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Abstract— A variety of LQR-RRT kinodynamic motion plan-
ners are built on the idea of solving a two point boundary value
problem in an LQR manner for affine systems. These planners
can also be used for controllable nonlinear systems only if its
linearized model at the equilibrium state is also controllable,
and the cost function reflects only a time/control trade-off. We
propose a class of RRT planners based on the SDRE (State
Dependent Riccati Equation) control paradigm. The SDRE
control is used both for finding the nearest state in the tree and
for the tree expansion. By solving an LQR tracking problem
for nonlinear systems within the SDRE framework, instead of
a two point boundary value problem, the proposed planners
deal with a wider range of controllable nonlinear systems and
cost functions. We compare the proposed planners with LQR-
RRT-like algorithms by observing the results obtained from the
three specific benchmark examples.

I. INTRODUCTION

The rapidly-exploring random trees (RRT) [1] have opened
new perspectives in motion planning (MP) community [2].
This type of planner explores the configuration space by
randomly distributed samples, avoiding obstacles and robot
geometry to be explicitly included in the problem. This is
a huge advantage, achieved at a cost of using a collision
checking algorithm that secures collision-free connections
between any pair of samples. The RRT incrementally ex-
pands the tree of collision-free connections starting from
an initial configuration towards a goal configuration. The
classical RRT algorithm uses the Euclidean distance to find
the nearest node in the tree to expand the tree from that
node towards a randomly generated point in the configu-
ration space. The tree grows until it finds a final feasible
solution by connecting given initial and goal configurations,
or it concludes a feasible solution is not possible to find.
Although RRT based on the Euclidean metric performs well
in configuration space (without differential constraints), it
has been shown in [3] and [4] why these algorithms do
not efficiently construct trees for exploring state space of
dynamical systems.

In order to address this problem, an LQR-based heuristic
has been introduced in [4] as a much more efficient pseudo-
metric than the Euclidean distance to find the nearest node in
the tree. Namely, the authors have found a way to partially
include differential constraints used to find the next node
from which the tree expands. To do so, they have used a finite
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horizon LQR-based control paradigm in the form of an affine
quadratic regulator (AQR). As shown in [4], the RRT based
on the AQR heuristic was able to construct much sparser
trees than the classical RRT algorithm for several different
dynamical systems (double integrator, pendulum, cart-pole
and acrobot). For clarity of presentation, we shortly explain
the AQR-based herustic algorithm in Section II-B, based on
which it is possible to design several LQR-RRT kinodynamic
motion planners. However, we encourage the reader to refer
to [4] for a more complete understanding of the proposed
solution.

Built on the AQR-based metric idea, an RRT* setup using
an infinite horizon LQR controller, for both finding the near-
est node and expanding the tree, has been presented in [5].
The RRT* algorithm is a modification of the RRT algorithm
that secures probabilistically-complete optimal planning, and
it was first developed in [6]. However, using an infinite-
horizon LQR controller to expand the tree from the nearest
node toward a random sample is not optimal for finite-
time extension even for linear systems. In that regard, a
finite-horizon LQR controller used to expand the tree and to
secure a probabilistically-optimal planner for linear systems
that involves only a certain class of cost functions (trade
off between time and energy) has been proposed in [7].
The extension of this approach to nonlinear systems was
not possible either. To widen this class of cost functions
including constraints on time, the authors have presented in
[8] a probabilistically-optimal LQR-RRT planner for affine
dynamics and quadratic cost functions.

We exploit the SDRE-based control (State-Dependent Ric-
cati Equation) to propose a new class of RRT kinodymamic
motion planners. We address all pitfalls of the RRTs based
on the AQR metric, and explain how the proposed SDRE-
RRT class of planners might be used to deal with some of
those problems. The complete statement of contributions is
given in Section III-E.

Section II gives a short introduction to the problem we
address and to some RRT alternatives which are built on the
AQR metric paradigm. Section III lists some major pitfalls
one such planner might face in different problem setups.
This section also contains all contributions of our paper
resulting directly from addressing those pitfalls with the
proposed SDRE-RRT class of planners. SDRE-based control
paradigm is explained in Section IV for both infinite and
finite horizon optimization problems. Section V describes
the LQR tracking problem and what can be used to build
a relevant distance metric. Section VI explains how this
metric can be then adapted for nonlinear systems within
the SDRE control framework. A comparison between some



relevant kinodynamic planners is presented in Section VII,
and concluding remarks are given in Section VIII.

