotes a block diagonal matrix with blocks P1 through Pn; if the elements Pi are scalars, this is simply a diagonal

matrix with these scalars on its main diagonal.

A. Multi-Agent LQ Formulation

As in Section II, consider a collection of N agents, indexed over i ∈ [N ]. At time k, agent i has state vector

xi(k) ∈ Rni for some ni ∈ N, which evolves according to

xi(k + 1) = Aixi(k) +Biui(k) + wi(k),

where ui(k) ∈ Rmi , mi ∈ N, is agent i’s input at time k, wi(k) ∈ Rni is process noise, and where Ai ∈ Rni×ni

and Bi ∈ Rni×mi are time-invariant matrices. The process noise is distributed as wi(k) ∼ N (0,Wi),such that the

wi are uncorrelated and such that 0 ≺Wi ∈ Rni×ni .
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To analyze the agents’ behavior in aggregate, we define the network-level state and control vectors as

x(k) =


x1(k)

...

xN (k)

 ∈ Rn and u(k) =


u1(k)

...

uN (k)

 ∈ Rm,

where n =
∑
i∈[N ] ni and m =

∑
i∈[N ]mi. By further defining

w(k) =


w1(k)

...

wn(k)

 ,

A = diag(A1, . . . , AN ) ∈ Rn×n, and B = diag(B1, . . . , BN ) ∈ Rm×m, we have the network-level state dynamics

x(k + 1) = Ax(k) +Bu(k) + w(k). (1)

We consider infinite-horizon problems in which the agents are jointly incur the average cost

J(x, u) = lim
Kf→∞

1

Kf

Kf∑
k=1

x(k)TQx(k) + u(k)TRu(k)

 , (2)

where Q ∈ Rn×n and R ∈ Rm×m. The linear dynamics in Equation (1) and quadratic cost in Equation (2) together

define a linear-quadratic (LQ) optimal control problem, a canonical class of optimal control problems [1], [4],

[21]. The problem considered below is distinct from the existing literature because it incorporates the exchange of

differentially privatized data in order to protect agents’ state trajectories, which, to the best of our knowledge, has

not been done before in an LQ problem. More formally, we address Problem 1.

Problem 1: Given an initial measurement x(0) ∈ Rn of the network state,

min
u
J(x, u) = lim

Kf→∞

1

Kf

Kf∑
k=1

x(k)TQx(k) + u(k)TRu(k)


subject to the network-level dynamics

x(k + 1) = Ax(k) +Bu(k) + w(k)

while keeping each agent’s state trajectory differentially private with agent-provided privacy parameters (εi, δi). �

B. Cloud-Based Aggregation

In Problem 1, the cost J is generally non-separable due to its quadratic form This non-separability means that

J cannot be minimized by each agent using only knowledge of its own state. Instead, at each point in time, each

agent’s optimal control vector will, in general, depend upon all states in the network. To compute the required

optimal control vectors, one may be tempted to have an agent aggregate all agents’ states and then perform the

required computations, though this is undesirable for two reasons. First, doing so would inequitably distribute

computations in the network by making a single agent gather all information and perform all computations on

it. In an application with battery-powered agents, this results in the designated aggregating agent’s lifetime being
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significantly shorter than the others. Second, in some cases, the cost J may be known only by a central aggregator

and not by the agents themselves, rendering this approach unusable.

Due to the need for aggregation of network-level information and computations performed upon it, we introduce

a cloud computer into the system. The technology of cloud computing provides the ability to communicate with

many agents, rapidly perform demanding computations, and broadcast the results. Moreover, these capabilities can

be seamlessly and remotely added into networks of agents, making the cloud a natural choice of central aggregator

for this work [10].

At time k, the cloud requests from agent i the value yi(k) = Cixi(k), where Ci ∈ Rni×ni is a constant matrix.

We refer to yi as either agent i’s output or as agent i’s state measurement. To protect its state trajectory, agent i

sends a differentially private form of yi(k) to the cloud. Using these values from each agent, the cloud computes

the optimal controller for each agent at time k. The cloud sends these control values to the agents, the agents use

them in their local state updates, and then this process of exchanging information repeats.

Next we specify the exact manner in which each agent makes its transmissions to the cloud differentially private.

Following that, Section IV provides a complete solution algorithm for Problem 1.

