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Stochastic Optimal Power Flow Based on Data-Driven Distributionally
Robust Optimization

Yi Guof, Kyri Baker!, Emiliano Dall’ Anese*, Zechun Hu**, Tyler Summers’

Abstract— We propose a data-driven method to solve a
stochastic optimal power flow (OPF) problem based on limited
information about forecast error distributions. The objective
is to determine power schedules for controllable devices in a
power network to balance operation cost and conditional value-
at-risk (CVaR) of device and network constraint violations.
These decisions include scheduled power output adjustments
and reserve policies, which specify planned reactions to fore-
cast errors in order to accommodate fluctuating renewable
energy sources. Instead of assuming the uncertainties across
the networks follow prescribed probability distributions, we
assume the distributions are only observable through a finite
training dataset. By utilizing the Wasserstein metric to quantify
differences between the empirical data-based distribution and
the real data-generating distribution, we formulate a distribu-
tionally robust optimization OPF problem to search for power
schedules and reserve policies that are robust to sampling
errors inherent in the dataset. A multi-stage closed-loop control
strategy based on model predictive control (MPC) is also
discussed. A simple numerical example illustrates inherent
tradeoffs between operation cost and risk of constraint violation,
and we show how our proposed method offers a data-driven
framework to balance these objectives.

I. INTRODUCTION

The continued integration of renewable energy sources
(RESs) in power systems is making it more complicated for
system operators to balance economic efficiency and system
reliability and security. As penetration levels of RESs reach
substantial fractions of total supplied power, networks will
face high operation risks under current operational paradigms.
As it becomes more difficult to predict the net load, large
forecast errors can lead to power quality and reliability
issues causing significant damage and costly outages. Future
power networks will require more sophisticated methods for
managing these risks, at both transmission and distribution
levels.

The flexibility of controllable devices, including power-
electronics-interfaced RESs, can be utilized to balance effi-
ciency and risk with optimal power flow methods [1]-[6],
which aim to determine power schedules for controllable
devices in a power network to optimize an objective function.
However, most OPF methods in the research literature and
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those widely used in practice are deterministic, assuming
point forecasts of exogenous power injections and ignoring
forecast errors. Increasing forecast errors push the underlying
distributed feedback controllers that must handle the transients
caused by these errors closer to stability limits [7].

More recently, research focus has turned to stochastic and
robust optimal power flow methods that explicitly incorporate
forecast errors, in order to more systematically trade off effi-
ciency and risk and to ease the burden on feedback controllers
[8]-[26]. Many formulations assume that uncertain forecast
errors follow a prescribed probability distribution (commonly,
Gaussian [11], [17], [24]) and utilize analytically tractable
reformulations of probabilistic constraints. In practice, fore-
cast error probability distributions are never known; they are
only observed indirectly through finite datasets. Sampling-
based methods have been applied with a focus on quantifying
the probability of constraint violation [12], [13] and for
constraining or optimizing conditional value at risk (CVaR)
[15], [18], [26]. Distributionally robust approaches use data to
estimate distribution parameters (e.g., mean and variance) and
aim to be robust to any data-generating distribution consistent
with these parameters [18], [21], [22], [25], [26]. Others take
a robust approach, assuming only knowledge of bounds on
forecast errors and enforcing constraints for any possible
realization, e.g., [14], [19]. Overall, this line of recent research
has explored tractable approximations and reformulations of
difficult stochastic optimal power flow problems. However,
none of the existing work explicitly accounts for sampling
errors arising from limited data, which in operation can cause
poor out-of-sample performance[ﬂ Even with sophisticated
recent stochastic programming techniques, decisions can
be overly dependent on small amounts of relevant data, a
phenomenon akin to overfitting in statistical models.

We propose a data-driven method to solve a stochastic
optimal power flow problem based on limited information
about forecast error distributions available through a finite
training dataset. Our approach is inspired by recent results
in the optimization literature on data-driven distributionally
robust optimization [27]. We formulate a tractable data-driven
distributionally robust optimal power flow problem where
the Wasserstein metric [28] is used to quantify differences
between an empirical data-based distribution and the real
data-generating distribution. In contrast to previous work,
we obtain power schedules and reserve policies that are
explicitly robust to sampling errors inherent in the dataset.