II. LQR-RRT KINODYNAMIC MOTION PLANNER

A. Problem formulation

We address the kinodynamic MP problem as a control
problem of a class of constrained nonlinear systems governed
by the state equations

ẋ = f(x) +B(x)u, (1)

which are affine in the mth dimensional control u ∈ U ⊂
Rm, where x ∈ X ⊂ R2n is the system state defined as
x = (q, q̇), for q ∈ C and C being the nth dimensional
configuration space. U represents an admissible subspace
that reflects limits imposed on the system actuations in
which a control solution is being found to stabilize the
system equilibrium state. X is a feasible subspace that takes
into account all forbidden state space regions (obstacles) to
ensure collision-free trajectories. It is also assumed that the
equilibrium point of the system (1) is at the origin, i.e.,
f(0) = 0 for u = 0. If the equilibrium point is not at the
origin, a coordinate system transform can always be found
that shifts this point to the origin.

The ultimate task is to find an admissible control u ∈ U
to feasibly stabilize the system at the origin given an initial
system state x(0). For a solvable problem setup, we also
assume the system (1) is stabilizable. However, in most cases
one can impose a bit stricter assumption to let the system
be controllable. In MP terms, one should find admissible
system inputs u to drive the system towards the goal state
space x = 0 by avoiding state space obstacles, for MP setups
where the initial and the goal states are connectible.

In this paper, we address the kinodynamic MP problem
by an RRT-like algorithm. The most widely used heuristic
to find the nearest node in the tree is based on the solution
of an affine quadratic regulator problem (AQR) [4], [7], [5].
The AQR-based distance heuristic used within these planners
is shortly described in the sequel.

B. AQR-based pseudometric

The AQR-based psuedometric is used to compute the
distances between all nodes in the tree and a random sample
xs, in terms of the nonlinear dynamical system (1). The best
possible distance heuristic would be computed by solving
a boundary value problem from each node of the tree to
xs. However, this would be too costly, so the problem was
simplified to solve an LQR-like problem for the nonlinear
system linearized at xs (2)

˙̄x = Asx̄+Bsū+ c, x̄ = x− xs, ū = u− us, (2)

where

As =
∂f

∂x
(xs)+

∂B

∂x
(xs)us, Bs = B(xs), c = f(xs)+Bsus.

(3)
System (2) is an affine system in terms of constant c,

which reflects the fact that the system is not stabilizabile in

xs. Such a problem can be solved in an AQR manner with
respect to the cost function (4)

J(x̄, tf ) =

∫ tf

0

[1 +
1

2
ūT (t)Rū(t)]dt, R = RT � 0, (4)

which includes a trade-off between the minimum time
needed by the system to reach xs, and the control effort
used to guide the system. The optimal cost-to-go can be then
computed as

J∗(x̄, tf ) = tf +
1

2
dT (x̄, tf )P−1(tf )d(x̄, tf ), (5)

where

d(x̄0, tf ) = eAtf x̄0 +

∫ tf

0

eA(tf−τ)cdτ, (6)

and

Ṗ (t) = AP (t) + P (t)AT +BR−1BT , P (0) = 0. (7)

Moreover, if the optimization is set to use a free final time tf ,
then the minimal distance from the node x0 to the random
sample xs can be obtained as

J∗ = J∗(x̄0, T
∗), (8)

where

T ∗ = argmin
tf

J∗(x̄0, tf ), tf ∈ [0, tmax
f ]. (9)

In accordance to the AQR-based distance metric, the nearest
node in the tree is then the node with the smallest value of
(8).

C. LQR-RRT variants

The first kinodynamic motion planner built on the AQR-
based pseudometric for finding the nearest nodes from ran-
dom samples during the tree expansion has been proposed
in [7]. The authors have also used a finite-horizon optimal
controller to compute the three expansions from the nearest
node towards the random sample. The RRT* variant of the
algorithm is proven to be optimal for the systems with linear
differential constraints. However, this approach requires the
computation of the optimal time horizon for each tree expan-
sion, and can be used only for class of functions represented
by (4). For the purpose of this presentation, we use this
approach without implementing the RRT*-based rewiring
stage, and denote by AQR-RRT such a planner.

