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Abstract— Connected automated vehicles (CAVs) could po-
tentially be coordinated to safely attain the maximum traffic
flow on roadways under dynamic traffic patterns, such as those
engendered by the merger of two strings of vehicles due a lane
drop. Strings of vehicles have to be shaped correctly in terms
of the inter-vehicular time-gap and velocity to ensure that such
operation is feasible. However, controllers that can achieve such
traffic shaping over the multiple dimensions of target time-gap
and velocity over a region of space are unknown. The objective
of this work is to design such a controller, and to show that
we can design candidate time-gap and velocity profiles such
that it can stabilize the string of vehicles in attaining the target
profiles. Our analysis is based on studying the system in the
spacial rather than the time domain, which enables us to study
stability as in terms of minimizing errors from the target profile
and across vehicles as a function of location. Finally, we conduct
numeral simulations in the context of shaping two platoons for
merger, which we use to illustrate how to select time-gap and
velocity profiles for maximizing flow and maintaining safety.

I. INTRODUCTION

Traffic shaping in terms of achieving desired time-gaps
and velocities over platoons of vehicles is needed to handle
variable traffic flows on highways caused by mergers at
highway entrances, departures at exits or prevailing road con-
ditions such as a lane drop. If uncontrolled, such events could
lead to shockwave formation and breakdown. Connected
automated vehicles (CAVs) have the potential to maintain
maximum traffic flow on roadways under such dynamically
changing traffic patterns. However, even in the CAV setting,
significant coordination is needed to ensure that traffic is
shaped in a manner that allows the seamless merger of the
vehicle platoons in a safe manner.

A. Safe Traffic Flow

Consider the scenario of a platoon of vehicles in which
the length of each vehicle is l units, and the maximum
deceleration possible by a vehicle is amin. As illustrated
in Figure 1, a safe operating point of this platoon would be
to ensure that for any vehicle i, if the vehicle ahead of it,
i − 1 were to stop instantaneously, then vehicle i must be
able to come to a stop without hitting vehicle i− 1. This is
a conservative approach, but provides a model under which
collision-free operation can be deterministically guaranteed
as long as the safety criterion is not violated.

Fig. 1: The Eulerian view of two successive vehicles.

Since the events of interest to us such as traffic merger
requires that platoons be shaped at a particular location
in space, we use the so-called Eulerian viewpoint of the
platoon in which we specify the state by observing the
system from a fixed location in space s, (as opposed to
the Lagrangian viewpoint which does so by moving with
the vehicle of interest and specifying state as a function of
time t.) Thus, we use a fixed Cartesian coordinate system to
indicate the position of each vehicle at each time. Assume
that all vehicles are traveling at velocity v, and that vehicle
i − 1 has just passed location s. Consider the scenario in
which the distance between the vehicles i−1 and i is d. The
time-gap between the two vehicles, denoted as τ is the time
required for vehicle i to just pass location s. The distance
traveled by the vehicle i during this time interval is d+ l.

Determining the safe operating points in the system re-
quires a kinematic model of the vehicles. For simplicity
of exposition we use a so-called second order model of
vehicular dynamics under which each vehicle can directly
control its acceleration (within limits). Such a model does
not account for the lag between the application of a control
input and the desired acceleration actually being realized.
However, it is relatively straightforward to extend the results
that we present in this paper to a third order model that
incorporates lag. Furthermore, since lag is a random variable
that depends on individual vehicle dynamics and roadway
conditions, the best option is often to develop controllers for
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Fig. 2: Safety Region in terms of Time-Gap and Velocity.

the second order model, and then study their performance
using a third order model (with random lags) numerically.

Let dmin be the smallest distance between the two vehicles
such that we satisfy our safety requirement at velocity v.
Then denoting the absolute value of the maximum possible
deceleration of the vehicle by amin, the minimum distance
for safe operation is

dmin =
v2

2amin
. (1)

Assuming vehicle i has constant velocity v, the kinematic
relation between v, τ and dmin is

vτ = dmin + l,

where τ is minimum time-gap required for safety. Then from
(1) we have the relation between time-gap and velocity for
safe operation as

τ =
v

2amin
+
l

v
. (2)

B. Need for Traffic Shaping

Figure 2 provides an illustration of the relationship derived
above. The length of each vehicle, l is chosen as 6 m (and
conservatively represents both the actual vehicle length plus
the standstill spacing desired) and amin is chosen to be 4
m/s2 in this example. The x-axis represents the velocity v.
The y-axis represents minimum time-gap τ achievable for
each velocity. There is no control law that can safely operate
(guarantee no collisions) outside of this convex region, i.e.
the safe region is above the curve. However, there could be
a control law that guarantees safe operation for points inside
the safety region.