'Out-of-sample performance is an evaluation of the optimal decisions
using a dataset that is different from the one used to obtain the decision,
which can be tested with Monte Carlo simulation



This approach achieves superior out-of-sample performance
guarantees in comparison to other stochastic optimization
approaches, effectively regularizing against overfitting the
decisions to limited available data. A numerical example based
on a modified IEEE 118 bus test network illustrates inherent
tradeoffs between operation cost and risk of constraint viola-
tion, and we show how our proposed method offers a data-
driven framework to systematically balance these objectives
The results also point out that making inaccurate assumptions
about probability distributions can cause underestimation of
risk.

The rest of the paper is organized as follows: Section II
describes the network model and the stochastic OPF problem.
Section III describes the data-driven distributionally robust-
ness optimization framework and formulates the data-driven
stochastic OPF problem. Section IV provides simulation
results and discussion. Section V concludes the paper.

Notation: The inner product of two vectors a,b € R™ is
denoted by (a, b) := a™h. The N-fold product of distribution
IP on a set = is denoted by IP™V, which represents a distribution
on the Cartesian product space =y = = X ... X Z. Superscript
“ 77 is reserved for the objects that depend on a training
dataset . We use (.)’ to denote vector or matrix transpose
and AT to denote matrix A to the power 7.

II. NETWORK MODEL AND OPTIMAL POWER FLOW

We consider N; devices connected via a transmission
network within a planning time horizon 7T discrete time
steps. The elements connected to the transmission system
may include 1) traditional generators; 2) fixed, deferrable,
and curtailable loads; 3) storage devices like batteries and
plug-in electric vehicles, which are able to act as both
generators and loads. In this case, we model two types
of devices: devices (e.g., conventional thermal and hydro
generators, deferrable/curtailable loads and storage devices)
with controllable power flow affected by decision variables;
and devices (e.g., flexible and intermittent renewable energy
or fixed loads) with fixed or uncertain power flow which will
not be affected by decision variables.

A. Devices with Controllable Power Flow

The power flow of each controllable device is modeled
with a discrete-time linear dynamical system

xl,y = Ajx] + Bju, (1)

where device j at time ¢ has internal state xi € R™, dynamics
matrix A; € R™*" input matrix B; € R™ %™ and control

input u] € R4 . The first element of ] corresponds to the

power injection of device j at time ¢ into the network at
its bus, and other elements describe internal dynamics such
as state-of-charge (SOC) of energy storage devices. States
and inputs over the planning horizon could be expressed

in the following notation: x/ = [(z])/, ..., (¢7)'] € R™7T
and w = [(u))',..., (u}_,)') € R™T. We can then write
compactly:

X = Az} + Bjw, 2)

where
Aj j 0 . 0
A? A.B. B, -
Aj = ,J ,B]' = ]. J J 0
A7 AT B, A,B; B,

B. Devices with Uncontrollable Power Flow

The fixed power flow for device j is given by r; +G;£ with
positive values denoting net power injection into the network.
The vector r; € RT denotes the predicted power injection
over the planning horizon, and the matrix G; € RT*NeT
maps the random vector ¢ € = C RY¢T to a prediction error
of the power injection or extraction for device j. If uncertainty
of device j is not explicitly modeled, then G; = 0.

We will assume that the probability distribution P of ¢ is
unknown and observed only through a finite dataset EN.

C. Cost Functions and Constraints

An operating objective of our problem is to minimize a
sum of cost functions associated with controllable devices
Jj : R™T x R™T — R. The cost functions are modeled as
convex quadratic:

%llj/Hjuuj +Cj,
3)

wth H;, and H;, being positive semidefinite matrices.
We consider: 1) power balance constraints, 2) power line
flow constraints and 3) local device constraints. The power
balance constraints are

Ng

> (rj+ g+ Cxd) =0, )

j=1

. .1 . . .
0600 1= 1,50 3 Hy 4

which ensures that the generation and consumption of power
inside the transmission system are balanced over the planning
horizon. The matrix C; selects the first element of x. In this
paper, we employ a widely used linearization of the nonlinear
AC power flow equations, in which it is assumed that lines
are lossless, normalized voltage magnitudes are close to unity,
and voltage angle differences are small [14], [18]. In this
case, the line flow are linear functions of nodal injections.
The L bi-directional transmission lines power flow con-

straints can be expressed as

Ng

D Ti(r + G+ Cx) < p, ©)

j=1
where I'; € R2ET*T maps the power injection or extraction
of each device to its contribution to each connected line and
can be constructed from network line impedances, and p
denotes nominal line flow limits. The local constraints are
also modeled as linear inequalities of the form:

zjj + Ujuj + Z;€ < wj. (6)

where T; € Rli*mT U, € Ry>miT and Z; € Rli*NeT,
and w; € R is a local constraint parameter vector. These
constraints can be used to model allowable power injection
ranges and other device limits.