C. Differentially Private Communications

At time k, agent i’s transmission of yi(k) to the cloud can potentially reveal its state trajectory, thereby

compromising agent i’s privacy. Accordingly, agent i adds noise to the state measurement yi(k) to keep its state

trajectory differentially private. Agent i first selects its own privacy parameters εi > 0 and δi ∈ (0, 1/2). With agent

i using the adjacency relation Adjbi for some bi > 0 (cf. Definition 1), we have the following elementary lemma

concerning the 2-norm sensitivity of yi, which we denote ∆2yi.

Lemma 1: The 2-norm sensitivity of yi satisfies ∆2yi ≤ s1(Ci)bi, where s1(·) denotes the maximum singular

value of a matrix.

Proof: Consider two trajectories xi, x̃i ∈ ˜̀ni
2 such that Adjbi(xi, x̃i) = 1, and denote yi(k) = Cixi(k) and

ỹi(k) = Cix̃i(k). Then we find

‖yi − ỹi‖`2 ≤ ‖Ci‖2‖xi − x̃i‖`2 ≤ s1(Ci)bi. �

With the bound in Lemma 1, agent i sends the cloud the private output

ȳi(k) := yi(k) + vi(k) = Cixi(k) + vi(k),

where vi(k) ∼ N (0, σiIni
) is a Gaussian random variable, and where σi ≥ κ(δi, εi)s1(Ci)bi in accordance with

Definition 4. Defining the matrix V = diag(σ1In1 , . . . , σNInN
), the aggregate privacy vector in the system at time

k is

v(k) = (v1(k)T · · · vN (k)T )T

Defining the matrix

V = diag(σ1In1 , . . . , σNInN
),
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Fig. 1. Summary of information available over network.

we have v(k) ∼ N (0, V ) for all k ∈ N.

In this privacy implementation, we assume that all matrices Ai, Bi, and Ci are public information. In addition,

we impose the following assumption on the dynamics and cost that are considered.

Assumption 1: In the cost J , Q � 0 and R � 0. In addition, the pair (A,B) is controllable, and there exists a

matrix F such that C = FTF and such that the pair (A,F ) is observable. 4

In addition, we assume that x̂i(0), the expected value of agent i’s initial state, is publicly known, along with

agent i’s privacy parameters εi and δi. We also assume that the matrices Q and R are known only to the cloud and

that the cloud does not share these matrices with any agents or eavesdroppers. The information available to agents,

the cloud, and eavesdroppers is summarized in Figure 1 With this privacy implementation in hand, we next give a

reformulation of Problem 1.

D. Reformulation of Problem 1

Having specified exactly the sense in which privacy is implemented in Problem 1, we now give an equivalent

statement of Problem 1 as an LQG control problem [3].

Problem 2: Minimize

J(x, u) = lim
Kf→∞

1

Kf

Kf∑
k=1

x(k)TQx(k) + u(k)TRu(k)
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over all u with u(k) ∈ Rm, subject to the dynamics and output equations

x(k + 1) = Ax(k) +Bu(k) + w(k)

y(k) = Cx(k) + v(k),

where C = diag(C1, . . . , CN ) and where x̂(0) := E[x(0)] is known and each agent has specified its privacy

parameters (εi, δi). �

IV. RESULTS: PRIVATE LQG CONTROL

In this section we solve Problem 2, with the understanding that this solution also solves Problem 1. Problem 2

takes the form of a Linear Quadratic Gaussian (LQG) problem, which is well-studied in the control literature [3],

[2], We first solve Problem 2 using established techniques and then quantify the effects of privacy upon the system.

Below, we use the notation λi(·) to denote the ith largest eigenvalue of a matrix and the notation si(·) to denote

the ith largest singular value of a matrix.

A. Solving Problem 2

Due to the process noise and privacy noise in Problem 2, the controllers we develop cannot rely on the exact

value of x(k). Instead, the controllers used rely on its expected value given all past inputs and outputs, denoted

x̂(k) := E[x(k) | u(0), . . . , u(k − 1), y(0), . . . , y(k − 1)].

Problem 2 is an infinite-horizon discrete-time LQG problem, and it is known [4, Section 5.2] that the optimal

controller for such problems relies on x̂(k) in the form

u∗(k) = Lx̂(k). (3)

Here,

L = −(R+BTKB)−1BTKA, (4)

and K is the unique positive semidefinite solution to the discrete algebraic Riccati equation

K = ATKA−ATKB(R+BTKB)−1BTKA+Q.