Now, suppose that we have two platoons with different
flow rates as in Figure 3. We refer to the existing platoon
on the highway as the mainstream platoon, and the entering
platoon from the feeder road as the substream platoon. We
wish to merge these two asymmetric platoons, in which one
vehicle from the substream enters for each pair of vehicles in
the mainstream. Assume that the initial (upstream) operating
point of the mainstream is at A = (v1, τ1). Now, the
minimum time-gap that can be supported in the merged
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Fig. 3: Traffic shaping for smooth platoon merger.
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Fig. 4: Traffic shaping a platoon into sub-platoons of size
two.

platoon corresponds to the point B = (v2, τ2). Suppose that
the entering platoon from the feeder is already at v2. In
order to merge the two platoons, we need to first shape the
mainstream into sub-platoons such that the velocity of all the
vehicles is reduced to v2, and the time-gaps between vehicles
in each sub-platoon are selected appropriately to ensure that
the merged platoon operates at point B = (v2, τ2).

Figure 4 provides an illustration of the above idea in which
all vehicles of the mainstream platoon initially operate at
point A = (v1, τ1). The graph shows the desired velocity of
every vehicle as a function of its location, and below that
we provide a snapshot of how the vehicles are positioned
in space at a particular time instant. As the vehicles of the
mainstream platoon proceed along the highway (left to right
in the figure), they are shaped into sub-platoons, each of size
two. The lead vehicle of each sub-platoon (whose indices are
even numbers) eventually operates at point C = (v2, τ3),
while the following vehicle in each sub-platoon (whose
indices are odd numbers) operates at B = (v2, τ2). Notice
that by shaping the mainstream platoon in this manner, we
have created the necessary spacings such that the substream
platoon can be merged into the gaps created, with all vehicles
in the merged platoon operating at point B = (v2, τ2).
The procedure for merging shaped platoons is relatively
straightforward, and is not the focus of the paper. Our main
goal is the design of a controller that can undertake traffic
shaping of a single platoon.

The shaping of a given platoon to attain a desired operating
point requires the specification of the time-gap and velocity
as a function of location, which we refer to as a to as
a time-gap and velocity profile. As in the example above,
these desired profiles could potentially be different for each
vehicle, and need to be selected carefully so that they can



be realized using a simple controller. In our example, even
vehicles move from operating point A to C , while odd
vehicles move from A to B. Hence, we require different
desired time-gap profiles τi,des(s), based on whether the
vehicle index is even or odd. Since the target velocity of
vehicles is identical, the desired velocity profile, vdes(s) is
the same for all of them. We will discuss how to design
τi,des(s) and vdes(s) in detail in Section IV.

C. Related Work

There is much recent work on autonomous vehicle control.
For instance, [1] designs spacing policies that could lead to
higher roadway throughput or reduce the congestion. Most
of these studies consider the Lagrangian viewpoint (i.e.,
from the perspective of a moving vehicle), and focus on the
stability of traffic policies under a fixed spacing between
vehicles (constant distance headway) or fixed time to collide
with the preceding vehicle (constant time headway). For
instance, the stability of a platoon under decreased time
headway is studied in [2]–[4]. While [2], [3] focus on
performance of constant time-headway policy, [4] states that
variable time-headway policy outperforms previous one in
terms of traffic flow.

Distance-based spacing policies are studied in [5]–[8]. In
[5] it is indicated that a distance-based spacing policy leads
to higher throughput than time-headway policy, however, at
the cost of more inter-vehicular communication. Constant
distance headway is considered in [6], [7] , where the focus is
on stability of either homogeneous or heterogeneous platoons
of vehicles. In [8], it is proven that variable distance headway
as a function of velocity leads to safer and higher throughput
than constant time-headway.