D. Reserve Policies

Deterministic OPF formulations ignore the prediction error
¢ and compute an open-loop input sequence for each device.
In a stochastic setting, one must optimize over causal policies
w = 7;(€), where m; : RVsT — R™T is a measurable
function that specifies how each device should respond to
forecast errors as they are discovered. We can now formulate
a finite horizon stochastic optimization problem

Ng
JCost = inf E Jj(Ajﬂ?%—‘rBjﬂ'j(f)JTj(f)),
7 €l =
subject to
Ng
Dy + Gy + Cy(Ag + Bymy(€))) = 0.,

Jj=1

Ng
Eh (Z Lj(r + Gé + Cy(Ajag + Bym;(€)) = p) <0,

j=1

Efa <Tj(Aj% + Bym;(§)) + Ui (§) — wj> <0,j=1,..Ny.

(7

where f; and f; denote general constraint risk functions,
which in our case will depend on forecast error data and
auxiliary optimization variables. Also, the cost function
is proportional to the first and second moments of the
uncertainties &, because each device cost function are convex
quadratic. The problem is infinite dimensional, so we
restrict attention to affine policies:

w = D¢ +e;. (8)

so that each participant device j (e.g., traditional generators,
flexible loads or energy storage) power schedule w/ is
parameterized by a nominal schedule ¢; = [e),...,e} ]
plus a linear function D; of prediction error realizations. To
obtain causal policies, D; must be lower-triangular. The D;
matrices can be interpreted in terms of planned Automatic
Generation Control (AGC) parameters [14]. Under affine
policies, the power balance constraints are linear functions
of the distribution of £, which are equivalent to

Ng Ng
> (rj + Cj(Ajz + Bjej)) =0,) (G; + C;B;D;) =0.
j=1
9

j=1

ITI. DATA-DRIVEN DISTRIBUTIONALLY ROBUST
OPTIMIZATION VIA THE WASSERSTEIN METRIC

There is a variety of ways to reformulate the general
stochastic OPF problem to obtain tractable problems that
can be solved by standard convex optimization solvers. These
include assuming specific functional forms for the forecast
error distribution (e.g., Gaussian) and using specific constraint
risk functions, such as those encoding value at risk (i.e.,
chance constraints), conditional value at risk, distributional
robustness, and support robustness. In all cases, the out-of-
sample performance of the resulting decisions in operational
practice ultimately relies on the quality of data describing

the forecast errors and the validity of assumptions made
about probability distributions. Many existing approaches
make either too strong or too weak assumptions that lead
to underestimation or overestimation of risk. In this section,
we review a recently proposed tractable method for data-
driven distributionally robust optimization [27]. We then
use it to formulate a data-driven distributionally robust
OPF problem that is based exclusively on a finite training
dataset =y, is robust to sampling errors, gives explicit
control of conservativeness, and offers superior out-of-sample
performance guarantees. This is accomplished by optimizing
over the worst-case distribution within a Wasserstein ball in
the space of probability distributions centered at the uniform
distribution on the set of training data. This turns out to admit
a tractable reformulation for certain risk functions, including
CVaR.

A. Data-Driven Stochastic Programming

Consider the stochastic program

7ot (¥ 6] = [ nop@ | ao)

with decision variable y € Y C R", random vector & with
probability distribution P supported on = C R™, and cost
function A : R” x R™ — R. In virtually all practical settings,
the distribution P is unknown, so the problem is in some
sense ill-posed, since it is not even possible to evaluate the
cost function for a given decision. We typically have only
a finite training dataset of IV independent samples observed
from P, which we denote by N = {f}}LSN Ccz=.

The out-of-sample performance of a decision § € Y is
EP[h(7, £)], which can be interpreted as the expected cost of
4 under a new sample of ¢ that is independent of the training
dataset. In any stochastic optimization problem, we seek a
decision with good out-of-sample performance. A common
approach is to approximate IP based on the training data =N,
effectively replacing IP with a discrete empirical distribution
defined by the uniform distribution on = ~, which is denoted
P . However, this can cause decisions to be overly attuned
to the data and lead to poor out-of-sample performance,
especially when data is high-dimensional, limited in quantity,
and expensive to obtain. The same is true for other approaches
that utilize compressed summaries of En (e.g., mean and
variance) or assume a specific distribution that generated En.