Computing the state estimate x̂(k) can be done for infinite time horizons using the time-invariant Kalman filter

[4, Section 5.2]

x̂(k + 1) + ΣCTV −1
(
ȳ(k + 1)− C(A+BL)x̂(k)

)
, (5)

where Σ is given by

Σ = Σ− ΣCT (CΣCT + V )−1CΣ, (6)

and where Σ is the unique positive semidefinite solution to the discrete algebraic Riccati equation

Σ = AΣAT −AΣCT (CΣCT + V )−1CΣAT +W.
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As discussed in Section III-B, the cloud is responsible for generating control values for each agent at each point

in time. Therefore, the cloud will run the Kalman filter in Equation (5) and will likewise generate control values

using Equation (3). Thus the flow of information in the network first has agent i send ȳi(k) to the cloud at time

k, and then has the cloud form ȳ(k) =
(
ȳ1(k)T , . . . , ȳN (k)T

)T
and use it to estimate x̂(k + 1). Next, the cloud

computes u∗(k) = Lx̂(k), and finally the cloud sends u∗i (k) to agent i. We emphasize that the cloud only sends

u∗i (k) to agent i and, because sharing this control value can threaten its privacy, agent i does not share this control

value with any other agent.

With respect to implementation, the matrices K, L, Σ, and Σ can all be computed offline by the cloud a single

time before the network begins solving Problem 1. Then these matrices can be used repeatedly in generating control

values to send to the agents, substantially reducing the cloud’s computational burden at runtime and allowing it to

quickly generate state estimates and control values. With this in mind, we now state the full solution to Problem 1

below in Algorithm 1.

Algorithm 1: Differentially Private LQG (Solution to Problem 1)
Data: Public information Ai, Bi, Ci, εi, δi, x̂i(0)

1 Initialize the cloud with all public information

2 For all i, initialize agent i with Ai, Bi, Ci. Agent i chooses (εi, δi) and knows its exact initial state xi(0) but

does not share it.

3 In the cloud, precompute L using Equation (4) and Σ according to Equation (6)

4 for k = 0, 1, 2, . . . do

5 for i = 1, . . . , N do

6 Agent i generates vi(k) ∼ N (0, σiIni)

7 Agent i sends the cloud the private output ȳi(k) := Cixi(k) + vi(k)

8 In the cloud, compute x̂(k) with Equation (5)

9 In the cloud, compute u∗(k) = Lx̂(k) and send u∗i (k) to agent i

10 for i = 1, . . . , N do

11 Agent i updates its state via xi(k + 1) = Aixi(k) +Biu
∗
i (k) + wi(k)

B. Quantifying the Effects of Privacy

Algorithm 1 solves Problem 2, though it is intuitively clear that adding noise for the sake of privacy will diminish

the ability of the cloud to compute optimal control values. Indeed, the purpose of differential privacy in this problem

is to protect an agent’s state value from the cloud (and any eavesdroppers). Here, we quantify the trade-off between

privacy and the ability of the cloud to accurately estimate the agents’ state values.

The cloud both implements a Kalman filter and computes the controller u∗(k), though noise added for privacy

only affects the Kalman filter. Note that the network-level optimal controller defined in Equation (3) takes the form
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u∗(k) = Lx̂(k), while the optimal controller with no privacy noise (i.e., v(k) ≡ 0 for all k) would take the same

form with the expectation carried out only over the process noise. Similarly, in the deterministic case of v(k) ≡ 0

and w(k) ≡ 0 for all k, the optimal controller is u∗(k) = Lx(k). The optimal controller in all three cases is linear

and defined by L, and the only difference between these controllers comes from changes in the estimate of x(k) or

in using x(k) exactly. This is an example of the so-called “certainty equivalence principle” [4], and it demonstrates

that the controller in Algorithm 1 is entirely unaware of the presence or absence of noise. Instead, the effects of

noise in the system are compensated for by the Kalman filter defined in Equation (5), and we therefore examine

the impact of privacy noise upon the Kalman filter that informs the controller used in Algorithm 1. Related work

in [18] specifies procedures for designing differentially private Kalman filters, though here we use a Kalman filter

to process private data and quantify the effects of privacy upon the filter itself. To the best of our knowledge this

is the first study to do so.

