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Designing Real-Time Prices to Reduce Load Variability with HVAC
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Abstract— Utilities use demand response to shift or reduce
electricity usage of flexible loads, to better match electricity
demand to power generation. A common mechanism is peak
pricing (PP), where consumers pay reduced (increased) prices
for electricity during periods of low (high) demand, and its sim-
plicity allows consumers to understand how their consumption
affects costs. However, new consumer technologies like internet-
connected smart thermostats simplify real-time pricing (RP),
because such devices can automate the tradeoff between costs
and consumption. These devices enable consumer choice under
RP by abstracting this tradeoff into a question of quality of
service (e.g., comfort) versus price. This paper uses a principal-
agent framework to design PP and RP rates for heating,
ventilation, and air-conditioning (HVAC) to address adverse
selection due to variations in consumer comfort preferences. We
formulate the pricing problem as a stochastic bilevel program,
and numerically solve it by reformulation as a mixed integer
program (MIP). Last, we compare the effectiveness of different
pricing schemes on reductions of peak load or load variability.
We find that PP pricing induces HVAC consumption to spike
high (before), spike low (during), and spike high (after) the PP
event, whereas RP achieves reductions in peak loads and load
variability while preventing large spikes in electricity usage.

I. INTRODUCTION

High demand variability stresses the electrical grid by

increasing the mismatch with supply, and it is costly for util-

ities because it requires adding redundant power generation.

Demand response is an alternative that induces consumers to

reduce or shift their consumption by setting prices by time

of day [1]–[5]. For example, peak pricing (PP) reduces the

peak demand of electricity by charging consumers reduced

(increased) rates for electricity during periods of low (high)

demand. This is a common structure for demand response

programs because the simplicity of PP allows consumers to

understand how their consumption impacts their costs.

Real-time pricing (RP) of electricity is less common

because historically the complex pricing structure of RP

makes it difficult for consumers to match consumption to

prices. However, new consumer technologies like internet-

connected smart thermostats [6]–[11] simplify RP, because

such devices can automate the tradeoff between costs and

consumption. These devices simplify RP by abstracting this

tradeoff into a question of quality of service (e.g., comfort)

versus price, which is easier for consumers to understand.
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This paper designs PP and RP electricity rates using

realistic, validated models of heating, ventilation, and air-

conditioning (HVAC) [6], [12], and there are three contri-

butions. First, we use a principal-agent model [13], [14]

to formulate the problem of a utility designing rates for

HVAC that responds to prices, where the consumer has an

acceptable (but unknown to the utility) comfort level. The

challenge is that prices must be designed so that inflexible

(with respect to comfort) consumers do not get excessive

benefits relative to flexible consumers, since flexible con-

sumers provide more benefits to the utility. Second, we pose

the design problem as a mixed integer program (MIP). Third,

we present numerically solvable approximations of this MIP,

and then evaluate the impact of the resulting PP and RP rates.

A. PP for HVAC Demand Response

HVAC is arguably the most significant target for demand

response since it the largest source of energy consumption

in most buildings [15]. This is relevant from the standpoint

of utilities because HVAC use is obviously correlated with

high outdoor temperature, which means that HVAC usage

in different buildings is strongly correlated with each other

and is an important contributor to peak demand [16]. As a

result, many studies have considered different aspects of PP

for demand response of HVAC. A large number of demand

response programs that have been implemented by utility

companies use PP to reduce peak load [1]–[5], and such

programs have been found to provide varying levels of value

to utilities. Within the controls literature, the use of model

predictive control (MPC) techniques is particularly popular

for demand response of HVAC [17]–[20] because of the

ability of MPC to handle complex constraints.

B. RP for HVAC Demand Response

Recent work studied RP design for HVAC that automates

price-responsiveness. One approach uses stochastic differen-

tial equations to design prices [21], [22], and this work found

a benefit to RP for a simplified HVAC model. In contrast,

we consider in this paper the rate design problem using

realistic, validated models of HVAC [6], [12]. Another body

of work [23], [24] considers RP design using realistic HVAC

models. Our paper differs in two substantive ways. The first

is we use a different notion of comfort: Comfort in [23],

[24] was defined using the temperature set-point, whereas

in our paper we define comfort using allowable deviations

in the temperature from the desired value. The second is we

consider adverse selection, which are the issues caused when

an inflexible (with respect to comfort) consumer accepts a

rate designed for a flexible consumer, in our rate design.
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C. Outline

Sect. II describes our model for the consumer and

our model for the electric utility company, including the

principal-agent model the utility uses to design the electricity

rates. The key feature of the model is the fact that consumers

are either flexible or inflexible with regards to their comfort,

but this information is hidden from the electric utility. The

electricity rate will not be efficient for the utility if it

does not account for this information asymmetry (formally

known as adverse selection). Next, Sect. III describes how

to numerically solve the rate design problem using an MIP

reformulation of the principal-agent model. As part of our

approach, we derive relaxations that facilitate fast numerical

solution. We conclude with Sect. IV, which numerically

solves the pricing problem and then compares the impact

of PP and RP on electricity consumption by HVAC.