Instead, we adopt an approach that explicitly accounts
for our ignorance of true data-generating distribution P, is
based explicitly on the available data =, and provides out-of-
sample performance guarantees [27]. A set P of distributions
is constructed from = N that contains those that could most
plausibly have generated Zn. One can then formulate a
distributionally robust optimization (DRO) problem:

jDRO = inf sup EQ[h(y’f)L
YEY Qedy

(In

where the objective is to minimize the expected cost function
with respect to the worst-case data-generating distribution
contained in Py.



B. The Wasserstein Metric

The ambiguity set ‘JSN is defined using the Wasserstein
metric, which defines a distance in the space M(Z) of all
probability distributions @ supported on = with EQ[||¢]|] =
J=lIllQde) < oc.

Definition (Wasserstein Metric). Denote by £ the space of
all Lipschitz continuous functions f : Z — R with Lipschitz
constant less than or equal to 1. The Wasserstein metric
dw : M(E) x M(E) — R is defined as

dw (Q1, Q2) = supse, (fa F(OQu(dE) — [z f(€)Q2(dE) )
VQ1, Qs € M(E)
(12)
Intuitively, the Wasserstein metric quantifies the minimum
“transportation” cost to move mass from one distribution to
another. We can now use the Wasserstein metric to define
the ambiguity set

oy = {QeNE)  dulBr. @ <f,  a3)
which contains all distributions within a Wasserstein ball
of radius € centered at the empirical distribution Py. The
radius € can be chosen so that the ball contains the true
distribution P with a prescribed confidence level and leads
to performance guarantees [27]. The radius ¢ also explicitly
controls the conservativeness of the resulting decision; large
€ will produce decisions that rely less on the specific features
of the dataset =y and give better robustness to sampling
errors.

C. Distributionally Robust Optimization of CVaR

The distributionally robust optimization problem does
not seem any easier than (I0), and seems quite possibly even
worse. However, it was shown in [27] that the (IT) admits
a tractable reformulation and in fact for piecewise affine
cost functions of the form h(y, ) = maxy<x (ax(y), &) + b
reduces to a linear program. One important special case is
when the cost function corresponds to the conditional value
at risk of a linear function (a(y), £) + b with confidence level
a € (0,1] [29], where K = 2 written as the piecewise affine
function formation h(y, ). Then the cost function takes the
form

J* =

inf {CVaRa((ay).€)) + b}

= inf
yeY

{mf EF[—7 + émax{(d(y),ﬁ) +l_7+7,0}]} ,

_ P
= ye%{r}feRE [ér:léfé@k(y)a &)+ bk(Tﬂv

(14)

Suppose the support of P is defined by = := {{ € R™ :
H¢ < d}. Then the general form of the distributionally
robust optimization problem for CVaR

inf (15)

jDRO =
yeY, 7eR

sup EQ[maX <a’k(y)v £> + bk]v
QePn =12

as shown in [27], can be equivalently reformulated as the
linear program
1
inf A+ — Si, 16
A S0y Yik YT N, ; (16)

subject to

by + (an(y), &) + (yin,d — HE) < s, Vi < Ny, Vk = 1,2,
[H'yik — ax(¥)|loo <A, Vi < No,VEk = 1,2,
Yik >0, Vi< Ng,Vk=1,2,

where ¢ > 0. For ¢ — 0, the optimization results of @])
correspond to the expectation of the loss function A(y, &)
under the empirical distribution, where Ni Zf\;l s; represents

the sample average of the loss function h(y, &).

D. Distributionally Robust Stochastic OPF with CVaR

We now use the above developments to formulate a data-
driven distributionally robust OPF problem to balance an
operating efficiency metric with CVaR values of line flow and
local device constraint violations. Considering the stochastic
OPF shown in (7), the m-th power line flow constraints (3]
can be written in the form

gm (D, e, &) = [®(D)]n€ + [b(e)]m,

where [.],,, denotes the m-th elements of a vector or m-th
row of a matrix. A similar form for the n-th local devices
constraint can be obtained, which we denote as hj,(D, e, §).
The decisions variables D and e both appear linearly in
9gm and hj,. The CVaR of the line flow and local devices
constraints are then given by [18]

Elgm(D,e,§) + Tm]+ — Tma <0,m =1,...,2LT

E[hjq(D, e, &) + Tjq)+ Nayg=1.,,,.1;.
(18)