The second LQR-RRT variant that includes a modified
AQR-based pseudometric idea both for discovering the near-
est nodes in the tree and for the tree expansion has been
presented in [8]. The authors have also used a finite-horizon
LQR to measure cost and to extend the tree within RRT*
framework. However, they have modified the LQR opti-
mization to cover the class of more general cost functions,
including a classical quadratic cost function in terms of states
and control, and time as an additional dimension of the state
space.

The third kinodynamic planner simplifies the problem by
omitting the constant c in the linearized system (2), and
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Fig. 1. One realization of the tree grown by the AQR-RRT (left) and a
variant of the tracking based SDRE-RRT (right), while solving the control
problem for system (10).

conducts an infinite LQR optimization both for minimum
distance between two nodes to find the nearest node, and
for the tree expansion [5]. Although the computation is
simplified, this method does not produce locally optimal
trajectories for finite-time extensions, which is a condition
for an optimal MP RRT* framework in terms of Frazzoli
and Karaman’s conditions [9]. For the purpose of this pre-
sentation, we use this approach without implementing the
RRT*-based rewiring stage, and denote by LQR-RRT such
a planner.

In this paper, we aim to examine some novel distance
heuristics for kinodynamic MP within the SDRE-RRT frame-
work. To do so, we do not put the focus on optimality but
rather on examination of a potential these planners have in
exploring the state space. For this reason, we will only use
the basic variants of AQR-RRT and LQR-RRT planners as
benchmarks for comparison.

III. LQR-RRT PITFALLS AND STATEMENTS OF
CONTRIBUTIONS

A. Controllability of linearized system

The first pitfall of the AQR-based RRT regards the as-
sumption under which we address the systems with sta-
bilizable (controllable) dynamics. This is a very important
assumption since it would not be possible to grow the tree
towards the goal state from any of the selected tree nodes.
Namely, since the control action in the AQR-based RRT is
found by linearization of the system around the equilibrium
point, each time the algorithm tends to connect the selected
nearest node to the goal state, it is very important to check
whether the obtained linearized system is controllable (or
stabilizable). If not, the AQR-based RRT can struggle to
find its way to the final goal position. For example, eq.
(10) represents an unconstrained and locally controllable
nonlinear system whose linearization around the equilibrium
state is uncontrollable [10].

ẋ1 = x32, ẋ2 = u (10)

Fig.1-left shows an AQR-RRT generated tree of 1000
nodes, which was not able to grow to connect the initial
sate with the equilibrium state (0, 0). It should be noted
that the final success depends on the chance to drive the
nonlinear system from the nodes on the tree towards the

equilibrium state by using the actions found for its linearized
counterpart. The problem would be even more difficult with
underactuated and state constrained dynamics. Later in this
work, this system is analyzed from the perspective of the
proposed class of SDRE-RRT planners (Fig.1-right).

B. Fixed sample point for finding the nearest node

The second pitfall pertains to the assumption imposed
on a newly generated sample state. Namely, in AQR-based
heuristic and all other state-of-the art works based on this
approach, the sampled state is considered as a fixed point
in the state space. Such an assumption completely ignores
information on how the dynamical system would behave
once being in that state (or how the tree would grow starting
from that state). However, by using the AQR-based distance,
this information is partially recovered in comparison to the
pure Euclidian distance. In our paper, we use the LQR-
tracking problem instead of finite horizon optimization in
a boundary value problem, letting the sampling state move
within the state space in accordance to the dynamics of the
system.

C. Linearization for the tree expansion

Although the AQR-RRT algorithm includes some infor-
mation on the system dynamics while expanding the tree
and as such it performs much better than the classical
RRT algorithm based on the pure Euclidean distance, the
AQR-RRT uses a linearized dynamics around the sample
point when it expands the tree from the nearest node. This
way the algorithm certainly gives up from the complete
nonlinear dynamics in favor of computational simplicity, so
we consider this as the third pitfall.

D. Limited class of cost functions

The fourth pitfall regards the cost function (4) upon which
the AQR-RRT algorithm is built on, to find the nearest node
and to expand the tree towards the generated sample point.
As explained in Section II-B, the authors have been forced
to use this function since the random point with a nonzero
velocity is not stabilizable. Although the performance of the
final control solution is not addressed with the AQR-RRT
approach as in many other classical RRT algorithms (except
RRT∗ variants), the use of the criteria (4) seems somewhat
artificial especially because it would be more natural to
use the form of the objective function which is initially
imposed on the control problem. In most control problems,
the objective function is given in a quadratic form in terms
of system states and control effort. In the objective function
(4), the integrand function includes a constant to penalize
long lasting trajectories towards the random point. This cost
function is indeed a natural choice for some systems such
as spacecraft in deep space, helicopters, and even ground
vehicles [11]. However, to hope for the optimality in RRT*
manner, it would be arguably more convenient to select the
same form of the objective function for the tree expansion
as the one given for the initial control problem.