II. MODEL OF CONSUMER AND ELECTRIC UTILITY

In this section, we present our model for the consumer

and the electric utility. We also formally define the problem

of using a principal-agent framework to design either PP or

RP electricity prices for HVAC demand response.

A. Consumer Model

The first part of our model defines comfort in relation to

deviations in room temperature from the desired value: Con-

sumers are inflexible (±2◦C deviation from desired temper-

ature) or flexible (±3◦C deviation from desired temperature)

in their comfort, and these ranges are from the ASHRAE 55

standard [25] that defines quantitative models of occupant

comfort. We use Td to refer to a consumer’s desired room

temperature, and the T , T are the upper and lower bounds of

comfort for the consumer. So if the consumer is inflexible,

then T = Td−2 and T = Td+2 . Similarly, if the consumer

is flexible, then T = Td − 3 and T = Td + 3.

The next part of our model describe the room temperature

dynamics and provides an energy model for the consumer.

We use a linear time-invariant model for room temperature

Tn+1 = krTn + kcun + kwwn + qn, (1)

where Tn, un, wn, qn are room temperature, HVAC control

input, outside temperature, and heating load due to occu-

pancy, respectively, and each time step is a 15 min interval.

This model has been validated [6], [12]. The total energy

usage of the consumer is
∑N

n=1
(bn + pun), where bn is

nondeferrable electricity load, p is a constant that converts

input un to energy consumption [6], [12], and N is a horizon.

An important component of our model characterizes the

HVAC controller, which automates the tradeoff between

room temperature and electricity consumption. In particular,

we assume that the HVAC is controlled by MPC:

min
∑N

n=1

(

(Tn − Td)
2 + γcnun

)

s.t. Tn+1 = krTn + kcun + kwwn + qn

Tn ∈ [T , T ], un ∈ [0, u], for n = 1, . . . , N

(2)

where γ is a constant that trades off temperature and elec-

tricity usage, u is the maximum control input, and cn is the

price of electricity at time n.

The last part of the model describes what information is

known by the consumer (and implicitly known by the HVAC

controller). The variable

θ =
{

kr, kc, kw, wn, qn, bn, γ, Td, T , T , u,

for n = 1, . . . , N
}

(3)

completely characterizes each consumer, and it is known as

type in the principal-agent literature [13], [14]. (The value

p is a constant known by everyone.) We assume that the

consumer (and HVAC controller) exactly knows the value

of θ, and knows the electricity price c = {c1, . . . , cN}.

Moreover, we use J(c; θ) to refer to the minimum value

of (2), and u∗(c; θ) refers to the minimizer of (2).

B. Model of Electric Utility Company

An important component in the electric utility model is the

information asymmetry between the utility and consumers.

Specifically, we assume the utility does not know θ for any

single customer. Instead, the utility knows the overall prob-

ability distribution for θ. (Recall the utility and consumers

know p, which is a constant.) We also assume that both the

utility and consumers know the electricity price c.

The next element in the utility model describes the goal

of the electricity pricing for demand response. If the goal is

to reduce peak load, then the utility aims to minimize

Vp = Eθ

(

∑t2
n=t1

u∗

n(c; θ)
)

, (4)

where [t1, t2] is a time range during which the peak load

is anticipated by the utility. If the goals is to reduce load

variability, then the utility aims to minimize

Vl = Eθ

(

varn
(

bn + u∗

n(c; θ)
)

)

, (5)

where varn(·) is the variance over n = 1, . . . , N . We will

consider designing PP and RP for both goals.

The electric utility is interested in designing c, and we

describe the constraints that characterize PP and RP rates.

If the utility is designing PP rates, then this means they are

selecting from

Cpp =

{

c :
cn = ct1 , for n ∈ [t1, t2]

cn = c1, for n ∈ {1, . . . , N} \ [t1, t2]

}

.

(6)

This expresses prices that are constant within the peak period

[t1, t2], and constant (with a possibly different value) outside

of the peak period. Similarly, if the utility is designing RP

rates, then this means they are selecting from

Crp =

{

c :
c1 = cN

|cn+1 − cn| ≤ ρ, for n = 1, . . . , N1

}

. (7)

This expresses prices that are equal at the beginning and

end of the horizon, and such that the rate of change is

bounded by a constant ρ. Lastly, we use f = {f, . . . , f}



kr kc kw average qn

Room 1 0.63 2.64 0.10 6.78
Room 2 0.43 1.95 0.18 9.44

TABLE I

TEMPERATURE MODEL COEFFICIENTS

to refer to a flat pricing structure, and f in particular refers

to the existing electricity price prior to the introduction of

the demand response pricing.