The above works are interested in traffic flows as a func-
tion of time, and do not study traffic shaping as a function
of location. However, as we indicated in our motivating
example, events such as lane drops and mergers require a
platoon to be at a specific operating points at a particular
location. The first work that we are aware of that considers
the Eulerian viewpoint is [9], which introduces a constant
time-gap policy. They show that a platoon following a
constant time-gap policy can be string stable.

In the context of platoon merger, [10], [11] propose
communication-based solutions to create gaps in a platoon
into which another platoon maybe merged. However, stability
is not guaranteed through their communication process.

The goal of the above work is to maintain constant
headways in a platoon, which implies a fixed flow rate, and
only allows change of the operating point along the velocity
axis in Figure 2. Thus, none of the above-mentioned articles
provide results on shaping traffic along the roadway to create
variable gaps as a function of location that we desire.

D. Main Results

Our paper has two main contributions. The first is the de-
sign of a string-stable controller that is capable of tracking a
multi-dimensional target profile (both time-gap and velocity)
at each vehicle. The technique that we use to obtain the

controller is based on feedback linearization [12], and the
controller itself can be considered as a generalization of the
one presented in [9] in a high level sense, wherein space
(not time) is used as the independent variable. As mentioned
above, the basis for such design is the Eulerian view of the
system that permits us to connect the safety of flows (which
must hold at all locations) with the idea of changing flows
via traffic shaping (also as a function of location). We show
that each vehicle is able to track the desired profile, and that
the platoon as a whole is string stable.

Our second contribution is in determining the nature of the
feasible traffic profile under safety constraints. We use the
context of traffic shaping for platoon merging, where greater
flow has to be supported after the merger. Further, the actual
traffic shaping must happen is as short a distance as possible,
since slowing down the vehicles far ahead of the merger
point would cause increased travel times. Hence, we pose
the problem of profile design as an optimization problem
in which the traffic shaping region must be minimized
subject to safety constraints, as well as the deceleration limits
of the vehicles. We show how these boundary conditions
imposed by safety considerations can be used in the design
of time-gap and velocity profiles that can be attained by our
controller. Finally, we use numerical simulations using our
combination of profile and controller to illustrate how it is
successful in attaining the desired traffic shaping.

II. SYSTEM MODEL AND CONTROL LAW

We now design a control law to attain a given time-gap and
velocity profile. This section deals with the system model and
controller design that is capable of tracking the desired target,
while the next section will introduce a (modified) concept of
string stability and conduct stability analysis.

Consider an infinite platoon of homogenous vehicles. As
described in the previous section, we consider a second-
order kinematic model of vehicles as opposed to a third-
order model that includes lag such as that considered in [13],
[14]. However, essentially the same approach would work
for the for third-order model as well, although the resultant
controller would be more complex and less intuitive. We
begin with the basic second order kinematic equations

dsi
dt

= vi(t), (3a)

dvi
dt

= ui(t), (3b)

where si(t) is location of ith vehicle at time t, vi(t) is
velocity of the vehicle at time t and ui(t) is input to the
vehicle i. The initial location of i starts from 0. Index
i = 0 indicates the leading vehicle. Notice that time in the
independent variable in the above model.

Supposing that velocities are positive, it is possible to
change the independent variable to location s as follows:

dti
ds

=
1

vi(s)
, (4a)

dvi
ds

=
ui(s)

vi(s)
, (4b)



where ti(s) is the time instant when vehicle i passes location
s. Therefore, the time-gap between two vehicles is ti(s) −
ti−1(s).

For the infinite platoon described above, the lead vehicle
(i = 0) needs to only track a given velocity profile. However,
other vehicles have to track the velocity profile as well as
their time-gap profile. We can define the state of each vehicle
in terms of the errors that it sees between the desired targets
and the actual value. Then, considering (4), we define two
tracking error terms for each vehicle as follows:

ei(s) =
1

vi(s)
− 1

vdes(s)
, (5a)

∆i(s) = ti(s)− ti−1(s)− τi,des(s), (5b)

where vdes(s) is the desired velocity profile and τi,des(s) is
the desired time-gap profile.

We make following assumption on the time-gap profile.
Assumption 1: τi,des is twice continuously differentiable

with respect to s.
Effectively, each vehicle tracks its own time-gap profile.