We collect the line flow and local device constraints into
a list of V. = 2LT + Z;V:dl l; elements. The first 2LT
elements are line flow constraints, and the remaining
Z;'V:d1 l; elements are local device constraints. The CVaR
value of the v-th constraint in the above list is denoted
by ©,(D,e,&,7) = maxg=12{auk(y),&) + byr(T), where
decision vector y consists of optimization variables D, e.
For v = 1,...,2LT, the parameters of the line constraints
CVaR O, are as follows, with £ redefined here as [¢, 1]

a7

—Tjqa < 0,5 =1,..,

av1(y) = [ZNd I;C;B;D;, Y3 T;C;Bje;

Ng
by1(7) = —p+ Z Li(rj + Gj&+ CiA;x)) + 1y — Ty,
j=1
av2(y) = [0,0] , b2 () = —Tx
For v = 2LT + 1,...,V, the CVaR of the local device

constraints O, can be defined analogously to obtain similar
forms for a,1(y), by1(7) and a2 (y), by2(7).

Based on the above, we now formulate a distributionally
robust OPF problem (T9), which minimizes a weighted sum



of operation cost and the CVaR of the line and local device
constraint violations:

Jorr = Jcost + PjDRO

Na v
=inf {]EZ Jj (&) + psup ZEQ[@U(D76,5J)]},

yeyY

TER Jj=1 QePrn v=1
Ny v .
SURTAR 1 SRS i CHRIEL pPR NS
AvsSivyYikov j=1 =1 Py
(19)
subject to:
Ny 4
> (rj + Cj(Ajz + Bje;)) =0,
j=1
Nq
> (G +C;B;D;) =0,
j=1

p(bio(7) + (aku (1), &) + (Vinw, d — HE)) < s,
[H Yikw = pako(y)]loe < Ao,

Yiko 2> 0,

Vi< Ny, Vo< V,k=1,2

where p € R, quantifies the power system operators’ risk
aversion. This is a quadratic program that explicitly uses the
training dataset = N = {éi}ig ~- The risk aversion parameter
p and the Wasserstein radius ¢ allow us to explicitly balance
tradeoffs between efficiency, risk, and sampling errors inherent
in é N-

E. Data-Driven Distributionally Robust Model Predictive
Control

The proposed distributionally robust optimization frame-
work can be utilized as a component of a multi-stage
closed-loop model predictive control (MPC) strategy. This
strategy allows explicit incorporation of historical datasets
and forecasting techniques that can update predictions during
operation. MPC is an feedback control technique that imple-
ments optimal open-loop control decisions at the current time
step t-th while considering future system states over a fixed
time horizon 3{; [30]-[33]. In the above present problem, the
distributionally robust stochastic OPF (T9) could be regarded
as a building block for a MPC-based closed-loop control
strategy, which includes the current and future system states
based on the forecasts of the renewable energy availability and
the local devices dynamics. The MPC-based control strategy
involves the following steps:
o At time step ¢, forecast the uncertainties across the power
network over horizon H;.

« Solve (I9) over horizon H;.

o Implement the reserve control policies for each device
at current time step t.

« Move to time step ¢ + 1, and return to the first step.
The optimal reserve control policies are computed for the
entire time horizon J;, but only the decisions for the current

time step are implemented. Then we shift to next time step
with the forecasts updated. To simplify the exposition, our
numerical results will focus on solving in one particular
time step. We are pursuing and elaborating on a multi-
stage data-driven distributionally robust MPC algorithm and
properties in ongoing work.

IV. NUMERICAL EXAMPLE

To illustrate the proposed framework, we use a modified
IEEE 118 bus test network as defined in [34] shown in Fig.1.
A wind farm is connected to bus 9 with nominal infeed
of 1000 MW. To understand the trade offs of the proposed
distributionally robust optimization methodology, we consider
only the line flow constraint between bus 8 and bus 9, marked
by a cross in Fig.1. The maximum rating on the power line
between bus 8 and 9 is 950 MW. Other line flow constraints,
security constraints, and voltage constraints can also be easily
incorporated, and we are pursuing this in ongoing work. The
wind power forecast errors are derived from real wind data
from the hourly wind power measurements provided in the
2012 Global Energy Forecasting competition (GEFCom2012)
[35]. The wind power forecast errors are based on the so-
called persistence forecast, which predicts the wind power
output at the next time step to be equal to that at the previous
time step. It can be seen that the forecast errors are highly
leptokurtic, i.e., that the errors are have outliers that make
the distribution tails much heavier than Gaussian tails. Since
the wind power data from GEFCom2012 are normalized in
[0,1], we scale the forecast errors to have zero mean and
the standard deviation ¢ = 300 MW. In this case study, we
only consider a single line constraint, hence no other local
device constraint is included. Additionally, we do not assume
a bound on the wind power forecast errors £ , therefore, the
H and d in (T9) are equal to zero.