One natural way to study this trade-off is through bounding the information content in the Kalman filter as a

function of the privacy noise, as differential privacy explicitly seeks to mask sensitive information by corrupting it

with noise. In our case, we consider the differential entropy of x̂ as a proxy for the information content of the signal

[6]. Shannon entropy has been used to quantify the effects of differential privacy in other settings, including in

distributed linear control systems where database-type differential privacy is applied [22] Though differential entropy

does not have the same axiomatic foundation as Shannon entropy, it is useful for Gaussian distributions because it

bounds the extent of the sublevel sets of R−1 where R(y) = 1− 2Q(y), i.e., the volume of covariance ellipsoids.

We can therefore quantify the effects of differentially private masking upon the cloud by studying how privacy

noise changes the log det(Σ), which is within a constant factor of the differential entropy of x̂. The analysis we

present differs from previous work because we apply trajectory-level differential privacy and quantify the resulting

differential entropy in the Kalman filter. Toward presenting this result, we have the following lemma concerning

the determinants of matrices related by a matrix inequality.

Lemma 2: Let P � 0 and Q � 0 satisfy P � Q. Then det(P ) ≥ det(Q) and log det(P ) ≥ log det(Q).

Proof: This follows from the monotonicity of log and the fact that λi(X) ≥ λi(Y ) [16, Theorem 16.F.1] whenever

X � Y . �

Next we have the following lemma that relates the determinant of a matrix to its trace.

Lemma 3: Let M ∈ Rn×n be a positive semi-definite matrix. Then

det(M) ≤
(

tr(M)

n

)n
.

Proof: The positive semi-definiteness of M implies that all of its eigenvalues are non-negative. The result then

follows by applying the AM-GM inequality to the eigenvalues of M . �

Finally, we have the following lemma which gives a matrix upper bound on solutions to a discrete algebraic

Riccati equation.
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Lemma 4: Suppose Σ is the unique positive semi-definite solution to the equation

Σ = A(Σ− ΣCT (CΣCT + V )−1CΣ)AT +W,

and define

γi =
σ2
iWii

σ2
i + C2

iiWii
,

with Γ = diag(γ1, . . . , γn). Then

λ1(Σ) ≥ s2n(A)λ1(Γ) + λn(W ) =: η.

Furthermore, if

s21(A) < 1 +
(
s2n(A)λ1(Γ) + λn(W )

)
· min
i∈[n]

C2
ii

σ2
i

,

then

Σ � λ1(W )

1 + ηλn(CTV −1C)− s21(A)
AAT +W.

Proof: This follows from Theorem 2 in [14]. �

We now present our main results on bounding the log-determinant of the steady-state Kalman filter error covariance

in the private LQG problem. In particular, we study the log-determinant of the a priori error covariance, Σ, because

Σ measures the error in the cloud’s predictions about the state of the system. Bounding the log-determinant of

Σ therefore bounds the entropy seen at the cloud when making predictions about the state of the network in the

presence of noise added for privacy.

Theorem 1: Let Σ denote the steady-state a priori error covariance in the cloud’s Kalman filter in Algorithm 1.

If all hypotheses of Lemma 4 hold, Ci is square and diagonal for all i, and Assumption 1 holds, then

log det Σ <

(
λ1(W )

1 + ηλn(CTV −1C)− s21(A)

) n∑
i=1

s2i (A) + tr(W ),

with η defined as in Lemma 4, and where the term

ηλn(CTV −1C) = s2n(A) ·max
i∈[n]

σ2
iWii

σ2
i + C2

iiWii
· min
i∈[n]

C2
ii

σ2
i

+ λn(W ) · min
i∈[n]

C2
ii

σ2
i

is the only one affected by privacy.

Proof: With the assumption that each Ci is square and diagonal, we see that

CTV −1C = diag
(
C2

11

σ2
1

, . . . ,
C2
nn

σ2
n

)
,

which gives

λn

(
CTV −1C

)
= min

1≤i≤n

C2
ii

σ2
i

,

and the form of ηλn(CTV −1C) follows.

Lemma 4 then gives

Σ � λ1(W )

1 + ηλn(CTV −1C)− s21(A)
AAT +W,
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where applying Lemma 2 gives

det Σ ≤ det

[
λ1(W )

1 + ηλn(CTV −1C)− s21(A)
AAT +W

]
.