An appropriate pattern of time-gap tracking divides the
platoon to sub-platoons. Therefore, there are sub-platoons
with smaller time-gap followed by another identical sub-
platoon. Choosing the proper form will ensure string stability
as will be discussed in the next section.

Now, we will derive control laws for the lead vehicle and
the following vehicles. Since there is no time-gap error for
the lead vehicle, the dynamics for the lead vehicle is

de0

ds
= −u0(s)

v3
0(s)

− ∂(1/vdes)

∂s
. (6)

Applying feedback linearization [12] (i.e., choosing a
control input such that the system is linearized) on the
dynamics of the lead vehicle using control input

u0(s) = v3
0

[
pe0(s)− ∂(1/vdes)

∂s

]
, (7)

where p > 0 leads to

de0(s)

ds
= −pe0(s). (8)

Hence, the dynamics of the lead vehicle is linear.
For other vehicles, we need to differentiate the error term

(5b) twice to obtain the input to the vehicles. Applying
feedback linearization, the control input to such a following
vehicle would be

ui(s) = v3
i (s)

[
p0∆i + pa

d∆i

ds
+
ui−1(s)

v3
i−1(s)

− ∂2τi,des
∂s2

]
,

(9)
where p0 > 0 and p1 > 0. With V2V/V2I communication it
is possible to obtain information about the preceding vehicle.
Thus, the the dynamics of a following vehicles is

d2∆i

ds2
= −p0∆i − p1

d∆i

ds
, (10)

where p0 > 0 and p1 > 0.

Choosing ei(s) as the output of the each vehicle, ei(s) for
following vehicles would be

ei(s) =
d∆i

ds
+ ei−1(s) +

∂τi,des
∂s

, (11)

since d∆i

ds = 1
vi
− 1

vi−1
− ∂τi,des

∂s .
Using the inputs in (7) and (9), the dynamics of the platoon

would be
de0

ds
= −pe0(s), (12a)

d2∆i

ds
= −p0∆i(s)− p1

d∆i

ds
, (12b)

ei(s) =
d∆i

ds
+ ei−1(s) +

∂τi,des
∂s

. (12c)

where p > 0, p0 > 0 and p1 > 0.

III. STABILITY ANALYSIS

In this section, we will prove the stability of our con-
trollers. We have two notions of stability that will be required
at an individual vehicle level (plant stability), and at the level
of a string of vehicles (string stability).

A second assumption on the time-gap profile will be
required to show stability.

Assumption 2: lims→∞
∂τi,des
∂s = 0.

A. Plant Stability

Theorem 1: The unique equilibrium point of the dynamics
defined in (12) is the origin (0 error). The equilibrium point
is asymptotically stable if the parameters p, p0 and p1 are
chosen to be positive.

Proof: The proof is though induction over vehicles,
since the error of each following vehicle i is dependent on
vehicle i − 1 as given in (12). First, we start with the lead
vehicle dynamics (12a), which is a first-order differential
equation. Solving, the velocity tracking error of lead vehicle
is:

e0(s) = e0(0) exp(−ps), (13)

for s > 0 ,and where e0(0) = 1
v0(0) −

1
vdes(0) . Therefore,

lim
s→∞

e0(s) = 0,

since p > 0. Thus, the error term of lead vehicle is
asymptotically stable.

Next, the solution to second-order equation (12b), which
represents the dynamics of time-gap tracking error is

∆i(s) = Ai exp(r1s) +Bi exp(r2s), (14)

where r1 and r2 are roots of characteristic function of (12b)

r1 =
−p1 −

√
p2

1 − 4p0

2p1
, r2 =

−p1 +
√
p2

1 − 4p0

2p1
. (15)

Also, A and B are determined by initial conditions via
Cramer’s rule as

A =

∣∣∣∣∆i(0) 1
d∆i(0)
ds r2

∣∣∣∣∣∣∣∣ 1 1
r1 r2

∣∣∣∣ , B =

∣∣∣∣ 1 ∆i(0)

r2
d∆i(0)
ds

∣∣∣∣∣∣∣∣ 1 1
r1 r2

∣∣∣∣ , (16)



where ∆i(0) is ti(0) − ti−1(0) − τi,des(0) and d∆i(0)
ds =

1
vi(0) −

1
vi−1(0) −

∂τi,des(0)
∂s . Hence, according to (14):

lim
s→∞

∆i(s) = 0,

since <(r1),<(r2) < 0. Thus, ∆i of each vehicle is
asymptotically stable.