C. Principle-Agent Model for Pricing

The last part of the model for the utility describes the

principal-agent formulation used to design electricity prices.

In particular, we assume the utility solves

min V + λ · Eθ

(

∑N

n=1

(

fnu
∗

n(f ; θ)− cnu
∗

n(c; θ)
)

)

s.t J(c; θ) ≤ J(f; θ)

c ∈ C

cn ∈ [c, c], for n = 1, . . . , N

(8)

to design the electricity rates, where V is either Vp (to

minimize peak load) or Vv (to minimize load variance), and C
is either Cpp (for PP) or Crp (for RP). Note the c, c are bounds

on the minimum and maximum electricity rate, respectively.

Here,
∑N

n=1

(

fnu
∗

n(f ; θ) − cnu
∗

n(c; θ)
)

is the amount of

revenue the utility loses from implementing the new pricing

c (relative to the existing rate f ), and so this means λ is

a constant that the utility uses to tradeoff achieving the

demand response goal with revenue loss. We do not include

the nondeferrable electricity load bn when defining revenue

loss, because in our setting the electricity rates for the non-

deferrable electricity load are different (and left unchanged)

from the rates c for HVAC electricity consumption.

There are two game-theoretic considerations that must be

discussed when defining and solving principal-agent models

[13], [14]. The constraint J(c; θ) ≤ J(f; θ) is known as a

participation constraint, and it ensures that the new electric-

ity rates c are such that the overall utility of the consumer

under the new rates c is equal or better than the overall

utility of the consumer under the original rate f . The second

game-theoretic aspect to be discussed is adverse selection.

We mitigate adverse selection by minimizing the expectation

(with respect to type θ) of the goal V and revenue loss.

III. NUMERICAL SOLUTION OF PRICING PROBLEM

This section studies how to solve the principal-agent

model (8). The main difficulty is that (8) is a bilevel program

[26], [27], which means that (8) is an optimization prob-

lem in which some variables are solutions to optimization

problems themselves. In particular, recall that u∗(c; θ) is the

minimizer to (2). In order to solve (8), we first show how

the problem can be reformulated as a MIP. Then we describe

some relaxations that facilitate numerical solution of the MIP.

A. MIP Reformulation of Pricing Problem

They key idea in reformulating (8) is to replace the

convex optimization problem (2) by the KKT conditions,

which provides constraints that u∗(c; θ) must satisfy. More

specifically, the KKT conditions for (2) can be written as the

following set of mixed integer linear constraints:

Tn+1 = krTn + kcu
∗

n(c; θ) + kwwn + qn

γcn − kcνn + µn − µ
n
= 0

0 ≤ µn ≤ Mηn,

0 ≤ µ
n
≤ Mζn

uηn + u (1− ηn) ≤ u∗

n(c; θ) ≤ uζn + u (1− ζn)

ηn, ζn ∈ {0, 1}, for i = 1, . . . , N − 1

(9)

and also that

(Tn − Td) + νn−1 − krνn + ξn − ξ
n
= 0

0 ≤ ξn ≤ Mxn

0 ≤ ξ
n
≤ Myn

Txn + T (1− xn) ≤ Tn ≤ Tyn + T (1− yn)

xn, yn ∈ {0, 1}, for 2 = 1, . . . , N

(10)

where M > 0 is a sufficiently large constant [28].

The problem (8) becomes an infinite dimensional MIP,

after a few more reformulations. The first is to observe

that Eθ(fnu
∗

n(f ; θ)) is a constant, and so can be removed

from the objective function. The second is to note that

J(f; θ) is also a constant since it does not depend on any

decision variables. The third reformulation is to substitute

J(c; θ) with
∑N

n=1

(

(Tn − Td)
2 + γcnu

∗

n(c; θ)
)

. Though

this yields an infinite dimensional problem, using sample

average approximation (SAA) [29], [30] to approximate the

reformulation gives a finite dimensional MIP.

B. Relaxation of Pricing Problem

The reformulated MIP described above is still difficult

to solve because it involves nonconvex quadratic terms

cnu
∗

n(c; θ), and so additional relaxations are needed so that

the price design problem can be solved using standard nu-

merical optimization software. The quadratic term is relaxed

using the McCormick envelope [31] to

rn ≥ cu∗

n(c; θ) + ucn − u · c

rn ≥ cu∗

n(c; θ) + ucn − c · u

rn ≤ cu∗

n(c; θ) + ucn − c · u

rn ≤ cu∗

n(c; θ) + ucn − c · u

(11)

for n = 1, . . . , N . With this relaxation, the SAA form of the

reformulated problem is a mixed-integer quadratic program

(MIQP), which can be solved using existing software.