Moreover, the classical LQR framework does not address
the cost functions which are nonlinear and nonquadratic. In
case we deal with such a cost, it would not be possible to
approach an optimal sample-based planner even for a linear
system.

E. Statements of contributions

In this paper we propose a class of kinodynamic motion
planners built on the idea of using SDRE-based control for
unconstrained nonlinear systems. By using an appropriate
factorization of the system within the LQR framework in-
stead of a linearization, the proposed SDRE-RRT planners
might even stabilize controllable nonlinear systems that have
uncontrollable linearizations at the equilibrium state, which
would not be possible by AQR-based RRT planners.

Unlike the AQR-based heuristic, the heuristic proposed in
this paper lets the sampled state move in the state space in
accordance with the system dynamics. With this in mind, we
propose a heuristic based on the tracking problem instead of
solving boundary value problem as in case of AQR. Such an
assumption helps to avoid pitfalls of the Euclidian distance
metric on one side, and provides a simplified heuristic based
on a classical LQR manner on the other.

By using factorization at the nearest node instead of
linearization (case with LQR-like RRTs) during the tree
expansion step, the proposed SDRE-RRT class of planners
preserve full dynamics of a nonlinear system at this particular
node. Following the same arguments as in debate of LQR vs.
SDRE [12], we argue the SDRE might improve suboptimality
of the expansion trajectories, which can be important once
one deals with the overall optimality.

The proposed class of SDRE-RRT planners all use a classi-
cal LQR framework which rather reduces computational cost,
unlike most of the AQR-based RRT planners implemented
for affine systems. Moreover, the SDRE-based control setup
also allows for nonlinear and nonquadratic cost functions
to be used in the optimization. To do so, one needs to
factorize the cost and to get a pointwise quadratic function
(see eq. (12) in Section IV), which can be then solved in
LQR manner.

IV. SDRE-BASED CONTROL FOR UNCONSTRAINED
NONLINEAR SYSTEMS

A. Unconstrained SDRE control setup

The SDRE control strategy has been successfully used in a
wide range of fields, where a nonlinear control was inevitable
as a control choice. Autopilot design [13], integrated guid-
ance and control design [14], robotics [15], to name a few,
wherein the results of the SDRE implementations have been
successfully demonstrated. Much more real world examples
have been reported in [12].

The SDRE approach requires parametrization of the full-
state observable nonlinear system (1) into the state vector
and the state-dependent state matrix as follows

ẋ = A(x)x+B(x)u. (11)

The objective function used within a classical SDRE
control is an infinite horizon objective function. This function
also requires an appropriate factorization as shown in (12)

JSDRE =
1

2

∫ ∞
t0

(xTQ(x)x+ uTR(x)u)dt, (12)

where Q(x) and R(x) must be selected such that Q(x) =
DT (x)D(x) ≥ 0 and R(x) > 0, ∀x.

The main idea behind the factorizations of the nonlinear
system (11) and the objective function (12) is to represent the
nonlinear system as a pointwise linear system by assuming
A(x) and B(x) are constant matrices for each state x; and
to consider the objective function as pointwise quadratic in
cost and control by assuming Q(x) and R(x) are constant
matrices for each x as well.

The unconstrained SDRE problem can be now formulated
as a minimization problem of the given state-dependent
quadratic cost (12) subject to differential constraints (11)
given the initial system states x(t0). In order to solve the
problem, one has to solve a pointwise (or state-dependent)
Riccati equation

AT (x)P + PA(x)− PB(x)R−1(x)BT (x)P +Q(x) = 0.
(13)

Such an optimization represents an infinite-horizon LQR
problem and it is solvable if and only if the pair (A,B)
is controllable and (A,Q

1
2 ) is detectable, where Q

1
2 denotes

the Cholesky decomposition of the matrix Q. The control
sequence can be easily obtained in the form (14)

uSDRE(x) = −R−1(x)BT (x)P (x)x, (14)

where P (x) is a symmetric positive definite solution of (13)
for each x.