Finally, the error in tracking velocity of vehicle i is found
by solving (12c). Applying induction on (12c), we obtain

ei(s) = e0(s) + r1 exp(r1s)

i∑
j=1

Aj+

r2 exp(r2s)

i∑
j=1

Bj +

i∑
j=1

∂τj,des
∂s

.

(17)

Now, e0(s) is asymptotically stable, as proven in (13). The
second and third terms also go to 0 as s → ∞, since
<(r1),<(r2) < 0. Further, from Assumption 2, τi,des(s),
lims→∞

∂τi,des
∂s = 0. Hence,

lim
s→∞

ei(s) = 0,

which shows that ei(s) is asymptotically stable.

B. String Stability

In the previous subsection, we proved plant stability,
meaning that each vehicle is able to track desired velocity
and time-gap profiles. However, we need to guarantee that
an error that occurs in one of the vehicles does not amplify
unboundedly through the entire platoon.

This system is supposed to track both velocity and time-
gap profiles. Therefore, string stability must be studied for
both velocity tracking error and time-gap tracking error. Ac-
cording to (12b), the error of time-gap tracking is decoupled,
i.e. there is no effect of proceeding vehicle on the vehicle.
Therefore, any error that occurs at any vehicle regarding
time-gap tracking, would not propagate through the whole
platoon. Further, since each vehicle is asymptotically stable
in terms of ∆i, this error term would damp in each vehicle.
Hence, in terms of time-gap tracking error, the dynamics of
(12) is string stable in the notion of [15].

However, as is obvious from (12c), the preceding vehicle
affects the behavior of the following one. Thus, the system
is not decoupled in terms of velocity tracking error. The
definition of string stability in this study is that errors should
not be amplified unboundedly. Hence, we require that given
any ε > 0, there exists a δ > 0 such that

‖ei(0)‖∞ < δ ⇒ sup
i
‖ei(.) + η‖∞ < ε, (18)

where η is constant. In the above definition, κ is an upper
bound on acceptable velocity tracking error. The definition
indicates that if an error occurs in one of the vehicles, will
not amplify by more than η.

Theorem 2: The platoon of vehicles with dynamics (12)
and

τi,des(s) = τ0 + (−1)iTdes(s) (19)

is string stable with

η = |∂Tdes
∂s
|.

τ0 is initial time-gap between vehicles(τ0 =
lims→−∞ τi,des(s)). Tdes(s) is a variable part of the
time-gap profile and is assumed to be decreasing, twice
continuously differentiable in s and lims→∞

∂Tdes

∂s = 0.
Proof: Consider the dynamics in (12) with p > 0,

p0 > 0 and p1 > 0, initial conditions of ∆i(0) = d∆i(0)
ds = 0,

and velocity tracking error e0(s) for the leading vehicle. For
all s ≥ 0, the errors ei(s) of following vehicles would satisfy

|ei(s)| ≤ |e0(s)|+ |∂Tdes
∂s
|. (20)

In order to prove (20), consider the (12c) and

e1(s) = e0(s) +
∂Tdes
∂s

. (21)

Thus, by induction we have

ei(s) = e0(s) +
∂Tdes
∂s

i∑
j=1

(−1)j . (22)

Since sequence (−1)i is periodic,
∑i
j=1(−1)j is bounded

by 1. Further, applying the triangle inequality on (22) yields
the inequality (20). Hence, it is obvious that η in (18) is
|e0(s)| + |∂Tdes

∂s |, which means that η = |∂Tdes

∂s |. Conse-
quently, the dynamics in (12) is string stable in terms of
both errors of tracking the velocity and time-gap profiles.

IV. PROFILE DESIGN

In this section our objective is to design time-gap and
velocity profiles that will be used as inputs to the control
laws derived in Section II. There are three conditions that
must be satisfied during the design process. First, the traffic
shaping procedure must be undertaken in the smallest length
of roadway, since this would allow for vehicles to travel at
the (high) initial velocity for the longest distance, and hence
minimize the travel time. Second, the deceleration required
of the vehicles must remain bounded by the maximum
acceptable value. Finally, the time-gaps and velocities of each
vehicle at any location must lie in safety region shown in
Figure 2.