The argument of the determinant on the right-hand side is a positive-definite matrix, and applying Lemma 3 therefore

gives

det Σ ≤

 tr
(

λ1(W )
1+ηλn(CTV −1C)−s21(A)

AAT +W
)

n

n

.

Taking the natural logarithm of both sides, we find that

log det Σ ≤ log

 tr
(

λ1(W )
1+ηλn(CTV −1C)−s21(A)

AAT +W
)

n

n

= n log

 tr
(

λ1(W )
1+ηλn(CTV −1C)−s21(A)

AAT +W
)

n


< n

 tr
(

λ1(W )
1+ηλn(CTV −1C)−s21(A)

AAT +W
)

n

 ,

which follows from the fact that log x < x for all x > 0. Continuing, we find that

log det Σ < tr
(

λ1(W )

1 + ηλn(CTV −1C)− s21(A)
AAT +W

)
=

λ1(W )

1 + ηλn(CTV −1C)− s21(A)
tr(AAT ) + tr(W ),

which follows from the linearity of the trace operator. The theorem follows by expanding the trace of AAT in

terms of the singular values of A. �

Remark 1: To interpret Theorem 1, we consider the case in which Ci = Ini
for all i, indicating that the cloud

simply requests each agent’s state at each point in time, in which Wi = ωIni
, indicating that each agent has identical

noise covariance for its process noise, and in which εi = ε and δi = δ for all i and some ε > 0 and δ ∈ (0, 1/2).

In this case, σi = σ for all i and we find

ηλn(CTV −1C) = s2n(A)
ω

σ2 + ω
+

ω

σ2
.

If the other terms in the denominator can be neglected in Theorem 1, then one finds that

log det Σ /

(
s2n(A)

σ2 + ω
+

1

σ2

)−1 n∑
i=1

s2i (A) + nω,

indicating that, in this case, a linear change in the variance of privacy noise σ incurs a roughly quadratic increase

in entropy. ♦

V. CASE STUDY

In this section, we use a two-agent example to illustrate the use of Algorithm 1. Consider a two-agent system with

x1(k), x2(k) ∈ R2 for all k, and where each agent has identical dynamics and process noise covariance matrices
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Ai =

1 0.1

0 1

 , Bi =

0

1

 ,Wi =

 1 0.5

0.5 1.0

 . (7)

In this case, we can interpret the first coordinate of each agent’s position and the second coordinate as its velocity.

Consider the case in which the two agents select different privacy parameters, namely,

(ε1, δ1) = (0.1, 0.01) and (ε2, δ2) = (1, 0.5),

giving σ1 = 23.48 and σ2 = 0.71.

These parameters mean that Agent 1 has chosen to be much more private than Agent 2. Algorithm 1 was simulated

for this problem for 200 timesteps, and the results of this simulation are shown in Figure 2. For these simulations, the

Q,R matrices were randomly chosen positive definite matrices for which the off-diagonal elements were non-zero,

meaning that the cost J is not separable over agents. Note that the estimated trajectory of Agent 1, which is the

optimal estimate (in the least squares sense) for both the aggregator and an adversary, shows substantial temporal

variation and is in general very different from the true trajectory. However, even with the degraded information

reported to the aggregator, the state of Agent 1 is still controlled closely to its desired value. And, although the

aggregator substantially overestimates the incurred cost due to the injected privacy noise, the true incurred average

cost over time remains bounded here.

The effect of privacy parameters is further illustrated in Figure 3. In this case, we consider a network with 4

agents with dynamics matrices as stated in Equation (7), and fix the parameters εi = ε and δi = 0.25 for all

agents. Figure 3 shows the effect on the cost J (estimated from 2500 time steps) and the state estimate uncertainty

log det(Σ) as we vary the parameter ε. These plots show that each quantity varies monotonically and smoothly

with ε, demonstrating that changing the overall privacy level in the system indeed results in predictable changes in

the behavior of the system, as predicted by Theorem 1.

VI. CONCLUSIONS

In this paper, we have studied the problem of distributed linear quadratic optimal control with agent-specified

differential privacy requirements. To our knowledge, this is the first paper to consider the effects of trajectory-level

differential privacy in feedback. Here, we have related this problem to the well-studied LQG problem and have

shown how to bound the uncertainty in the network-level joint state estimate in terms of the privacy parameters

specified by the individual agents. Future work includes considering more general classes of control and estimation

models and nested and sequential feedback loops.
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