The LQR-based value function, which is the minimum
of the cost (12) in case of frozen Riccati equation, has a
quadratic form

VSDRE(x) =
1

2
xTP (x)x. (15)

This Lyapunov-based function has been used in [16] to prove
local asymptotic stability of the given nonlinear system,
and recently combined with the model predictive control
approach to obtain a globally stabilizing model predictive
control for unconstrained nonlinear systems [17].

B. Finite-time unconstrained SDRE control setup

Unlike the unconstrained SDRE control setup, the finite
horizon SDRE control framework [18] optimizes the objec-
tive function over a finite horizon. The unconstrained finite
SDRE problem can be formulated as a minimization problem
of the given state-dependent quadratic cost over a finite
horizon (16) subject to differential constraints (11) given the
initial system states x(t0). To solve this problem, one has
now to solve a state-dependent differential Riccati equation
defined by (17-18).

J
tf
SDRE =

1

2

∫ tf

t0

(xTQ(x)x+ uTR(x)u)dt+
1

2
xT (tf )Sx(tf )

(16)



AT (x)P +PA(x)−PB(x)R−1(x)BT (x)P +Q(x) = −Ṗ
(17)

P (x, tf ) = S (18)

The matrices A(x), B(x), Q(x) and R(x) have the same
properties as for the unconstrained SDRE control setup from
Section II-B. P (x, t) is now a unique symmetric positive-
definite solution of (17-18), where S is a positive definite or
positive semi-definite final state penalty matrix.

The pointwise optimal control sequence can be then com-
puted by the form

u
tf
SDRE(x) = −R−1(x)BT (x)P (x)x (19)

to solve for the finite-time unconstrained SDRE-based con-
trol setup.

V. LQR TRACKING BASED HEURISTICS FOR LINEAR
SYSTEMS

A. Problem formulation

The main idea upon which we build a novel distance
heuristic in the state space for nonlinear systems, will be first
explained for linear systems, and then extended in Section
VI to kinodynamic MP of nonlinear systems by using the
system factorization and the SDRE control approach.

Let (20) be a linear system for which we propose a novel
distance heuristic between two points in the state space, the
tree node xn and the sample point xs

ẋ = Ax+Bu, (20)

having an initial condition in the tree node x(0) = xn. We
now try to answer the question on how difficult for the system
would be to go from the node xn to the sample point xs, by
means of an appropriate cost-to-go value.

Considering a newly generated sample point xs as fixed
in the state space is quite counterintuitive since the state
may include a nonzero velocity preventing the system to stay
in it. To deal with that assumption in AQR-based heuristic,
the linearized system is rendered to a non-standard structure
with an affine term (2). In our structure, we will be able to
preserve the standard linear system description, by letting the
sample point moves through the state space and be generated
by the autonomous system (21)

ẋs = Axs. (21)

Such a system starts at the given sample point xs(0) and has
the same state matrix A as our initial system.

The proposed distance heuristic now pertains to the ques-
tion on how hard for the system would be to follow xs, which
in case of using a quadratic cost (22), both in states and
control, reduces to a classical finite horizon LQR tracking
problem along horizon tf .

VLQR =
1

2

∫ tf

0

{(x− xs)TQ(x− xs) + uTRu}dt (22)

We can now define the LQR tracking problem in the con-
text of the proposed distance heuristics for linear systems as
follows. Given the linear system (20), find an optimal control

u to minimize the cost function (22), where the trajectory xs
is generated by the system (21). The cost obtained by using
the optimal tracking control for different values of tf will
be used to form a class of distance pseudometrics between
xn and xs(0).

B. Solution to the LQR tracking problem for linear systems

The dynamics (21) can be subtracted from (20) to get

ė = Ae+Bu, (23)

where e = x− xs is the tracking error and the cost function
is given with (22).

We can now augmented the system (20) with (21) to obtain

˙̂x = Âx̂+ B̂u, (24)

where

x̂ =

[
x
xs

]
, Â =

[
A 0
0 A

]
, B̂ =

[
B
0

]
, (25)

and
Q̂ =

[
Q −Q
−Q Q

]
. (26)

Note that the cost (22) is equal to the cost (27) formed for
the system (24).