Time-Gap Profiles

Our first problem is to design a time-gap profile that is
simple (has few parameters over which to optimize), and
satisfies Assumption 1 and Assumption 2. Our choice in this
study is the logistic function. Hence, the desired time-gap
profiles based on general form given in (19) are

τi,des(s) = τ0 + (−1)i(α+ β tanh(γs)), (23)

where γ > 0 and α and β are to be chosen based on
the desired initial and final value of time-gaps and the
kinematic constraints. The initial value of time-gap pro-
file is lims→−∞ τi,des(s), which is τ0, and final value is
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lims→∞ τi,des(s). For instance, if τodd,end is final value of
time-gap of odd vehicles, α and β would be:

α = β =
τ0 − τodd,end

2
. (24)

The parameter γ determines the maximum slope of the
logistic function. In our platooning scenario, a larger slope
intuitively implies a shorter distance required for traffic
shaping. However, we cannot choose γ arbitrarily large, since
that would impact the maximum deceleration required of the
vehicles. In order to understand this intuition precisely, we
first need to determine the impact of the time-gap profile
choice on the velocity profile.

Velocity Profile

The velocity profile must be designed jointly with the
time-gap profile so as to ensure that vehicles are within the
safe region of operation (see Figure 2) at all times. Now, the
odd vehicles are the ones that operate on the boundary of the
safe region (the operating point for odd vehicles goes from
point A to B in Figure 2). Hence, we design the velocity
profile of odd vehicles in a manner that they operate on the
boundary of the safe region as specified by (2). Thus, from
(2), the velocity profile of odd vehicles as a function of time-
gap is

vodd(s) =(
τodd,des(s)amin +

√
(τodd,des(s)amin)2 − 2lamin

)
, (25)

where τodd,des(s) is the time-gap profile for odd vehicles as
determined from (23).

We next find the velocity profile of even vehicles, which is
the same as the lead vehicle desired velocity profile vdes(s)
(since the lead vehicle is even). To determine the velocity
profile, we consider (12c) in which we set all the error terms
equal to zero (since profile design is under the assumption
of ideal operation). Thus, we set d∆i

ds = ei−1(s) = 0. Hence,
from (5a)

vdes(s) = veven(s) =
vodd(s)

1− vodd(s)∂Tdes

∂s

. (26)

Optimization Problem

Now that we have candidate time-gap profiles and the
corresponding safe velocity profiles, we have to determine

the value of γ so that the deceleration process occurs in as
small as possible distance, while ensuring that deceleration
remains bounded. The following optimization problem may
be used to determine the value of γ:

maximize γ

s.t. min aeven ≥ amin
min aodd ≥ amin
γ > 0.

(27)

Since the constraints above are in the form of bounds
on acceleration, we need to determine the acceleration re-
quirements imposed by the candidate velocity profile (26).
The relation between velocity and acceleration is easily
determined via the chain rule as

∂v

∂t
=
∂v

∂s

∂s

∂t
= v

∂v

∂s
.

The equation above holds for both odd and even vehicles.
Thus, we can find aodd and aeven by substituting for odd
and even vehicles using (25) and (26), respectively. Now
that we have a well defined set of constraints, we solve the
optimization problem numerically.

Once we determine γ, we immediately have the time-gap
profile τi,des(s). We then use (25) to yield the odd vehicle
velocity profile vodd(s). Finally, we find vdes(s) = veven(s)
using (26).

V. EVALUATION

We now perform numerical simulations to evaluate the
performance of the proposed controller according to designed
profiles. We use the example of traffic shaping of a platoon of
vehicles in the manner described in Section I. We recall that
the objective in that example was to reduce the operating
velocity of the mainstream vehicles, while adjusting their
time-gaps appropriately to allow for the merger with another
substream platoon. Thus, we desire to shape the mainstream
platoon into sub-platoons with a smaller time-gap between
members of each sub-platoon, and larger time-gaps between
each sub-platoon.