Fig. 1. 1EEE 118 bus test network.

For comparison purposes, we also introduce two other
methods which we call CVaR OPF and Gaussian OPF
to evaluate the constraint violations. In CVaR OPF, we
use a basic sample average to approximate CVaR of the
line constraint violations with training dataset = N,,» wWhich



corresponds to setting ¢ = 0 in (I9). In Gaussian OPF, we
assume the data are generated by a Gaussian distribution
with the sample mean and variance from dataset Zn,. We

subsample Ny = 100 elements from the training dataset =y, .

T

—+—DRO OPF ¢ = 0.04

—*—DRO OPF ¢ = 0.08 |-
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Fig. 2. Predicted tradeoff between operating cost and CVaR of line constrain
violations, based on different models of data uncertainty. The Gaussian model
underestimates the risk, as demonstrated by the out-of-sample evaluations in
Fig.3.
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Fig. 3. Out-of-sample performance is superior to other approaches and

conservativeness is explicitly controllable, as demonstrated by Monte Carlo
simulations. For each value of p we subsampled new values from the training
dataset and computed the empirical CVaR of the line constraint.

Fig.2 visualizes the solutions of the proposed stochastic
OPF by three methods: CVaR OPF, Gaussian OPF and DRO
OPF (¢ = 0.04,0.08). The results illustrate the tradeoffs
between optimal operation cost and CVaR of line constraint
violations by varying the risk aversion parameter p. The
tradeoffs could be explicitly adjusted by p according to the
system operators’ efficiency and risk tradeoff preferences.

Fig.2 also demonstrates the underestimation of the risk

of constraint violations by assuming a Gaussian distribution.

Distributionally robust optimization considers the worst-case
scenario of the uncertainties to produce more conservative

decisions on generator power adjustments and reserve policies.

The conservativeness of the results are controllable by
adjusting the Wasserstein distance e. In this paper, we
presents two cases € = 0.04,e = 0.08. To emphasize, the
results of DRO OPF (¢ = 0.00) overlap with the curve

-
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Fig. 4. Sample errors can lead to the underestimation of the risk of constraint
violations when the data contain less variance than the real distribution, but
their effect is diminished by the data-driven distributionally robust approach.

given by CVaR OPF in Fig.2. Increasing € provides better
robustness to sampling errors and yields superior out-of-
sample performance guarantees.

Fig.3 visualizes the out-of-sample performance guarantee
of stochastic OPF solution offered by distributionally robust
model based on Monte Carlo simulation. For each value
of p we subsampled new values from the training dataset
and computed the empirical CVaR of the line constraint.
The decisions from DRO OPF method ensure smaller line
constraint violation for all values of the risk aversion p. Again,
we also see that increasing the Wasserstein radius e provides
lower risk. The benefits saturate for small p.

In the DRO OPF case, we also re-solved stochastic OPF
problem with reduced size of training dataset to Ny = 30.
Fig.4 visualizes the effects of sampling errors. We see in this
case that the smaller dataset has caused an underestimation
of risk, since the reduced data contains less variance than the
full data. Sampling errors can cause either underestimation
or overestimation of actual risks depending on whether the
dataset features more or less variation than the real data
generating distribution, but their effect is diminished with the
proposed distributionally robust approach.

V. CONCLUSIONS

In this paper, we have proposed a distributionally robust
optimization method to solve a stochastic OPF problem with
the limited knowledge of the uncertain forecast error across
the power system network. By explicitly quantifying the
differences between the empirical data-based distributions
and real data-generating distributions using the Wasserstein
metric, we computed power schedules and reserve policies
which were robust to sampling errors. This approach has
superior out-of-sample performance guarantees in comparison
with other approaches and allows a more systematic trade off
of efficiency and risk. A simple numerical example illustrated
these basic tradeoffs. The results also demonstrated that
making inaccurate assumptions about probability distributions
can underestimate the risk of constraint violations compared
to the distributionally robust optimization. Ongoing and future



work includes case studies in larger networks and adapting

the

approach to handle voltage constraints in distribution

networks using alternative linearizations of the power flow
equations, as in [36].
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