V̂ =
1

2

∫ tf

0

{x̂T Q̂x̂+ uTRu}dt (27)

By solving (24) with respect to (27) in LQR manner, one
obtains

u∗ = −R−1B̂T P̂ x̂(t), (28)

where now P̂ is the solution of

− ˙̂
P = ÂT P̂ + P̂ Â− P̂ B̂R−1B̂T P̂ +Q̂, P̂ (tf ) = 0 (29)

If P̂ is decomposed into

P̂ =

[
P P12

PT12 P22

]
, (30)

then it would be easier to see from (29) that we have the
following three matrix differential equations to solve

− Ṗ = ATP + PA− PBR−1BTP +Q, P (tf ) = 0 (31)

− ˙P12 = ATP12+P12A−PBR−1BTP12−Q, P12(tf ) = 0
(32)

− ˙P22 = ATP22+P22A−PT12BR−1BTP12+Q, P22(tf ) = 0
(33)

The LQR optimal control law (28) can be derived to the
form

u∗ = −R−1BTPx−R−1BTP12xs, (34)

which in turn gives the optimal cost for the defined aug-
mented system

V̂ ∗ =
1

2
xTnPxn + xTnP12xs(0) +

1

2
xs(0)TP22xs(0). (35)

The cost (35) will be used to find the nearest node in the
tree, while control (28) will be used to expand the tree from
that node towards the sample state.



VI. SDRE-RRT FOR KINODYNAMIC MOTION PLANNING

A. SDRE-based distance heuristics

In this paper, we propose several different SDRE-based
distance heuristics. The first one is based on the same idea
as the heuristic used for the infinite-horizon LQR-RRT [5].
Instead of linearization of the system around the sample xs,
we now factorize the system in xs to find an infinite horizon
cost-to-go from each node in the tree, and to find the nearest
node xnear for which the cost-to-go has a minimal value. To
expand the tree, we now factorize the system in xnear, to
solve for an infinite-horizon SDRE-based control problem,
and to drive the system for a fixed expansion step. For the
purpose of this presentation, we denote by SDRE-RRT the
planner built on this heuristic.

The remaining heuristics are derived from the LQR track-
ing control problem, shown in Section V for a linear system,
derived by an appropriate factorization of the nonlinear
system. To find the nearest node, the nonlinear system is
factorized in xs, and an optimal cost-to-go is computed for
each node in the tree by (35) for the finite-horizon LQR. The
expansion is performed by solving an SDRE-tracking control
problem based on the factorization of the nonlinear system
in xnear, by using control (28) for the infinite-horizon LQR.
We refer to the SDRE-RRT kinodynamics motion planners
based on this heuristics as tracking-based tSDRE-RRT-T ,
where T is the selected horizon used for the tracking control
optimization.

B. tSDRE-RRT algorithm

The SDRE algorithm has the same flow as all other
classical RRT algorithms including the AQR-RRT. The Ran-
domNodeInStateSpace() function is used in Line 4 (Algo-
rithm 1) to generate a random sample from the state space
at the beginning of each iteration. We sample the state space
uniformly although some other distributions may be used.
The ClosestNode() function used in Line 5 is shown in
Algorithm 2. First, we factorize the system in the sample
point x0s (Line 1 of Algorithm 2), then solve Riccati equation
(29) (Line 2) for the finite-horizon, which is represented by
the three counterparts (31-33). Then, we find the nearest node
xnear in the tree from which it is the least expensive to track
xs in terms of the optimal cost-to-go function (35).

After the nearest node xn is found, the expansion function
(Line 6 in Algorithm 1, shown in Algorithm 3) is conducted
by factorizing the nonlinear system in xn (Line 1 of Algo-
rithm 3), solving again Riccati equation (29) (Line 2) but now
for the infinite-horizon, and then using the optimal control
uexp computed by (28) (Line 3) to drive the system for a
fixed step Ts (Line 4).

C. Discussion

In case the system linearized at the equilibrium point
(the node to which we want to stabilize the system) loses
the controllability as for the system (10), then the LQR-
RRT struggles to reach this node, as shown in Fig. 1-left.
However, the appropriate factorization of the system in the
equilibrium node may inherit controllability feature from

Algorithm 1 SDRETree(x0, xgoal)
1: T .init(x0)
2: xnew ← x0
3: while ||xnew − xgoal|| < ε do
4: x0sample ← RANDOMNODEINSTATESPACE()
5: xnear ← CLOSESTNODE(x0sample, T )
6: xnew ← EXTENDTREE(xnear, x

0
sample)

7: T .add(xnew)
8: end while
9: return T

Algorithm 2 ClosestNode(x0sample, T )

1: As ← A(x0sample); Bs ← B(x0sample); Qs ← Q(x0sample);
Rs ← R(x0sample)

2: P̂s ← SOLVERICCATI(As, Bs, Qs, Rs)
3: xnear ← ArgMinCostToGo(x0sample, P̂s, T )

the controllable nonlinear system ensuring all SDRE-RRT
planners are successful in reaching the goal state (Fig.1-
right).