We choose τ0 = 2.6sec, which is 1.5 time of minimum of
time-gap in Figure 2. τodd,end = 1.74sec is the minimum
time-gap supported by merged platoon on the highway.
Under these targets, α and β in (24) would be 2.17 and 0.43,
respectively. Finally, to determine parameter γ, we solve the
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optimization problem of (27) numerically. The optimal value
of γ is 0.057. Figure 5 illustrates the time-gap of each vehicle
at each location (τi,des(s)), while Figure 6 shows the velocity
profile (vdes(s)).

Figure 7 illustrates the time-gap tracking performance of
the controller as a function of its location. There are two plots
shown in this figure. On the one hand, the decreasing plot
is associated with odd vehicles, showing that they reduce
the time-gaps and approach closer to the vehicle in front.
On the other hand, the increasing time-gap plot shows the
time-gap of even vehicles, and indicates the creation of sub-
platoons. Comparison of the realized time-gaps of vehicles
in Figure 7 with the desired time-gap profiles in Figure 5
indicates precise tracking is achieved.

Figure 8 shows the realized velocity profiles of odd and
even vehicles.vehicles along the road. The figure indicates
tha even vehicles are track the desired velocity profile
shown in Figure 6 accurately. However, odd vehicles show
some amount of error while decelerating. This observation
is consistent with (12c), which indicates that odd vehicles
have an error of ∂τ

∂s in tracking the desired velocity profile.
All vehicles eventually converge to an identical velocity
downstream.

The acceleration of all vehicles are in the desired bounded
range at all locations as seen in Figure 9. The acceleration
of odd and even vehicles follow different profiles, consistent
with their tracking different time-gap profiles as well as
experiencing errors in velocity tracking in the case of odd
vehicles.

Figure 10 shows the trajectories of vehicles as a function
of time. As the figure indicates, the uniform spacing across
vehicles in the platoon (bottom of figure) gradually gives
way to sub-platoons of size two (top of figure). We see that
the density of vehicles at a sub-platoon level (as indicated by
their spacing) increases, while the velocity of each vehicle
decreases simultaneously.

Finally, Figure 11 indicates that the traffic shaping opera-
tion occurs in the safe region operation, since the time-gap
and velocity of all vehicles remain above the curve at all
locations.
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Fig. 11: Operation of controller in the safe region

VI. DISCUSSION

Merging two strings of vehicles is the motivation of this
study as mentioned previously. There is an issue of providing
gaps in between of vehicles and increasing the flow rate
in order to prevent the shockwaves before merging. The
proposed controller is capable of changing the distribution
of vehicles in a string, which other controllers with constant
time-gap or spacing policy are not. Thus, appending this
controller with an appropriate merging policy could solve
the automated merging problem.

An appropriate merging scenario with the controller could
be locating two strings with a time-gap shift. Considering a
road with two lanes merging, if the leading vehicles of two
strings maintain a time-gap of τ0 and the strings change their
distribution before merging, it is possible to locate the sub-
platoons created to one platoon while merging. Therefore,
after merging point there is a platoon of vehicles with higher
flow rate and desired velocity. Besides, probable shockwaves
are prevented, since all vehicles are tracking the velocity
profile with respect to location. Consequently, this merging
scenario shows the importance of the proposed controller.

VII. CONCLUSION

In this work, we studied the problem of traffic shaping of
a platoon of vehicles in terms of achieving a variable time-
gap and velocity as a function of location. The motivation
for such shaping is to handle conditions of variable flow,



such as two platoons merging due to a lane drop. Existing
controllers have focussed primarily on fixed spacing or time-
gap regimes, which are not able to account for spatially
changing flows. The controller that we designed is able to
locally modify a platoon by increasing or decreasing its flow
locally via variable time-gaps in a provably safe manner. In
the example of platoon merger, it is thus able provide the
necessary gaps to accomodate merging vehicles.

Our approach involves defining system parameters over
space, rather than time, and can be seen as an generaliza-
tion using this approach for constant flow (fixed time-gap)
problems. Our methodological contribution was to identify
the conditions needed on the time-gap and velocity profile
to ensure stability, and to design such profiles keeping in
mind the safe operating region of the system. We showed that
appropriately designed target profiles can be used to ensure
that errors do not propagate unboundedly across vehicles,
hence attaining a notion of string stability across the platoon.
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