However, numerical solution of MIQP’s can be slow. So

we next describe two additional relaxations that speed up

computation by approximating the MIQP using a mixed-

integer linear program (MILP), which can typically be nu-

merically solved faster. First, we replace (Tn − Td)
2 with

4|Tn−Td|
2 since (Tn−Td) ≤ 3|Tn−Td|

2 when |Tn−Td| ≤ 3



Flat Rate PP Rate RP Rate

Inflexible
Peak Load 28.3 27.0 27.6
Load Variance 0.49 0.54 0.42

Flexible
Peak Load 19.1 15.3 17.5
Load Variance 0.25 0.28 0.17

TABLE II

PRICING TO REDUCE PEAK LOAD

as is the case from our assumptions about comfort. Sec-

ond, we replace varn
(

bn + u∗

n(c; θ)
)

with N−1
∑N

n=1
|bn +

u∗

n(c; θ)−m(θ)|, where m(θ) = 1

N

∑N

n=1
u∗

n(f; θ). The idea

is we approximate the variance by (a) replacing squares with

absolute value, and (b) replacing the mean in the variance
1

N

∑N

n=1
u∗

n(c; θ) with the mean m(θ).

IV. NUMERICAL RESULTS

In this section, we numerically solve our MILP relaxation

of the pricing problem for a 24 hour horizon. All of the

calculations where conducted on laptop computer with dual

core 2.5GHz processor and 8GB RAM using MATLAB with

the CVX toolbox [32] and the Gurobi solver [33]. We finish

by evaluating the quality of the designed electricity rates,

and the results are summarized in Tables II and III.

A. Values of Type Parameters

For scenarios with PP and peak load reduction, we set the

peak times to be 1pm–4pm. Our bounds on the electricity

cost were 7PhP ≤ cn ≤ 20PhP, where PhP is Philippines

Pesos. Parameters in the room temperature dynamics (1)

were chosen by uniformly sampling from the paramters in

Table I. The first set of parameters are from [6], [12], while

the second set of parameters were replicated using the same

methodology from [6], [12] with data from our UP-BRITE

testbed located at the University of the Phillipines, Diliman.

We set the probability of a consumer to have high flexibil-

ity to be 0.2. Scenario generation for outside temperature

was performed using data from Weather Underground [34],

scenario generation for heating load due to occupancy was

based on occupancy models, and scenario generation for

nondeferrable electricity load was based on data from [35].

B. Results and Discussion for PP

Results for PP for peak load reduction are shown in Fig. 1.

PP is effective in reducing the peak load for both the flexible

and inflexible consumers; but there is a side effect in which

the HVAC has sharp increases in electricity consumption

both prior to and after the peak period, as well as a sharp

decrease in consumption at the start and end of the peak

period. This substantially increases the variability of the load

profile. Results for PP for load variance reduction are shown

in Fig. 2. PP is not effective in decreasing load variability

because sharp changes in electricity price induce the HVAC

to make sharp changes in consumption.

Flat Rate PP Rate RP Rate

Inflexible
Peak Load 28.3 27.3 27.6
Load Variance 0.49 0.49 0.41

Flexible
Peak Load 19.1 17.7 17.8
Load Variance 0.25 0.26 0.17

TABLE III

PRICING TO REDUCE LOAD VARIANCE

C. Results and Discussion for RP

The results for RP for peak load reduction are shown in

Fig. 3. The RP is effective in reducing the peak load for

both the flexible and inflexible consumers, and it in fact also

reduces the variance of the electricity load. The results for

RP for load variance reduction are shown in Fig. 4. The RP

is effective in decreasing the variability of the total electricity

load, and it also reduces the peak load for both the flexible

and inflexible consumers. The variance in load under this

latter contract is lower than the variance under the former

contract, but the difference is small.

V. CONCLUSION

We studied the problem of designing PP and RP electricity

rates using realistic, validated models of HVAC. We used a

principal-agent model to formulate the problem of a utility

designing rates for HVAC that responds to prices, where

the consumer has an acceptable (but unknown to the utility)

comfort level. We showed how this problem could be posed

as numerically tractable MILP’s, and then solved these

MILP’s to compare the efficacy of different pricing schemes.

We found that RP was substantially better at reducing load

variability than PP, whereas PP was superior in reducing peak

load. Directions for future work include incorporating more

detailed consumer models to better understand best practices

for the design of incentives for effective demand response.
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