We let the random node xs to move in the state space
by using the tracking problem instead of using two point
boundary value problem for a nonstabilizabile state (nonzero
velocity). By doing so, we take into account the dynamics the
system might have at this randomly sampled state. Arguably,
by using a more realistic scenario leads to a more reliable
distance heuristic used to find the nearest node in the tree.

To expand the tree from the nearest node, we factorize the
system in this node instead of using a linearized model. Since
the factorization does not approximate the system dynamics
at the state in which we factorize the system, we feel that
the expansion stage will exploit more of the system dynamics
than in case of system linearization. This especially becomes
true when the linearization is conducted at xs which is too
far from the nearest state.

By using (22) instead of (4), we perform classical LQR
optimization for both finding the nearest node and the tree
expansion. However, to take into account time within the
optimization process, one might augment the system as in
[8] and perform a classical LQR optimization. Moreover,
one can also use a cost function which is nonlinear and
nonquadratic in any of the SDRE-RRT planners. Namely,
by an appropriate factorization (12 or 16), the optimization
is again solved pointwise in LQR manner.

Algorithm 3 ExtendTree(x0sample, xnear)

1: An ← A(xnear); Bn ← B(xnear); Qn ← Q(xnear); Rn ←
R(xnear)

2: P̂n ← SOLVERICCATI(An, Bn, Qn, Rn)
3: uexp = −R−1n BTnPnxnear −R−1n BTnP

12
n xsample

4: xnew ← f(x, uexp,∆t = TS)



VII. SIMULATIONS

In all presented simulations, we have used 4-core system
with i5-6300HQ with 8GB RAM.

A. Non-controllable linearized system

We first show a nonlinear system (10), factorized as in
(36), which would not be possible to stabilize by using any of
LQR-RRT variants based on the AQR metric. This is the case
when the nonlinear system is controllable but its linearized
counterpart is not, which can be easily shown.

A(x) =

[
0 x22
x2 −x1

]
B(x) =

[
0
1

]
Q =

[
10 0

0 1

]
R = I.

(36)
Table I includes a comparison between AQR-RRT, LQR-

RRT, SDRE, and two tSDRE-RRT planners constructed by
horizons, tf = 0.2 and tf = 0.5. All planners have been
run 20 times for three different initial conditions, x1, x2 and
x3. Then, we observe how many times a planner was able
to reach the goal position w.t.r to the total number of runs
under a limited number of nodes used to expand the trees
(N = 1000). Table I depicts the success percentage for each
planner.

As expected, the AQR-RRT and LQR-RRT planners were
not able to solve the problem. However, there is a small
percentage when the LQR-RRT was able to reach the goal
position by chance. On the other side, the tracking-based
planners were able to stabilize the system with a high
percentage of success. One realization of the tSDRE-RRT-0.2
planner used to stabilize (10) can be seen in Fig.(1)-right.

TABLE I
SUCCESS STATISTICS DERIVED FOR THE SYSTEM (10)

AQR LQR SDRE tSDRE-0.2 tSDRE-0.5

x1 = [4.88; 1.58] 0% 5% 5% 60% 80%
x2 = [−3.17;−0.49] 0% 0% 50% 100% 30%
x3 = [3.47; 0.29] 0% 5% 10% 85% 85%
x4 = [1.26;−0.97] 0% 5% 10% 40% 90%

B. Pendulum

This is an underactuated nonlinear system frequently ad-
dressed within control and robotics community. A factorized
version of this system is given by (37), where x = [θ, θ̇]T ,
θ being the pendulum displacement angle, and g the gravi-
tational constant.

A(x) =

[
0 1

−g sin(θ)
θ −b

]
B(x) =

[
0
1

]
Q =

[
10 0

0 1

]
R = I.

(37)
Table II depicts a comparison between the AQR-RRT, the

LQR-RRT, the infinite horizon SDRE-RRT and one tracking-
based tSDRE-RRT planner for T = 0.5. We first compare the
potential of the planners to cover the state space going from
the equilibrium state outwards for 50 iterations, and use the
same coverage metric as defined in [4]. The given statistics
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Fig. 2. One coverage realization of the tree for AQR-RRT (left) and
tSDRE-RRT-0.2 (right) planners, obtained while expanding the tree from
the desired state outwards for pendulum.

suggest a similar exploration potential all planners have,
which can be also seen from Fig.(2) where the obtained trees
by the AQR-RRT and the tSDRE-RRT-0.2 are presented.

TABLE II
COVERAGE AND SUCCESS STATISTICS DERIVED FOR PENDULUM

AQR LQR SDRE tSDRE-0.2

Coverage [%]
N=1000

Mean 42 55 68 61
Median 42 56 69 61
Min 36 48 62 47
Max 47 64 71 66

Number of
nodes

Mean 743 198 615 482
Median 749 326 532 470
Min 510 198 239 271
Max 983 517 987 964

Execution
time [s]

Mean 242.9 1.7 5.6 9.8
Median 239.4 1.8 4.9 9.55
Min 110.5 0.88 1.9 4.9
Max 407.1 2.97 5.6 22.02

Furthermore, Table II suggests the LQR-RRT is more
efficient for this example in guiding the system towards the
goal state (upward position at (π/2, 0)) in terms of total
number of nodes and time required to solve the problem.
However, the other two SDRE-based algorithms can be also
used in terms of their total execution time. Fig.(3) illustrates
the trees computed by these four algorithms while solving
the control problem. All trees have been started at the same
initial condition. Note that for all tSDRE-RRT realizations
(π/2, 0) needs to be shifted into (0, 0) in accordance to the
tracking problem settings.

C. 3rd order nonlinear system

The last example is taken from [19] and represents a highly
nonlinear system. The nonlinear system is

ẋ1 = x1 − x31 + x2 + u1, ẋ2 = x1 + x21x2 − x2 + u2 (38)

where Q = I, and R = 2I are the constant matrices. The
extended linear parametrization of the system is given by
the state dependent matrix

A(x) =

[
1− x21 1

1 + x1x2 −1

]
. (39)

The relevant statistics are shown in Table III for the same
four RRT-based planners growing from xT = [2 1]. One
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Fig. 3. One realization of the tree for AQR-RRT (up-left), LQR-RRT (up-
right), SDRE-RRT (down-left) and tSDRE-RRT-0.5 (down-right), obtained
while guiding the pendulum towards the upward position.

can again see the same level of exploration capacity the
planners have in terms of the coverage metric. However,
in this example, the tracking-based tSDRE-RRT planner for
T = 0.5 is much more efficient than other planners in terms
of both total number of nodes and time needed to stabilize
the system.

TABLE III
COVERAGE AND SUCCES STATISTICS DERIVED FOR THE SYSTEM (38)

AQR LQR SDRE tSDRE-0.2

Coverage [%]
N=1000

Mean 13 20 23 20
Median 13 19 23 20
Min 9 16 21 17
Max 17 28 24 22

Number of
nodes

Mean 902 99 105 28
Median 964 91 108 26
Min 684 14 12 15
Max 996 218 213 70

Execution
time [s]

Mean 944.0 1.7 1.8 0.5
Median 1010.0 1.6 1.9 0.48
Min 521.6 0.4 0.3 0.33
Max 1179.0 1.7 3.5 1.11

VIII. CONCLUSION

In this paper we exploit the SDRE-based control paradigm
to form a class of kinodynamic motion planners. For finding
the nearest state in the tree and for the tree expansion, we
solve the LQR tracking problem for nonlinear systems within
the SDRE framework. By using the SDRE framework to
solve the LQR problem in a poinwise manner for a factorized
system, instead of using the AQR framework to solve a two
point boundary value problem for a linearized affine system,
the proposed SDRE-RRT class of planners deal with a wider
range of controllable nonlinear systems and cost functions.

We present the statistics derived by applying several RRT
planners on three specific nonlinear systems, a controllable
nonlinear system with uncontrollable linearization, pendulum

and on a 3rd order nonlinear system. The results indicates
a relevance the tSDRE-RRT kinodynamic motion planners
might have in solving highly difficult control problems.
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